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Networked Sensor Management and Data Rate
Control for Tracking Maneuvering Targets
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Abstract—This paper presents sensor and data rate control algo-
rithms for tracking maneuvering targets. The manuevering target
is modeled as a jump Markov linear system. We present novel
extensions of the Interacting Multiple Model (IMM), Particle filter
tacker, and Probabilistic Data Association (PDA) algorithms to
handle sensor and data rate control. Numerical studies illustrate
the performance of these sensor and data rate control algorithms.

Index Terms—IMM algorithm, particle filters, PDA algorithm,
sensor selection, target tracking.

I. INTRODUCTION

RACKING a maneuvering target is often formulated as

a problem of estimating the state of a partially observed
jump Markov linear system. For example, consider a radar
track-while-scan system where noisy range and bearing and
possibly Doppler measurements are obtained at regular inter-
vals (the radar scan rate) on all detectable objects including
objects of interest termed targets such as aircraft or ships, and
nuisance objects termed clutter, e.g., clouds, terrain, trees, etc.
The purpose of a target tracking system is to search through
these measurements in real time looking for trails (time space
sequences) of measurements that correspond to targets and then
to track these targets, updating estimates of their kinematic
parameters such as range, speed and heading as new mea-
surements arrive. False tracks can arise from consistent trails
of noise and clutter and an important measure of a tracking
algorithm’s performance is its ability to minimize the number
and duration of false tracks while rapidly and reliably finding
and following real targets.

A typical multitarget tracking system [2], [5] contain three
important subsystems: i) a track initiation procedure, which de-
tects real targets and initializes track state estimators, ii) a track
state estimator, which generates estimates of current and future
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values of the target kinematic parameters (based on the avail-
able history of noisy measurements), and iii) a data association
process, which allocates measurements to existing tracks and
hopefully discards false measurements that do not correspond
to real targets.

Increasingly, target tracking systems attempt to combine
the above three processes into a single integrated algorithm as
follows. 1) The trajectories of targets of interest are modeled
by a Markov sequence based on target kinematics. 2) The “ex-
istence” behavior of real targets, i.e., the probabilities of real
targets appearing and disappearing, is modeled by a finite-state
Markov chain with state representing the probability of target’s
existence. 3) Finally, statistical measurement models are em-
ployed to describe both real target measurements and false
(clutter) measurements. The optimal estimator for this “com-
plete” target and measurement model is then approximated in
some computationally feasible fashion. Target tracking algo-
rithms such as Integrated Probabilistic Data Association (IPDA)
[22], MHT [25], and Hidden Markov Model (HMM)-based
trackers [29] are all based on approximate solutions to this
complete target and measurement model estimation problem.

Here, we consider a further enhancement and integration of
tracking system functionality by extending existing algorithms
to handle flexible multimode measurement sensors and vari-
able bandwidth data links between the sensors and the tracker
(tracking computer). Flexible multimode sensors are capable of
rapidly switching between various measurement modes, e.g.,
radar transmit waveforms, beam pointing directions, etc, so that
the tracking system is able to tell the sensor which sensor mode
to use at the next measurement time. Significant improvements
in tracking performance have been demonstrated for such sys-
tems even with relatively simple tracker driven sensor measure-
ment mode selection (control) strategies [12], [13]. Similarly
when sensors are connected to a tracker via a data-link with
low and/or time-varying bandwidth data rate, the tracker must
dynamically decide which sensor data is the most valuable to
transfer to the tracking system via the currently available data
link capacity during each measurement interval. We distinguish
two cases. If the data link is only one-way, from the sensor to
the tracker, then optimal use of the available communication ca-
pacity must be determined by the sensor without direct knowl-
edge of the current tracker state [23]. Alternatively, if there is a
two-way link between the tracker and the sensor then the tracker
can control the sensor and instruct the sensor as to what data to
send, based on current tracking performance. This latter situa-
tion is clearly very similar to the flexible sensor mode control
situation just described.
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Below, we focus on the flexible sensor and two-way data
link problem whereby the tracker is able to control the sensor
mode and/or the data link usage. This is shown, not surpris-
ingly, to be a stochastic control problem. Furthermore, since
the tracker controls the sensor mode and/or data link usage to
optimize tracking performance without direct measurement of
the tracking performance (the tracker does not know the true
target state), then we have a partially observed stochastic con-
trol problem [3]. Thus, in this paper, we formulate and solve the
problem of sensor and data-rate control for optimal tracking of
manuevering targets as a partially observed stochastic control
problem for a jump Markov linear systems (JMLS).

JMLS have been widely used in areas such as target tracking
to model the maneuvering behavior of real tracks [9], [15]
and CDMA spread spectrum telecommunication systems [17].
JMLS are a significant generalization of the concept of an HMM
in that the key assumption of conditional independence of the
observations given the state is relaxed. Moreover, JMLS are a
generalization of linear Gauss—Markov models since they allow
the parameters of the system to evolve randomly, governed by
a finite state Markov chain with known transition probabilities.
Unfortunately, unlike an HMM or a Gauss—Markov model
where optimal state estimation can be performed via the HMM
filter and the Kalman filter, respectively, computing the optimal
(conditional mean) state estimate of a JMLS requires exponen-
tial complexity; see [7] and [19] for an exposition of optimal
and suboptimal state estimation algorithms for JMLS) Impor-
tantly, however, the optimal filtered state estimate—called the
“information state”—is essential for computation of the optimal
solution to the partially observed stochastic sensor/data rate
control problem described above. This paper presents optimal
and suboptimal solutions to this problem.

Before diving into technical details, we now briefly describe
two practical applications that serve to further illustrate and mo-
tivate the ideas described above.

Example 1—Beam Scheduling in Electronically Scanned Ar-
rays: Consider a problem where P targets (e.g., aircraft) are
being tracked by an electronically scanned antenna array (ESA)
with one steerable beam. The kinematic state of each target
x%p ), p=1,2,..., Pevolves independently of other targets ac-
cording to a JMLS. The goal is to obtain the “best in some sense”
(conditional mean) estimate of the state of all targets, however
since there is only one steerable beam, we can obtain noisy mea-
surements yt(p ) of only one target at any given time instant.
Thus, we must face the scheduling or control problem of which
single target should the tracker choose to observe at each time
instant in order to optimize some specified cost function? This is
precisely the flexible sensor situation described above and a “so-
lution” to this problem forms an integral part of any real ESA
antenna beam pointing system [4], [5]. Practical implementa-
tion of real ESA systems is, of course, quite complex since the
beam scheduling function must handle a variety of search, iden-
tification and tracking functions. Here we have only described
a small but nevertheless important part of the real ESA control
problem. Fig. 1 shows a schematic representation of the situa-
tion we have in mind. As shown in [16], the above problem is
a special case of a sensor selection problem for JMLS were the
stochastic control problem has a multiarmed bandit structure.
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ESA

Fig. 1. Multitarget tracking with one multimode sensor.

It is well known that the multiarm bandit problem has a rich
structure which results in the selection problem decoupling into
P independent optimization problems. Indeed, it turns out that
the optimal policy (control law) has an indexable rule [28]: For
each target p, there is a function () (argp )) called the Gittins
index, which is a function only of p and the information state
x? ) (or in the partially observed case the posterior probability
of z{") given the history of measurements 4”)). The optimal!
beam steering policy at time ¢ is to steer the beam toward the
target with the smallest Gittins index, i.e., steer the beam to-
ward target ¢, where

0= i, 1 ()} ®

Example 2—Data-Rate Limited Target Tracking: A second
motivating problem is illustrated in Fig. 2. Several sensors are
connected to a multiplexer, which in turn is connected via a
limited and/or time-varying data rate communication channel
to a computer which performs target tracking based on obser-
vations provided by the sensors [26]. Clearly, if the channel
data rate is adequate to allow all the sensor data to reach the
tracking computer in a timely manner then we have a straight-
forward multisensor tracking problem that can be solved using
standard methods. However, if the channel data rate is limited
then we must decide how best to allocate the sensor data to fit the
available communication capacity of the channel so that “op-
timal” tracking under the data rate constraint is achieved. For
example, consider a scenario where 20 sensors each capable of
making 16 bit measurements every 1 ms (i.e., 320 kbits/s sensor
data) are connected to a multiplexer which is connected to the
tracking computer via a 32 kbits/sec communication channel.
The required 10:1 data rate reduction can be achieved by any
number of static or dynamic strategies such as, for example, only
sending the most significant bit from each sensor (20 kbits/s), or
sending 16 bit data from two different sensors during each 1-ms
time slot resulting in (32 kbits/s), and so on. We now describe an
approach to this problem based on the sensor selection ideas dis-
cussed above. We create a set of virtual sensors each supplying
information within the data rate limit. The data rate constrained
tracking problem then becomes a problem of switching (at each
time slot) between these virtual sensors, i.e., a sensor selection
problem. Continuing with the example above we might create
virtual sensor 1 by taking the two most significant bits from real
sensors 1 and 2, taking the 11 most significant bits from real

I'The optimality is with respect to a discounted infinite horizon cost function;
see [16]
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Fig. 2. Bandlimited tracking.

sensor 6 and taking the most significant bit from the other 17
real sensors. Thus, virtual sensor 1 consists of 32 bits of data
taken in different measure from all the sensors and meeting the
32-kbits/s data rate limit. Proceeding in this way, we can create a
set (possibly very large) of virtual sensors each supplying data
at an acceptable rate. Thus, the problem for the tracker to dy-
namically choose between virtual sensors in an optimal fashion
and transmit the choice of virtual sensor to be used for the next
measurement to the real sensors so that after a measurement is
made they can create the required virtual sensor data packet and
send it back to the tracker over the channel (which now has ex-
actly the right capacity to carry the virtual sensor data).

This approach centralises decisions at the tracker and is most
suitable when there is limited computational power available
at the sensors (they only have to pack the measured data into
the specified virtual sensor packet). If there are no such compu-
tational constraints at the measurement sensors, then clearly a
better approach is to perform additional processing at the sen-
sors, using the real sensor measurements as well as any feedback
information received from the tracker. In the single sensor case,
feedback from the tracker is redundant since all the data avail-
able to it originates at that sensor in the first place, and hence
the optimal scheme locates all decisions at the sensor. This is
further explored in Section IV-E.

This paper presents optimal and practically implementable
suboptimal algorithms which integrate sensor and/or data link
control into a maneuvering target tracker. The optimal sensor
adaptive algorithm is presented in terms of stochastic dynamic
programming for a finite horizon cost function. The suboptimal
sensor control algorithms we present are based on two approxi-
mations: i) Instead of optimizing a finite horizon cost function,
we show that satisfactory results can be obtained by optimizing
the expected instantaneous cost at each time, and ii) approxi-
mating the optimal state filter by the Interacting Multiple Model
(IMM) algorithm (or some other suboptimal algorithm).

The remainder of this paper is organized as follows. In Sec-
tion II, the sensor control tracking problem is formulated. Sec-
tion III presents special cases where optimal processing is pos-
sible. In Section IV, a suboptimal one-step ahead algorithm is

presented and new Sensor Adaptive Interacting Multiple Model
(SA-IMM), Sensor Adaptive particle filter, and Sensor Adap-
tive Probabilistic Data Association (SA-PDA) trackers are de-
scribed. Section V presents two numerical examples.

II. PROBLEM FORMULATION
A. Target and Sensor Model

Let ¢ = 1,2... denote discrete time. The target/sensor
(signal) model consists of the following ingredients. To sim-
plify the presentation we consider only single target tracking
and we will not model target existence behavior.

a) Target Mode: In order to model target maneuvers the
underlying target trajectory model jumps between a
finite set of known modes representing various tra-
jectory models such as constant speed and heading,
constant heading with linear acceleration, coordinated
turn, etc. This mode jumping can be modeled by a finite
state Markov chain ;. Let r; denote a discrete-time,
time-homogeneous, s-state, first-order Markov chain
with state space {e1, ..., es}, where e; denotes the unit
s dimensional vector with 1 in the ¢th entry. Denote the
transition probabilities as pn, , = P{riy1 = n|r; =
m} for any m,n € S, where S = {1,2,...,s}. The
transition probability matrix P = [py, »] is, thus, an
5x s stochastic matrix with elements satisfying p,,, », >
0and >.° _, pm.n = 1, for each m € S. Denote the
initial probability distribution by p,, = P{ry = m},
for m € S, such that p,, > 0, Vm € S and
D m=1Pm = 1.

b) Target Kinematic State: Target trajectories of interest
are modeled by a process {z:}, where typically, z; is
the target kinematic state (position, velocity) in Carte-
sian coordinates. Because the target model jumps ac-
cording to the modes r;, the target state x; can be
modeled as the following Jump Markov Linear System
(JMLS):

Tip1 = A (Te1) T + B (re41) wy )
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where x; € R"® is the system state, and
ii.d

w, ~N(0,1,,) € R". A(-) and B(-) are

functions of the Markov chain state 7, i.e.,

(A(),B()) C {(A(m), B (m));m € S}, and they
evolve according to the realization of the finite state
Markov chain r,. We assume that zg ~ N(Z¢, Pp),
where Py > 0, and let z¢p and w; be mutually
independent for all ¢.

c) Sensor Choice and Observation Process: Assume
that at time ¢ there are L; possible sensors available
that can be used to give measurements of the target’s
state z;. However, at each time instant, only one of
these L; possible sensors can be chosen. The variable
up € {1,...L;} denotes the sensor selected at time ¢
from among the L; possible sensors. u; will be chosen
to minimize a cost function as described later. For no-
tational simplicity, we will ignore the time dependence

t of L.
Let the vector y;(u;) € R™ denote the observa-
tion vector at time ¢ if sensor u; € {1,...,L} was

chosen. In tracking problems, as well as the “true” ob-
servation ¥ (u;), several false measurements are also
obtained by sensor u;. These false measurements are
typically modeled as detections which are uniformly
distributed throughout the observation span of a par-
ticular sensor. For example, a range measuring sensor
might detect a real target present at a particular range
with a certain detection probability and will report this
range with an additive measurement error. The sensor
will also report other detections (e.g., clutter, noise) at
other ranges. These false measurements are assumed
to be uniformly distributed over the full measurement
range of the sensor and the probability of seeing a false
range measurement at any particular range is governed
by a Poisson arrival process. In this paper, we concen-
trate mostly on the no false measurements case and
briefly consider false measurements in Section IV-C.

In general, the real target observation probability
density p(y|zy, r+, ui) of a given sensor at time ¢ could
be non-Gaussian. However, to simplify our presenta-
tion, in this paper, we will use the following linear
Gaussian sensor model

Ye(ug) = C(re,ug) T + D (1, ug) vg 3)

where vti'fi\ld/\/([)?Inv) € R™ are i.i.d. Gaussian se-

quences, and
D(i,/)D'(i,§) >0, Vies, je{l,2,....L}
i.e., positive definite. We assume that z(, w; and v; are
mutually independent for all ¢.

Equations (2) and (3) denote a controlled partially

observed jump Markov linear system. The model pa-
rameters

A= {prmpmn:A(m) , B (m) 7C(m7ut) s
D (m,ut),Zo, Py;m,n € S}
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are assumed known. This is a reasonable assumption
in most tracking problems.

Note that if the realization of the Markov chain se-
quence 7y is known (or if s = 1) and there is only
one sensor, then (2) and (3) reduce to a linear Gaussian
state space model and the Kalman filter yields optimal
(conditional mean) estimates of the the target state. On
the other hand, if L. = 1, A(r¢) = I, B(ry) = 0,
then y; in (3) specializes to a standard Hidden Markov
Model—i.e., the finite state Markov chain r; observed
in i.i.d. noise.

B. Sensor Adaptive Target Tracking Problem
Let

ye(ue)} (5)

so that Y; represents the information available at time ¢ on
which to base state estimates and sensor selection decisions.
The sensor adaptive tracking problem proceeds in three stages
foreacht = 0,1,...,N — 1, where N is a fixed positive
integer.

Y;f = {u17u27 e 7Ut7?/1(ul)7y2(uz)7 e

1) Selection: Based on Y;, we generate us 1 = pre11(Y3),
which determines which sensor is to be used at the next
measurement time.

2) Observation: We then observe y;41(usy1), where
us41 is the sensor selected in the previous stage.

3)  Estimation: After observing 11 (u¢41), we generate
our best estimate ;11 of the state of the Markov chain
ZTiy1 as Typ1 = E{wip1|Yeq1}. Note that the state
estimate 24,1 is dependent on the sequence of sensors
selected from time 1 to ¢ + 1, i.e., uq, ..., usq1 (since
it depends on Y;11).

We define the sensor sequence

and say that sequences are admissible if w11 = peg1(V2),
where

is a sequence of functions.

We assume the following cost is associated with estimation
errors and with the particular sensor sequence chosen. If based
on the observation at time ¢, the decision is made to choose
ury1 = | (i.e., to choose the /th sensor at time ¢ + 1, where
I € {1,...,L}), then the instantaneous cost incurred at time #
is

ar(l) lze — @dl)* + Be(D) e — 7el]> + ve(we, 70, 1) (6)

Here, (1) and B¢(1), I = 1,2..., L are known nonnegative
scalar weights. z; = E{z;|Y;} and 7, = E{r;|Y;} denote the
optimal (conditional mean) estimates of x; and r; given the in-
formation sequence Y;—note that these depend on the sequence
p. ||z — #¢])* denotes the mean square state estimation error in
the target trajectory at time ¢ due to the choice of sensor se-
quence 1, ..., us. Thus, the first two terms denote the square
of the tracking error estimate generated by sensor [. Finally,
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0 denotes the instantaneous cost of using the

’Yt(xt-, Tt, l) Z
= [ when the target ’s mode is 7; and the target’s

SeNsor U1
state is x;.

Our aim is to find the sensor sequence that minimizes the total
accumulated cost .J,, over the set of admissible sensor selection
rules, where

N
Ju = E{Z ar(wir)llze — &l + Be(ues)|re — 7l

t=1

N-1
+ Z ’Yt(xt;'rt-,ut—i-l)} (7N

t=0
where u;11 = per1(Y:). Note that the above expectation is
with respect to (zg,70) (which has prior distribution 7;°"),
Vlye. o, UN, W0, ..., WN_1,T0,-.., " N_1; See, for example, [3,

pp. 211].

The terms «.(l) and [;(I) allow different sensors

l € {1,2,...,L} to be weighted differently, and the time
index in oy allows us to weight the state estimate errors over
time. The above problem is a finite horizon partially observed
stochastic control problem. Infinite horizon problems with
discounted cost can be formulated similarly.

C. Information State Formulation

T,

Define the information state 7r; """ * as the conditional density
of x¢, r; given the history Y3, i.e.,

m " (@,4) £ pley = @, = €] Vy)

where z €eR"", i€ S={1,...,s}. 8)

To simplify notation in the sequel define the probability density
functions

w2 () 2 (o = V) = 3w ()
=1

" (x,d)de

w0) £P(r = el = [
P(r, =e1|Y3)

Tt

(1>

P(ry = es|Y2)

Using Bayes’ rule, it can be shown that the information state
(filtered density) evolves as

Ty = Kip(yt+1|7”t+17$t+1yut+1)
¢ S
X / Z P(Trq1,Te41|Te = T, = M)
R =1
X T (x, m)dx ©)

where K, denotes a normalization term. For ease of notation,
we express the above filtered density update (9) as

Tt41,Tt41

t+1 (10)

=T (thn y Yt+1, Ut+1) .

1983

Defining Q(r;) = C(r)C'(ry) and X(ry,uy) =
D(ry,ut) D’ (14, us) for the IMLS (2) and (3), the various terms
in (9) are

P(Yerrlresr; Tegpr, epr) ~ N(C(reg1, uey)
Y(re41, 1))
P(Tey1,Te41|Te = 2,70 = M) me,nﬂN(A(?”tH)x

Q(re41)).(11)

The information state is a sufficient statistic for Y;. Thus,
the admissible policies (sensor selection rules) satisfy pip41 :
ot — {1,...,L}.

In terms of the information state, the cost function (7) can be
re-expressed as

T =E{ﬁat<utﬂ> [(a?.750) = (e’

+ ﬂt(’UzH-l) (1 — W:ilﬁp)

N-1 s
+ Z/ Z7t($»i7“t+1)7ff“”(937’i)dx}
t=0 /R

ng 4
1=1

N
éE{Zet (“t+1:7rfi’”)} (12)
Py
where E is as in (7), (a7, 77") = [g.. #’zn} (x)dz and with

xt = [24(1), ... 2¢(ns)]" and

(onr) = | [ 2o D)),

,/ (N )T (24 (ng))dae (1)
R

eR™

In addition, (x4, 77¢)? = (my, 77t) (zy, 770).

For the JMLS (2) and (3), the information state 7, " is a
Gaussian mixture with s* components. Computing 7;*""* and,
hence, also E{z|Y;} or E{r;|Y;} involve prohibitive computa-
tional cost that is exponential in ¢. Thus, in general, the solution
to the sensor adaptive tracking problem for a JMLS target model
is not practical without some sort of approximation.

III. OPTIMAL ALGORITHMS
A. Stochastic Dynamic Programming

Based on the above formulation, the solution to the optimal
sensor selection problem is obtained using the Dynamic Pro-
gramming algorithm [3], which proceeds backward in time from
t=Ntot=0:

VN (rN TN = en(m®NTN) (13)
Vi(r®e) = | min [et (u, ™)
+ By (Ve (T(r7 e, )},
(14
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The optimal cost starting from the initial condition g is given
by Vo(mo) and if uj,, = pj,,(7) minimizes the right hand
side of (14) for each ¢ and each 7, the selection policy

is optimal.

The optimality of the above DP algorithm (14) follows from
[11, Th. 3.2.1]. In particular, the measurable selection [11, cond.
3.3.2] is trivially satisfied (trivial because the control space is
finite) as long as v, in (7) is lower semi-continuous.

In general, the above DP recursion (14) does not translate di-
rectly into practical solution methodologies. The fundamental
problem with (14) is that at each iteration ¢, one needs to com-
pute V; (7*+") over an uncountable set of states 7**"*. How-
ever, in two special cases, V;(7*") has a finite dimensional
characterization.

B. Linear Quadratic Gaussian Sensor Selection

If the sequence {r;} is known (or s = 1) and
Ve (@, 74, urp1) = ci(ugsq), then computing the optimal policy
u is equivalent to the following nonlinear deterministic control
problem [21]. Minimize

N N-1
Ju = [Pl + > ri(tga) (15)
t=1 t=
subject to the constraint that
Pt|t = Pt\tfl - Pt|tflc/(7"t>ut)
X [C(rt,ut)l’ﬂt,lcl(rt,ut)
-1
+ D(rt,ut)D'(rt,ut)}
X C(rhut)Pﬂt—l (16)
Py = B(r)B'(re) + A(r) P_yje—1 A (14)
t=1,...,N. a7

The above equations are merely the covariance update equation
of a Kalman filter. Thus, in the linear Gaussian quadratic case,
the optimal sensor selection can be computed off-line indepen-
dently of the data. This is not surprising; since the Kalman filter
covariance is independent of the observation sequence.

C. HMM Sensor Selection

If A(ry) = I and B = 0, then (2), (3) reduces to a partially
observed Markov decision process (POMDP). Suppose further
that v, is finite state i.i.d noise so that the measured output ¥,
belongs to a finite number of symbols, say {O1,...,0p}.
Then, in the case « = [ = 0, the optimal sensor sequence can
be exactly determined by a finite dimensional algorithm. This
finite dimensional characterization was first derived in [27],
where it was shown that the value function V;(7) is piecewise
linear and convex. Several linear programming based algo-
rithms have been presented in the operations research literature
for computing these piecewise linear segments. These include
Sondik’s algorithm [27], Monahan’s algorithm, Cheng’s al-
gorithm [20], and the Witness algorithm [6]. See the website
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http://www.cs.brown.edu/research/ai/pomdp/index.html for an
excellent tutorial exposition with graphics of these various
algorithms.

In the case when « is nonzero, near-optimal policies can be
developed as shown in [14]. As described in [14], the quadratic
cost a(u)||xy — #]|* can be approximated by piecewise linear
segments, and the optimal control policy determined for this
piecewise linear cost using the POMDP algorithms described
in the previous paragraph.

IV. SUBOPTIMAL ALGORITHMS

In practice, the algorithms presented above are computation-
ally too demanding for real-time on-line implementation. As
mentioned above optimal state estimation for a JMLS is an NP
hard problem, and moreover, it is difficult to include false mea-
surements. In this section, we describe a one-step ahead sub-
optimal solution to the sensor selection problem with multiple
jumping models. The idea behind the one-step ahead algorithm
is to compute the expected posterior density for the target state
for each sensor based on the current posterior density and the
known measurement models, then make a measurement using
the sensor that gave the best predicted cost. The idea is illus-
trated below for the no false measurement case. The false mea-
surement case is briefly described in Section IV-C.

A. One-Step Ahead Algorithm

To simplify our notation, we will assume that the weights «
and (3 in (7) are constants. The one-step ahead algorithm pro-
ceeds recursively as follows: Assume that 7" 7"~ (or a suit-

able approximate value) has been computed at time ¢ — 1.

Step 1: Minimize at time t the instanta-
neous cost defined in (6), which can be
re-expressed in terms of the information
state as

Ju =« [<$277rft> — (m,wft)z}

B (1= ap ) ) w) (18

Tt,T¢ Tt—1,Tt—1

subject to m; = T(m3
T(-) is defined in (9).
Using the dynamic programming recur-
sion (14), the above cost function is
straightforwardly minimized by

,Yt,u), where

Vi(m®™) = a [<332-/7rft> - <:r,7r't“>2}
FB-m)
u; = argmin [<'y£71(.7 .7ut)77r-:’511,n71>

+Ey, Vi (T (75" ) }] - (20)

(19)

Tt—1,Tt—1

Step 2: Set m " :T(7rt_1
Step 3: t —>t+1.

:ytaur) .

T,T¢

For a JMLS, the information state 7,""* is a Gaussian
mixture with st components. Therefore, in principle (although
the computational complexity grows exponentially with ¢), the
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above one-step ahead algorithm provides an algorithm for the
sensor adaptive tracking problem. Below we discuss how an
approximation of ;""" can be efficiently computed using the
IMM algorithm—the resulting algorithm will be termed the
Sensor Adaptive IMM Algorithm (SA-IMM). First, however,
we briefly consider the linear Gaussian and HMM cases where
7 is easily computable.

Linear Quadratic Sensor Selection: Consider the same
setup as in Section III-B. Given P;_;};_1, it follows from (20)
that the one-step ahead algorithm at time ¢ for selecting the
optimal sensor is
[Prje(w) 4+ veo1(u)]

wi=arg i
where P;;(u;) evolves according to (17). Unlike the optimal
algorithm of Section III-B, the one-step ahead algorithm only
requires . Kalman covariances to be evaluated at each time.

HMM Sensor Scheduling: Assume the same conditions as
Section III-C but with 3 nonzero. The information state evolves
according to the well known HMM filter [8] :

Ti—1,Yt,Ut ) — ¢(yt (ut))lplﬂ—?—’ill
= V(ye(ue)) Py 5!

where P denotes the transition probability matrix of ; (see Sec-
tion II-A),

Tt =T (7r

d(ye(ue)) = diag [p(ye|re = ex,ue), .., p(ye|re = es, ug)]

and 1 denotes the column vector of ones. Given ;' 7", the one-
step ahead adaptive sensor solution for HMMs becomes

Tt—1

up =arg min oy (L u)m
ue{l,...

1,...,.L}
M
w3 [i-
m=1

T3 Ph? (ye(ur) Y P
(" (ue)) Py )

B. Sensor Adaptive IMM (SA-IMM) Algorithm

The IMM algorithm computes the approximate information
state for a JMLS in a computational efficient manner by approx-
imating the information state 7%t (s* component Gaussian
mixture) by an s-component Gaussian mixture at each time in-
stant ¢. It is worthwhile mentioning that there are several other
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suboptimal algorithms for approximating the information state
of a JMLS—in particular, particle filter-based sequential sam-
pling methods appear to be extremely promising; see [7] for de-
tails.

Given an approximate computation of the state 7¢-1""*~1 the
SA-IMM algorithm operates recursively via the steps below.

Step 1-IMM Algorithm: Compute an approx-
imation of the updated information state
T(mw¥=t"=t gy uy) as follows. We have w%0™ =
7"t p(xe|r,Y:) . Furthermore n" and p(x|r:,Y:)
can be expressed recursively according to
the following two equations:

i) By elementary application of Bayes’
rule we have (21)-(24), shown at the
bottom of the page.

ii) Modal update

7 (G) =D pigm (i)
1=1
X / P(ye|xe, re = ej,ue)p(e|re = ej, Ye1)day.
JR7=

Consider the term p(zi|r: = ej,Yi_1) en-
closed in square brackets on the last
line of (24). The IMM algorithm approx-
imates this by a single Gaussian den-
sity with the same mean and variance for
each 7 = 1,...,s. Note that the densities
p(yelxe, re,ur), p(ei|zi—1,7¢) are Gaussian as
described in (11). Thus, with the IMM ap-
proximation, 7*"" is a Gaussian mixture
with s components.

Step 2—-Sensor Adaptive Step: Compute wuj
according to (20).

Step 3—IMM State Update: Update the in-
formation state @*"" using the new ob-
servation y;(u;) according to the IMM al-
gorithm. Each of the components p(z|r: =
ej, Y1), j = 1,...,s can be computed via a
Kalman filter—hence, the SA-IMM algorithm
involves a bank of s parallel Kalman fil-
ters; see [2] for details.

p(xe|re, Ye) =p(Yelwe, e, we)p(@e|re, Yi—1) (21)
:P(yt|$t77’t7ut)/ p(xe|i—1, 4)p(Te_1|re, Yim1)dri—a (22)
Rne
:p(yt|$t77"t7ut)/ P($t|$t—177"t) (23)
R”x
S
2 Pigp(T-1rim1 = €5, Yio1)p(ri-1 = €i|Yi1)
x | =2 drs—y (24)

1=

S
> @i, (o1 =Y 1)
1
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C. Sensor Adaptive Particle Filter Tracker

The main idea here is to replace the IMM state estimator
above with a sequential Monte Carlo (particle filter) state es-
timator. The algorithm is similar to the Sensor Adaptive IMM
algorithm presented above, except that the information state in
Steps 1 and 3 is updated via a sequential Monte Carlo (particle
filtering) algorithm. There are several classes of particle filtering
algorithms that can be used, and [7] presents several algorithms
for jump Markov linear systems together with variance reduc-
tion methods.

D. Sensor Adaptive IPDA (SA-IPDA)

When false measurements (clutter) are present the usual pro-
cedure is to identify which measurements are “close” enough
to the predicted measurement for a particular target track then
use this set of “validated” measurements in the track update
procedure. The nearest-neighbor rule simply selects the vali-
dated measurement closest to the predicted measurement posi-
tion whereas the PDA and IPDA algorithms use all of the val-
idated measurements [2], [5], [22]. The track is updated with
each measurement in the validated set and the updated esti-
mates are combined in a weighted averaging process to form the
new estimate. The weighting is proportional to the likelihood of
each measurement scenario. The IPDA algorithm differs from
the standard (Probabilistic Data Association (PDA) algorithm
in that IPDA recursively computes the probability of target ex-
istence along with the track estimate. Thus, IPDA recursively
computes the probability that the trail of detections currently
being followed by the tracker originate from a real target rather
than being a random collection of detections arising from clutter
which happen to appear target like.

In the SA-IPDA algorithm we must decide on which sensor
to use next, based only on the current state estimate and known
statistical properties of each sensor and the clutter. Let p; be the
false measurements at time ¢ and §2; the sequence of all real
and false measurements and sensor choices up to and including
time ¢. The SA-IPDA algorithm computes the expected poste-
rior density if sensor [ was used by first computing the posterior
density if real measurement y, and clutter p; were obtained and
then averaging it over y; and p;, with =4, ;1 and u, fixed, to
yield

ﬁ(wtmt 1ur=1)
2 E{p(@elye, prowr = 1, Qo) |w, o1, ue = 1}
// P(Ye, pelwe, we = D)p(ze|Qp—1)
P(Ye, pe| Qe 1,up = 1)
Xp ?/t7pt|117t ug = 1) dysdpy

=1
$t|Qt ) // lyt7pt|$t Ut )

(e, e —1,ur = 1)
The sensor [*, which minimizes a specific cost related to this
expected density after normalization, is chosen, and a standard
PDA or IPDA update follows.
Instead of minimizing a cost of the expected posterior density,
another approach is to minimize the expected cost of the actual
posterior density. For instance, we could compute the variance

dysdpy. (25)
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of the posterior density given v;, p¢, us = [, and ,_1, average
it over y; and p; to yield

= l}|Qt,17Ut = l}

and select the minimizing sensor. In the linear Gaussian case
with uniformly distributed false measurements, this is equiva-
lent to computing a modified matrix Riccati equation update for
each sensor, similar to that used in [12].

E{var{z:|ys, pt, D1, us

E. Networked Sensors with One-Way Communication Links

Consider again the scenario in which communication be-
tween a number of sensors and a tracker occurs over finite
bandwidth links, as discussed in Section III-A. In the sensor
selection approach, the tracker uses its information state at
each time instant to dynamically select the next batch of virtual
sensors. If the feedback channel from the tracker to each sensor
is absent, then the nature of the problem changes significantly
since instead of passively implementing the selections of the
tracker, each sensor must make its own bit allocation decisions,
based on local information. Conversely, the task of the tracker
is now simply to filter the data it receives from the sensors,
without providing any feedback. Thus, this is no longer a
centralized stochastic control problem.

In order to describe the essential characteristics of this
problem, we focus here on the single link case without target
mode jumping. Let the target and sensor be governed by (2)
and (3), with the mode r; and control variable u; suppressed.
Suppose that at each time ¢, only one symbol 1), from the finite
setZy 2 {0,1,..., M —1} can be transmitted from the sensor
to the tracker, where R = log, M is the corresponding bit rate.
Due to the finite rate, each symbol arrives at the tracker at time
t + 1. The coder and estimator are represented by the equations

L :’Yt(Yh\I’t—l) €Elym

xt:nt(\yt71>€an7 t=12,...
where U,_; £ (1,...,%¢—1). The aim is to find a coder-esti-
mator (v,n) = ({7}, {n.}), which minimizes the finite horizon
cost

t=1

N
JAE {Zatﬂxt - :et||2} .

Note that since the information available to the tracker is a
subset of that available to the coder, stochastic dynamic pro-
gramming cannot be applied to minimize this. Nevertheless,
several important structural properties may be stated.

First, it can be shown that the minimum cost may be decom-
posed as

]\T
minJ = F {Z ||z — lt|t 1]l }

vsn =1
N
+ E — 2 26
mlnn {E Olt||$t\t 1 xt”} (26)

t=1

where Z4;_1 £ FE{x,|Y;_1}. As such, the problem of coding
and estimating {x,} under a quadratic cost is exactly equivalent
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to coding and estimating {:frt|t,1}. In other words, as the coding
step is where information is lost, the optimal coder first applies
a Kalman filter to extract the best possible state estimates and
then encodes them rather than the raw measurements. Note that
the first term on the right-hand side of (26) is just the cost that
would be obtained without a data rate constraint. As expected,
it is a lower bound for the rate-constrained cost.
Second, for a given estimator 7, the optimal coder is

)y = arg ’min ft+1 (if?t+1|t7 (‘I’t—lﬂﬂ))
YEL
Vt€[1,2,...,N—1]

where the functions f; : R™ x Z%, — [0, 00) are defined by
the downward recursion

Fe(@ee-1, Ueo1) 2 al|@ege 1 — m(Temr)||?

+E{ min ft+1(i’t+l|t7(\1/t717'l/1)> 51A9t|t—17‘1/t1} (27)
YEL

with fy11 £ 0 and min,, J = min, f;. Hence, the symbol
transmitted by an optimal coder at time ¢ depends only on
the current Kalman filter output #; ), and the symbols previ-
ously transmitted. This is not surprising, since by virtue of the
Gaussian assumption {1}, } is Markovian, and thus, ;1 is
a sufficient statistic for the future evolution of the filter process.
Past filter outputs affect the current choice of symbol only
through the symbols already transmitted. See [23] for more
details.

In general, it is impossible to derive explicit formulae for op-
timal coder-estimators, even for the case of a one-dimensional
target model. The Generalized Lloyd Algorithm [10] could be
applied, or alternatively, f1 could be approximated numerically
for fixed horizon, data rate, and target and sensor models, but
the entire procedure would have to be repeated if any of these
changed. Nevertheless, the structural properties outlined above
provide useful guidelines for the construction of suboptimal
coder-estimators, as discussed in [23].

Finally, consider the following question: For given target and
sensor models, what is the minimum data rate for which there
exists a coder-estimator that produces bounded mean square es-
timation errors? In the special case of an autoregressive, linear
time-invariant target model with no process or measurement
noise, it has been shown that for there to exist a coder-estimator
that takes the mean square error to zero it is necessary and suf-
ficient that

R > log, |A|

where ) is the model pole with largest magnitude [24]. We con-
jecture that the same condition is necessary and sufficient for
bounded mean square errors in the stochastic case.

F. Sensor Management Issues

The aim here is to show that the above algorithms can be
easily modified to incorporate constraints on the total usage of
particular sensors. Such constraints are often used in sensor re-
source management.

Consider a N horizon problem where sensor 1 can be used at
most Nj times, where N; < N. For simplicity, we assume that
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there are no constraints on the usage of the other sensors. The
aim is to derive a sensor schedule to optimize the cost function
(12) or in the suboptimal case the one-step ahead cost (6).

Let S1 = {f1,..., fn,+1} denote the set of N1 + 1 dimen-
sional unit vectors, where f; has 1 in the ith position. We will
use process z; to denote the number of times sensor 1 is used.
Let z; = f; if sensor 1 has been used z — 1 times up to time ¢.
Then, the process z; € S; can be modeled as follows: If sensor
1 is used (i.e., ux = 1) and z; = f;, then z;y; jumps to state
fi+1. If any other sensor is used then z;y1 = z; = f;. Thus, 2
is a deterministic Markov chain with dynamics given by
(28)

Zt = Q(ut)zt—h z20 = f1

where the transition probability matrix Q(-) is defined as

o1 0 --- 0
o 01 --- 0
Qup=1)= . . . . 1
o0 o0 --- 1

and Q(Ut) :I(N1+1)><(N1+1) if Ut ;é 1.

The action space U, ., is defined as follows:

Ut,zt — {{27"'7L}7

if ze = fn, 41
{17"'7L}7 ith#fN1+1.

The one-step ahead scheduling policy is given by
VN(WN,ZN) = EN(’]TmN’TN), andfort=N—-1,N—-2,...,0

min
w€Uk41,2y 4

By Vet (T (7" e, 0) , Q') 29)

Vi(m™™, z) =

Tt,Tt )

[et (u, my

The above dynamic programming recursion can be recast into
a form similar to that for a Jump Markov linear system by the
following coordinate change: Consider the augmented Markov
chain (7, z; ). This has transition probability matrix A = P®Q,
where P denotes the transition probability matrix of 7;, and ®
denotes tensor (Kronecker product). Because z; is a fully ob-
served Markov chain, the information state of (X, z¢) is 7;* ®
z;. This augmented information state is identical to that of a
jump Markov linear system (with larger state space) and can
be computed via the IMM algorithm in Section IV-B. Thus,
the one-step ahead algorithm described above can be used for
a practical suboptimal solution.

V. NUMERICAL EXAMPLES

In this section, we present a realistic simulation to illustrate
some of the basic features of the sensor adaptive methods de-
scribed above. The simulations presented here are confined to
scheduled multisensor tracking of single and multiple targets.

Three two-dimensional (range-azimuth) pulse compression
radar sensors with characteristics described below are employed
to track single and multiple targets in a fusion system with lim-
ited data rate. These three radar sensors are arranged as shown
in Fig. 3. Sensors 1 and 3 both have 1° antenna beam-width,
whereas sensor 2 has an antenna beam-width of 0.2°. The az-
imuth measurement accuracy of these radar sensors is a function
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of the antenna beam-width and the receive signal-to-noise ratio,
which in turn is a function (via the radar equation) of many fac-
tors including the range of the target from the sensor, the radar
transmit power, the receiver matched filter and integration gain,
and the receiver front-end noise, etc. All three radar sensors have
a compressed receiver pulse length of 50 ns and effective peak
transmit power of 50 kW. The range measurement accuracy is a
function of the receive signal-to-noise ratio (via the radar equa-
tion as for azimuth) and the compressed pulse length. Sensors
1 is located at (x,y) coordinates (120 km, 120 km), sensor 2
is located at (z,y) coordinates (100 km, 50 km), and sensor 3
is located at (z,y) coordinates (150 km, 100 km). The tracking
computer update rate is 1 s in all cases, and for simplicity, it is
assumed that all sensors are synchronized.

In the simulation examples below, we consider the state
vector z; € R* in (2) consisting of the  position, = velocity, y
position, and y velocity of the target. In terms of the observation
(3), for each sensor [ € {1,2,3}, the range and bearings mea-
surements (polar coordinates) translate to cartesian coordinates
(see [2]), where we have the equation at the bottom of the page,
where dy, ;, 05, denote, respectively, the range and bearing of
the target with respect to sensor [.

Secenario 1—Single Maneuvering target and Multiple
Sensors: The first scenario is depicted in Fig. 3. A target is
in the field of view of three sensors. We simulated the target
fromtime t = 1,..., 60 s. The target evolves according to the
dynamics (2), with

1 T 0 0 Vo1 0 0 0
4|01 00 Bzo\/o._loo
0 0 1 T 0 0 01 0
0 0 0 1 0 0 0 0.1

(30)
where T' = 1 s. The target starts at (, y) coordinates (100 km,
200 km) with (z,y) speed components 0 m/s and —2000 m/s.
After 25 s, the target executes a sharp maneuver for 3 s, after
which, its (z, y) speed components are 500 m/s and —1600 m/s;
see Fig. 3. During these maneuver period, B in (2) is scaled by
/10 to reflect additional uncertainty during the maneuver.

The three radar sensors communicate via a low data-rate net-
work to a central tracking computer. The data-rate is such that
data from only one sensor is able to be sent to the tracking com-
puter during each update interval. The tracking computer knows
the location of the sensors and their measurement statistics. The
tracking computer must decide which sensor data it will request
during the next update interval and the decision must be based
only on the sensor data the tracking computer has seen up to (but
not including) the current update interval.
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Scenario Single target, Multisensor

200 T T T T T T

180 - 4

160 - 4

140~ 4

Sensor 1
120~ * 1
€ Sensor 3
£ 100- * 1
80~ q
60
Sensor 2
*
40
20+ —
0 . . . .
0 20 40 60 80 100 120 140 160 180 200
km
Fig. 3. Scenario 1: Single target and three sensors.
10° : : : :
— — Single Sensor
. Round Robin
100 - T~ —— Dynamic Scheduling [3

0 10 20 30 40 50 60
Time

Fig.4. Comparison of tracking error variance of three algorithms: Best sensor,
Round robin scheduling, and SA-IMM scheduling.

The SA-IMM algorithm discussed in Section IV-B is used
to select the next sensor and the data from the chosen sensor
is communicated to the tracking computer and used to update
the track estimate. The tracking error for a single realization is
given in Fig. 4, which shows the variance of the z-coordinate
of the tracking error for the “best” single sensor, a round-robin
scheduling policy, and the adaptive scheduling policy given in
this paper.

co=fs 0

D()D'(I) =

dzle'g sin? 9k,l + 0'3 cos? 9k,l (0'3 — di_’l()'g) sin Hk,l Ccos gk,l

2 2 2 : 2 2 2 2 102
(O’d — dkle'G) Sin Hk,l cos gk,l dk,laﬁ cos Hk,l + o5 sin gk,l



EVANS et al.: SENSOR AND DATA RATE CONTROL FOR TRACKING MANEUVERING TARGETS

TABLE 1
COMPARISON OF PERFORMANCE OF THREE SCHEDULING POLICIES
FOR RANDOMLY LOCATED SENSOR 3. THE LOCATION OF THE SENSOR
IS SPECIFIED BY (31)

Sensor 3 location Average Variance (m?)
parameter a (km) Single Round Robin | Dynamic Sched
0 108 x 10~* 48 x 1071 0.527 x 1071
1.5 123 x 107 | 49 x 1074 0.532 x 1074
15 568 x 107* | 113 x 107 15 x 107
150 12.47 1.02 0.45

Sensor Schedule : Single Sensor

3 % % o
<]
=z
3 2r i
f=
[l
n
1 . . . . .
0 20 30 40 50 60
Sensor Schedule : MultiSensor, RoundRobin
3 T T T
e}
z
é 2F P 9 d o P $ o P ] o P 9 d d P @ 9 P 9 -
5]
n
1 . . .
0 10 20 30 40 50 60
Sensor Schedule : Multi Sensor, Dynamic Scheduling
3 T T r T T
e}
=z
3 2r
c
jid
[0}
1 . . . .
0 10 20 30 40 50 60
Fig. 5. Sensor choice of 3 algorithms: Best sensor, Round robin scheduling,

and SA-IMM scheduling.

To further compare the performance of the three scheduling
policies, we illustrate their performance as the location of
Sensor 3 is randomly changed. We randomly assigned the z
and y coordinates of the location of sensor 3 as

(:E,y) = (1507 100) + (nmvny) (31)

where n, and n, are two independent uniformly distributed
random variables with distribution U[—a, a], and a is a param-
eter that is varied below. Table I gives average variance estimates
of the z-coordinate of the tracking error for the three scheduling
policies. For each value of a, the variance is averaged from time
45 to 60 and then averaged over 200 independent realizations.

The performance advantage gained from data adaptive sched-
uling is clear. The x coordinate of the tracking error in the
SA-IMM case is very small and shows up as zero on the plot.
The trace and/or determinant of the tracking error covariance
matrix display the same characteristics with SA-IMM signifi-
cantly outperforming round-robin and best single sensor. Fig. 5
shows the selected sensor sequence for these three sensor sched-
uling policies. The sensor sequence used by the SA-IMM will
depend on the scenario and noise realizations and is guaranteed
to always perform better that the best single sensor or round-
robin policies.

Scenario 2—Multiple Targets and Sensors: A second,
more complex, multitarget example is illustrated in Fig. 6,
where the same three pulse compression radar sensors in the
scenario above are now used to track three targets. Target 2
starts at (x,y) coordinates (100 km, 200 km) with (z, y) speed
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Scenario Single target, Multisensor
200 T T T T T T T T
180+ b
160 b
140+ ]
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£ 100t * ]
80t —
60| B
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*
40t B
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0 . . . . . . . . .
0 20 40 60 80 100 120 140 160 180 200
km
Fig. 6. Scenario 2: Three targets and three sensors.
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0 — . . . .
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Time
Fig. 7. Comparison of tracking error variance of Round Robin scheduling

(dashed line) versus SA-IMM scheduling (solid line) for the three targets.

components (0 m/s, —2000 m/s). After 25 s, this target executes
a sharp maneuver for 3 s, after which its (z,y) speed com-
ponents are 500 m/s and —1600 m/s. Target 1 starts at (z,y)
coordinates (200 km, 200 km) with (z,y) speed components
(—400 and —800 m/s). Target 3 starts at (x, y) coordinates (150
km, 200 km) with (z,y) speed components (—200 and —1000
m/s). The scenario lasts 60 s.

Again, the low bandwidth requirement means that only
measurement data from one sensor on one target is able to be
communicated to the tracking computer during each tracking
interval. The same three scheduling policies are compared in
Fig. 7. The single best sensor policy performs poorly relative
to the multitarget round robin and multitarget SA-IMM and is
not plotted. multitarget round robin simply cycles through all
sensors and all tracks. multitarget SA-IMM selects the most
advantageous sensor and target. Fig. 7 shows the variance of the
z-coordinate of the tracking error on all three tracks for these
two policies. As with the single target case, the data adaptive
sensor scheduling policy of SA-IMM significantly outperforms
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Sensor Schedule : Multi-target, Round-Robin
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Fig. 8. Sensor choice of two algorithms: Round Robin and SA-IMM.

the multitarget round robin policy. The sensor sequence used is
shown in Fig. 8. The selected track sequence is not plotted. In
the multitarget round robin case the track sequence cycles in
the same manner as the sensor sequence whereas in SA-IMM
the chosen track and sensor are data dependent.

For further numerical examples on multiarmed bandit sched-
uling and HMM sensor scheduling, see [14] and [16].

VI. CONCLUSIONS AND EXTENSIONS

This paper has presented optimal and suboptimal algorithms
for sensor and data rate control for tracking maneuvering tar-
gets. The maneuvering target was modeled as a jump Markov
linear system. Determining the optimal control strategy was for-
mulated as a stochastic dynamic programming problem. Special
cases (linear quadratic and Hidden Markov Model sensor se-
lection) where the dynamic programming recursion has a finite
dimensional characterization were described. Three novel com-
putationally feasible suboptimal algorithms were presented. In
particular the sensor adaptive IMM and Sensor adaptive IPDA
algorithms proposed in this paper are natural generalizations
of the well known IMM and IPDA algorithms that incorporate
sensor control. Finally, a brief outline of information theoretic
aspects of the sensor and data rate control problem was pre-
sented.

As an extension of this paper, it is of interest to examine
the role of simulation based reinforcement learning algorithms
as opposed to stochastic dynamic programming in sensor and
data rate control. Our recent papers [1], [18] show how sto-
chastic gradient based reinforcement learning algorithms can be
used for optimally controlling constrained Markov decision pro-
cesses and for suboptimal control of partially observed Markov
decision processes. Another possibility is to use a discrete policy
search algorithm to determine the optimal sensor schedule—the
resulting problem is a stochastic discrete optimization problem.
In recent work [30], we have derived discrete stochastic approx-
imation algorithms and analyzed their tracking properties.
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