
Towards control over fading channels
(Invited Paper)

Paolo Minero, Massimo Franceschetti
Advanced Network Science

University of California
San Diego, CA, USA

Email: {minero,massimo}@ucsd.edu

Subhrakanti Dey, Girish Nair
Dept. of Electrical Engineering

University of Melbourne
Parkville Victoria 3010 Australia

Email: {sdey,gnair}@ee.unimelb.edu.au

Abstract— Motivated by control problems over wireless fading
channels, the mean square stabilization of a linear system over
a time-varying finite rate feedback link is studied. Process and
observation disturbances are allowed to occur over an unbounded
support. Necessary and sufficient conditions to stabilize the
system are derived, and their implications are discussed.

I. INTRODUCTION

In wireless communication, the quality of the communica-
tion link between transmitter and receiver varies over time
because of random fading in the received signal. In the case
of digital communication, this can reflect in a time variation
of the rate supported by the wireless channel. The coherence
time indicates the time interval over which the channel can
be considered constant. If the coherence time is long enough,
then transmitter and receiver can estimate the quality of the
link by sending a known sequence called pilot, and can adapt
the communication scheme to the channel condition.

Let us assume the aim is to stabilize an unstable linear
plant through a controller which receives measurements of a
sensor over a fading wireless channel. Is it possible to design a
communication scheme that changes dynamically according to
the channel condition and, at the same time, is guaranteed to
stabilize the system? This is the problem under investigation.

As a first approach, it is assumed that the communication
channel is noiseless and, at any given time k, allows trans-
mission of Rk bits without error. The case when Rk changes
deterministically has been well studied. It has been shown,
under different notions of stability and system models (see [1]
[3], and references therein), that a discrete linear plant with
parameter |λ| > 1 can be stabilized if and only if the data rate
Rk over the digital link is no less than log2 |λ|. This paper
focuses on the case when Rk fluctuates randomly. We model
the coherence time by assuming that Rk remains constant in
blocks of n consecutive channel uses and varies according
to an ergodic process across blocks. Channel state estimation
at the transmitter and receiver is reinterpreted here as causal
knowledge, at both encoder and decoder, of the rate supported
by the communication link.

A work directly related to ours is [2]. These authors also
considered the case of a random time-varying digital link
and provided necessary and sufficient conditions for m-th
moment stability. The main difference with our work is that we
allow the system disturbance to have unbounded support, and
the encoder has access to output feedback instead than state

feedback. We point out that this is a more general model,
which considerably complicates the design of the adaptive
quantizer, as this must be capable of tracking the state when
atypically large disturbances affect the system.

Some preliminary results are presented next. They consist
of necessary and sufficient conditions on the channel rate to
achieve second moment stability. A necessary condition to
stabilize a linear system with parameter |λ| > 1 in the second
moment sense is,

E
[ |λ|2n

22nR

]
< 1. (1)

Furthermore, it is shown that there exists a coder-decoder pair
that stabilizes the system if,

E
[ |λ|2n

22nR

]
< c, (2)

where c < 1
16 .

Condition (1) can be intuitively interpreted as follows. If
no information is sent over the link during a transmission
block, the estimation error at the controller grows by |λ|n. The
information sent by the coder can reduce the this error by at
most 2nR, where nR is the total rate supported by the channel
in a given block. However, if averaging over the fluctuation
of the rate |λ|n exceeds 2nR, then the information rate of the
channel cannot compensate (on average) the dynamics of the
system and it is not possible to stabilize the plant. Notice that
if the variation of the rate is deterministic, then our necessary
condition reduces to the well known R > log2 |λ|.

As for condition (2), we give an explicit construction of a
coder-decoder pair similar to the one by Nair and Evans [1].
However, while in [1] the time variation of the transmission
rate is part of the coder design, in the model under consid-
eration the variation of {Rk}∞k=1 is uniquely determined by
a stochastic process. As the rate process is assumed constant
over blocks of n channels uses, coder and decoder exploit
the causal knowledge of the rate, transmitting one packet per
block, and by encoding each packet at the rate supported by
the channel.

We notice that there is a constant gap between our necessary
and sufficient conditions (1-2). We are currently working
towards the possibility of closing this gap and we conjecture
that (1) is indeed achievable using a more complex coding-
decoding scheme than the one presented here. Although a sub-



optimal achievability result can be derived also in the case of
multi-state discrete linear systems, in what follows, for ease
of exposition we limit the treatment only to the scalar case.

The rest of the paper is organized as follows. After intro-
ducing formally the stabilization problem, the necessity result
is proved in Section III, while the sufficiency is developed in
Section IV.

II. PROBLEM FORMULATION

Consider the scalar partially-observed unstable stochastic
linear system

xk+1 = λxk + uk + vk, yk = xk + wk, ∀k ∈W (3)

with state xk, process disturbance vk, control uk, measurement
yk and measurement noise wk. It is assumed that |λ| > 1,
so that the system is unstable. No Gaussian assumptions are
made on the disturbances, but the following assumptions are
supposed to hold

A1. x0,vk and wj are mutually independent for all k, j ∈W.
A2. ∃ε > 0 such that x0, vk and wk have uniformly bounded

(2 + ε)th absolute moments over k ∈W.
A3. infk∈W h(vk) > −∞. Thus, ∃β > 0 such that e2h(vk) >

β for all k ∈W
suppose that observer and controller are connected by a time-
varying digital link. Suppose that rate remains constant over
blocks of n ∈ Z+ channel uses but changes independently
from block to block according to a given probability distri-
bution. In each of the n uses of the digital link during the
j-th block symbols coming from an alphabet of size 2Rj

are transmitted without error from encoder to controller. Let
Sk ∈ {1, . . . , 2Rj} denote the symbol sent at time k ∈
{jn, . . . , (j + 1)n − 1}. An underlying stochastic process
determines the alphabet size 2Rj in each block. For simplicity,
suppose that for all j ∈ W Rj are i.i.d random variables
distributed as R, where R can only take finite number of
integer values, such that

P(R = ri) = pi, i ∈ I ⊆ Z+, (4)

for ri ∈ W, 0 ≤ rmin ≤ ri ≤ rmax < ∞,
∑

i∈I pi = 1, and
where I is a finite set. At the beginning of each block j, coder
and decoder are assumed to know Rj (and hence all {Ri}j

i=0),
while the realization of the rate process in future blocks,
{Ri}∞i=j+1, is unknown to them. The aim is to construct a
coder-decoder which stabilizes the plant in the mean square
sense

sup
k∈W

E|xk|2 < ∞ (5)

using the finite data rate provided by the time-varying digital
link. Each transmitted symbol can depend on all past and
present measurements, the present channel state and the past
symbols,

sk =gk(y0, . . . , yk, s0, . . . , sk−1, Rj), (6)
k ∈ {jn, . . . , (j + 1)n− 1},∀j ∈W,

where gk(·) is the coder mapping at time k. The control
sequence, on the other hand, can depend on all past and present
channel symbols

uk = fk(s0, . . . , sk), ∀k ∈W, (7)

where fk(·) is the controller mapping at time k. From (7),(6)
and (3) observe that Rj affects only xk for all k ≥ jn + 1.
Thus, xjn does not depend on Rj . In the sequel, expectation
with respect to the random variable X will be denoted as
EX [·].

III. NECESSITY

Theorem 3.1: Under the conditions above, necessary con-
dition for stabilizability in mean square sense is that

E
[( |λ|2

22R

)n]
< 1 (8)

Proof: In order to prove the statement, we find a lower
bound for the second moment of the state, and show that Eq.
8 is a necessary condition for the lower bound to be finite.
We focus on the times k = jn with j ∈W, i.e. the beginning
of each channel block. Let Sj

0 = {S0, . . . , S(j+1)n−1}, denote
the symbols sent over the noiseless channel until the end of
the j-th channel block. From the close loop equation, we have

x(j+1)n = λnxjn+
(j+1)n−1∑

k=jn

λ(j+1)n−1−k[fk(S0, . . . , Sk)+vk]

Let nj = 1
2πeESj−1

0

[
e2h(xjn|Sj−1

0 =sj−1
0 )

]
be the conditional

entropy power of xjn conditioned on the event {Sj−1
0 =

sj−1
0 }, averaged over all possible sj−1

0 . The second moment
of xjn is lower bounded by nj :

nj =
1

2πe
ESj−1

0

[
e2h(xjn|Sj−1

0 =sj−1
0 )

]

≤ 1
2πe

ESj−1
0

[
eln(2πeE[x2

jn|Sj−1
0 =sj−1

0 ]
]

= ESj−1
0

[
E[x2

jn|Sj−1
0 = sj−1

0 ]
]

= E[x2
jn]

where the inequality follows from maximum entropy theorem
[4, Theorem 9.4.1]. Thus, necessary condition for (5) to hold is
that supj∈W nj < ∞. The proof utilizes the following result.

Lemma 3.2:

ESj
0 |Sj−1

0 ,Rj

[
e2h(xjn|Sj

0=sj
0)

]
≥ 1

22nRj
e2h(xjn|Sj−1

0 =sj−1
0 )

(9)
Proof: First, observe that the following chain of inequal-

ities holds:

ESj
0 |Sj−1

0 ,Rj
h(xjn|Sj−1

0 = sj−1
0 , Sj

0 = sj
0, Rj)

= h(xjn, Sj
0|Sj−1

0 = sj−1
0 , Rj)−H(Sj

0|Sj−1
0 = sj−1

0 , Rj)

≥ h(xjn|Sj−1
0 = sj−1

0 , Rj)−H(Sj
0|Sj−1

0 = sj−1
0 , Rj)

≥ h(xjn|Sj−1
0 = sj−1

0 , Rj)− ln 2nRj

= h(xjn|Sj−1
0 = sj−1

0 )− ln 2nRj (10)



where h(x,A|B) with A discrete denotes
−E[ln(pA|Bfx|A,B)]. The last inequality follows from the
fact that, given Rj , the cardinality of {Sjn, . . . , S(j+1)n−1} is
2nRj , and where the last equality follows from the fact that,
given the control input up to time jn − 1, (3) implies that
xjn is independent of Rj (i.e. xjn − Sj−1

0 − Rj is Markov).
Then,

ESj
0 |Sj−1

0 ,Rj
e2h(xjn|Sj

0=sj
0)

≥ ESj
0 |Sj−1

0 ,Rj
e2h(xjn|Sj−1

0 =sj−1
0 ,Sj

0=sj
0,Rj)

≥ e
2E

S
j
0|S

j−1
0 ,Rj

h(xjn|Sj−1
0 =sj−1

0 ,Sj
0=sj

0,Rj)

≥ e2[h(X|Sj−1
0 =sj−1

0 )−ln 2nRj ]

=
1

22nRj
e2h(xjn|Sj−1

0 =sj−1
0 )

where the first inequality follows from the fact that condition-
ing reduces the entropy; the second inequality follows from
Jensen’s inequality; finally, (10) implies the third inequality.

Next, it is shown that nj evolves according to a recursive
equation. Using standard properties of entropy [4] (translation
invariance, conditional version of entropy power inequality),
and assumptions A1. and A3., it follows that

ESj
0

[
e2h(x(j+1)n|Sj

0=sj
0)

]
=

= ESj
0

[
e2h(λnxjn+

∑(j+1)n−1
k=jn λ(j+1)n−1−kvk|Sj

0=sj
0)

]

≥ ESj
0


e2h(λnxjn|Sj

0=sj
0) +

(j+1)n−1∑

k=jn

e2h(λ(j+1)n−1−kvk|Sj
0=sj

0)




= |λ|2nESj
0

[
e2h(xjn|Sj

0=sj
0)

]
+

(j+1)n−1∑

k=jn

|λ|2[(j+1)n−1−k]e2h(vk)

≥ |λ|2nESj
0

[
e2h(xjn|Sj

0=sj
0)

]
+

(j+1)n−1∑

k=jn

|λ|2[(j+1)n−1−k]β

= |λ|2nESj
0

[
e2h(xjn|Sj

0=sj
0)

]
+ γ

= |λ|2nESj−1
0 ,Rj

[
ESj

0 |Sj−1
0 ,Rj

[
e2h(xjn|Sj

0=sj
0)

]]
+ γ

≥ |λ|2nESj−1
0 ,Rj

[
1

|2nRj |2 e2h(xjn|Sj−1
0 =sj−1

0 )

]
+ γ

= |λ|2nERj

[
1

|2nRj |2
]
ESj−1

0

[
e2h(xjn|Sj−1

0 =sj−1
0 )

]
+ γ,

the second inequality uses assumption A3. above, i.e.
e

2
f h(vk) > β. The constant γ is defined as and γ :=∑(j+1)n−1

k=jn |λ|2[(j+1)n−1−k]β. Finally, the last inequality fol-
lows from Lemma 3.2 and the fact that Rj is independent of
xjn and Sj−1

0 . Thus, using the fact that the rate process is
i.i.d.,

nj+1 ≥ E
[ |λ|2n

22nR

]
nj +

γ

2πe
.

Therefore, E
[
|λ|2n

22nR

]
≥ 1 implies that supj∈W nj = ∞.

IV. SUFFICIENCY

Proposition 4.1: Suppose that nrmin ≥ 2. Under the con-
ditions above, sufficient condition for stabilizability in mean
square sense is that

E
[( |λ|2

22R

)n]
<

1
φζ

(11)

where φ and ζ are constants such that φ = 21+ε ≥ 2 and
ζ ≥ 8.
The remaining part of the paper is dedicated to the proof of
the above Proposition. The coder/decoder pair is based on the
construction given in [1]. The coder utilizes the quantizer that
is described below.

A. Quantizer

The quantizer partitions the real line into non-uniform
regions, in such a way that most of the regions are concentrated
in a symmetrical way around the origin. A parameter ρ > 1
determines the speed at which the quantizer range increases.
The quantizer generates 2ν , ν ≥ 2, quantization intervals by
partitioning the set [−1, 1] into 2ν−1 intervals of equal length,
and the sets (ρi−2, ρi−1], [−ρi−2,−ρi−1) into 2ν−i intervals
of equal length, i ∈ [2, . . . , ν]. The two open sets (ρν−1,∞)
and (−∞,−ρν−1] are respectively the leftmost and rightmost
intervals of the quantizer. Note that as i increases the size of
the intervals increases. We assume that I(0), . . . , I(2ν−1) are
labels for the intervals from left to right. Let

• κν(ω) be half-length of interval I(ω) for ω ∈
[1, . . . , 2n−2], be equal to ρν − ρν−1 when ω = 2ν − 1
and equal to −(ρν − ρν−1) when ω = 0.

• qν(x) := ω̄ν(ω) be midpoint of interval x ∈ I(ω) for
ω ∈ [1, . . . , 2ν−2], be equal to ρν when ω = 2ν − 1 and
equal to −ρν when ω = 0.

If a real number x is in I(ω) for some ω ∈ {0, . . . , 2ν−1}, then
the quantizer approximates x with ω̄ν(ω). The quantization
error is not uniform over x ∈ R, but is bounded by κν(ω) for
all ω ∈ {1, . . . , 2ν−2}. Suppose now that X is a real-valued
random variable. A fundamental property of the quantizer is
that the average quantization error diminish like the inverse
square of the number of levels, 2−ν . More precisely, if the (2+
ε)-th moment of X is bounded for some ε > 0, then an upper
bound of the second moment of the estimation error decays
as 2−ν . The existence of a higher moment of X is useful
to bound the estimation error (using Chebyshev’s inequality)
when X lies in one of the two open intervals (ρν−1,∞) and
(−∞,−ρν−1].

Let L be a strictly positive random variable, define the
functional

Mε[X, L] ≡ E[L2 + |X|2+εL−ε]. (12)

The functional Mε[X, L] is an upper bound to the second
moment of X:

E[|X|2] = E[|X|2(1|X|≤L + 1|X|>L)] ≤ Mε{X|L} (13)



Given a third random variable R, define the conditional version
of Mε[X, L] given R as

Mε[X,L|R] ≡ E[L2 + |X|2+εL−ε|R] (14)

The fundamental property of the quantizer described above is
given by the following result:

Lemma 4.2: Let X and L > 0 and R ≥ 2/n be random
variables with EX2+ε < ∞ for some ε > 0, and n ∈ W. If
ρ > 22/ε, then the quantization error X−LqnR(X/L) satisfies

Mε[X − Lqν(X/L), LκnR(ω)|R] ≤ ζ

22nR
Mε[X, L] (15)

for some ζ ≥ 8 determined only by ε and ρ.
Proof: [1, Lemma 5.2]

Next, the coder and observer are described.

B. Coder

The first stage of the encoding process consists of comput-
ing the linear minimum variance estimator of the plant state
based on the previous measurements and control sequences.
The filter process satisfies a recursive equation of the same
form as (3), namely

x̄k+1 = λx̄k + uk + zk, z ∈W. (16)

where the innovation zk is uniformly bounded. From the
orthogonality principle the stability of x̄ is equivalent to that
of x. The output x̄k of the filter (or a function of it) must
be transmitted using the finite number of bits supported on
the digital channel. Coder and decoder share a state estimator
x̂k based uniquely on the symbols sent on the digital link.
Since x̂k is available both at the coder and decoder, while
the minimum variance estimator is available at the coder only,
the encoder utilizes a predictive quantizer to encode the error
between x̄k and x̂k. The error is scaled by an appropriate
coefficient and then quantized using the quantizer in Section
IV-A. Just before the start of the j-th block at time k = jn the
coder sets the quantization rate ν equal to nRj and computes

ω̄nRj (ωj) = qnRj

(
x̄jn − x̂jn

lj

)
(17)

where lj is a scaling factor updated after each packet trans-
mission. The index ωj of the quantization level is converted
into a string of nRj bits and transmitted using the n channel
uses of the j-th block.

Before the (j + 1)-th block, the coder updates the state
estimator as follows

x̂(j+1)n = λn[x̂jn + ljω̄nR(ωj)]+

+
(j+1)n−1∑

k=jn

λ(j+1)n−1−kLx̂k (18)

where

x̂k+1 = (λ + L)x̂k, ∀k ∈ [jn, . . . , jn + n− 2] (19)

and x̂0 = 0. L is the certainty-equivalent control coefficient.

Finally the scaling coefficient lj is updated as follows

lj+1 = max{σ, lj |λ|nκnRj (ωj)} (20)

with l0 = σ, where σ2+ε is a uniform bound in the (2 + ε)-
moment of

gj :=
n−1∑

i=0

λn−izjn+i, j ∈W (21)

It is important to note from (20) and the independence of the
rate process that the lj does not depend on Rj .

C. Controller

At time k = jn coder and controller are synchronized
and have common knowledge of the state estimator x̂jn.
While receiving the digitalized index of (17) during times
jn, . . . , jn+n−2, the controller sends to the plant a certainty-
equivalent control signal

uk = Lx̂k ∀k ∈ [jn, . . . , jn + n− 2] (22)

where x̂k is updated as in (19). Once received ω̄nR(ωj), the
controller updates the estimator x̂(j+1)n using (18). Synchro-
nism between coder and observer is ensured by the fact that
the initial value x̂0 is set equal to zero at both coder and
decoder, and by the fact that the digital link is noiseless.

D. Analysis

In this section it is shown that the code/observer pair
described above ensures that the second moment of x̄ is
uniformly bounded if (11) is satisfied. Define the coder error
at time k ∈W as fk = x̂k − x̄k.

The following analysis is developed in three steps. First it
is shown that fk is bounded for all times k = jn j ∈ W,
i.e. the beginning of each channel block. Next, the analysis
is extended to all k ∈ W. Finally the stability of fk for all
k ∈W is shown to imply that x̄ is uniformly bounded.

First we show that the coder error fk = x̂k− x̄k is bounded
in mean square for all times k = jn j ∈W. Substituting (22)
into (16), and iterating over a block duration

x̄(j+1)n = λnx̄jn +
(j+1)n−1∑

k=jn

λ(j+1)n−1−k(Lx̂k + zk)

= λnx̄jn + gj +
(j+1)n−1∑

k=jn

λ(j+1)n−1−k(Lx̂k) (23)

where gj is defined in (21). So subtracting (23) from (18)

f(j+1)n = x̂(j+1)n − x̄(j+1)n

= λn[fjn − ljω̄nRj (ωj)] + gj (24)

From the inequality (|x|+ |y|)α ≤ 2α−1(|x|α + |y|α) ∀α > 0,

|f(j+1)n|2+ε ≤ φ
(|λn|2+ε|fjn − ljqnRj (fjn/lj)|2+ε + |zj |2+ε

)



with φ = 21+ε. Dividing by lεj+1 and taking expectations,

E[|f(j+1)n|2+εl−ε
j+1]

≤ φ

(
|λn|2+εE

[
|fjn − ljqnRj (fjn/lj)|2+ε

lεj+1

]
+ E

[
|gj |2+ε

lεj+1

])

≤ φ

(
|λn|2+εE

[ |fjn − ljqnRj
(fjn/lj)|2+ε

[lj |λn|κnRj
(ωj)]ε

]
+ E

[ |gj |2+ε

σε

])

= φ

(
|λn|2E

[ |fjn − ljqnRj
(fjn/lj)|2+ε

[ljκnRj (ωj)]ε

]
+ E

[ |gj |2+ε

σε

])

(25)

using the fact that, from (20), lj+1 = max{σ, lj |λn|κnRj
(ωj)}

Now let

θj := Mε{fjn, lj} ≡ E[l2j + |fjn|2+εl−ε
j ]

Observe that

E[l2j+1] ≡ E[max{σ2, l2j |λn|2[κnRj
(ωj)]2}]

≤ σ2 + |λn|2E [|ljκnRj
(ωj)|2

]
(26)

Adding this to (25), using E[g2+ε
j ] < σ2+ε and the definition

of θj ,

θj+1

≤ φ(σ2 + |λn|2E{|ljκnRj (ωj)|2
}

+

+ φ

(
|λn|2E

{
|fjn − ljqnRj (fjn/lj)|2+ε

[ljκnRj (ωj)]ε

}
+ σ2

)

= φ

(
2σ2 + |λn|2E

{
|fjn − ljqnRj (fjn/lj)|2+ε

[ljκnRj (ωk)]ε
+ |ljκnRj (ωj)|2

})

= φ

(
2σ2 + |λn|2ERj

[
Mε

{
fjn − ljqnRj

(
fjn

lj

)
, ljκnRj (ωj)

∣∣∣∣ Rj

}])

≤ φ

(
2σ2 + |λn|2ERj

[
ζ

22nRj
Mε {fjn| lj}

])

= φ2σ2 + φζE
[ |λn|2

22nR

]
θj

where the second inequality follows from Lemma (4.2), and
the last equality uses the fact that the rate process is i.i.d. and
that fjn and lj are independent of Rj . Therefore,

θj+1 = φ2σ2 + φζE
[ |λn|2

22nR

]
θj

and it follows that

E
[ |λn|2

22nR

]
<

1
φζ

,

where φ = 21+ε and ζ ≥ 8, is a sufficient condition to have
supj∈W θj < ∞. From (13) it follows that E[fjn]2 is bounded
for every j ∈ W. Next, for any r ∈ {0, n − 1} triangle
inequality implies

|fjn+r| ≤ |λ|r|fjn|+
r−1∑

k=0

|λr−1−kL||zjn+k|,

so the error fk is uniformely bounded for all k ∈W. Finally,

by rewriting (16) as

x̄k+1 = (λ + L)x̄k − Lfk + zk

the fact that fk and zk are uniformly bounded and the strict
stability of λ + L ensures that Ex̄2

k < ∞ for all k ∈W.

V. CONCLUSION

In this paper we considered mean square stabilizability of a
discrete-time, linear system with a noiseless time-varying dig-
ital communication link. Process and observation disturbances
are allowed to occur over an unbounded support. Necessary
and a sub-optimal sufficient conditions to stabilize the system
are derived.
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