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Abstract—It is well known in the field of dynamical systems that
entropy can be defined rigorously for completely deterministic
open-loop systems. However, such definitions have found limited
application in engineering, unlike Shannon’s statistical entropy.
In this paper, it is shown that the problem of communication-lim-
ited stabilization is related to the concept of topological entropy,
introduced by Adler et al. as a measure of the information rate of
a continuous map on a compact topological space. Using similar
open cover techniques, the notion of topological feedback entropy
(TFE) is defined in this paper and proposed as a measure of the
inherent rate at which a map on a noncompact topological space
with inputs generates stability information. It is then proven that
a topological dynamical plant can be stabilized into a compact set
if and only if the data rate in the feedback loop exceeds the TFE
of the plant on the set. By taking appropriate limits in a metric
space, the concept of local TFE (LTFE) is defined at fixed points
of the plant, and it is shown that the plant is locally uniformly
asymptotically stabilizable to a fixed point if and only if the data
rate exceeds the plant LTFE at the fixed point. For continuously
differentiable plants in Euclidean space, real Jordan forms and
volume partitioning arguments are then used to derive an expres-
sion for LTFE in terms of the unstable eigenvalues of the fixed
point Jacobian.

Index Terms—Communication channels, stabilizability, topolog-
ical entropy.

I. INTRODUCTION

AN IMPORTANT consequence of Shannon’s pioneering
work on statistical information theory was the devel-

opment of definitions of entropy for deterministic nonlinear
dynamical systems, by Kolmogorov and others. These notions
provide a framework within which to rigorously discuss the
information generation rate, in bits per second, of purely deter-
ministic maps, either in measure-theoretic or topological terms.
However, their impact in communications has been somewhat
limited, due to the widespread use in that field of statistical
source models which are often more naturally analyzed in
terms of Shannon entropy. In contrast, deterministic models
are commonly used in control. Until recently though, there
has been no real motivation to define the information rate
in bits/s of a plant in a control system, since it has almost
always been assumed that the available outputs of a plant can
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be transported to the controller with arbitrarily high digital
precision.

However, in many developing application areas such as mi-
croelectromechanical systems and decentralized tracking, this
assumption no longer holds true. The resources available for
communication between sensors and controllers in such areas
can be severely limited, due to size or cost. This impinges di-
rectly on the feedback control performance that can be achieved,
since it implies that the data received by various components
is either out-of-date or poor in resolution, if not both. In these
situations the communications and control issues are bound to-
gether and the analysis of one aspect cannot proceed without
consideration of the other. There are many issues which need
to be considered in order to fully capture the effects of a non-
ideal digital communication channel on a control system, e.g.,
limited data rate, variable or stochastic delays, and transmission
errors. In this paper we follow a line of inquiry begun in [1] and
continued in [2]–[9], amongst others, and focus on the problem
of stabilization with a finite data rate.

Within this perimeter, a fundamental question is how to define
the intrinsic rate at which a given plant generates “stability”
information. One possibility is to simply define it as the infimum
data rate needed to be able to stabilize the plant, and indeed
expressions for the infimum rate are available both for noise-
less [3], [10]–[15] and stochastic linear systems. However, the
weakness of this approach is that it ties the definition of infor-
mation rate to the particular structure placed on the coding and
control scheme. Despite different formulations and assumptions
in all the papers just referred to, the same infimum rate was ob-
tained which furthermore was determined only by the unstable,
open-loop eigenvalues of the plant and was independent of all
parameters of the coding and control scheme. This strongly sug-
gests that it ought to be possible to define an intrinsic informa-
tion rate for the plant in a manner which makes no reference to
coder, decoder or controller structure. There is an analogy here
with source coding [16], [17], which is concerned with deter-
mining the smallest data rate at which a stochastic source can
be coded, transmitted and “reliably” decoded over a noiseless
digital channel. There are different formulations and definitions
of “reliability,” ranging from variable length codes with no er-
rors to fixed-length block codes with arbitrarily small error rates.
Nonetheless, in all cases the smallest possible data rate is equal
to the Shannon entropy of the source, independent of external
constructs.

This paper is divided into five sections, excluding this Intro-
duction. In Section II, we briefly discuss the open cover tech-
niques used by Adler et al.in defining the topological entropy
of a continuous map without inputs on a compact topological
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space. Motivated by the generality possible with such methods,
we modify them to deal with plants on (possibly noncompact)
topological spaces. This leads to the new concept of topological
feedback entropy (TFE), which we propose as a rigorous and
completely general measure of the rate at which a plant gen-
erates initial state information under certain controllability-like
constraints.

In Section III, we formulate the problem of controlling a topo-
logical dynamical system with a finite feedback data rate, the
basic objective being to keep the state contained in a specified
compact region. The first theorem of this paper is presented and
proven here. This states that the infimum data rate for which the
objective is possible is precisely equal to the TFE of the plant on
the region. In other words, stability as defined is possible if and
only if information can be transported as fast as it is generated
by the plant.

In Section IV, the plant is placed in a metric space and the
concept of local TFE (LTFE) at a point is defined, by taking ap-
propriate limits in the TFE. Our second main result states that,
under certain stabilizability conditions, local uniform asymp-
totic stabilizability to a fixed point is possible if and only if the
data rate exceeds the plant LTFE at that point.

We then focus on deriving a formula for the LTFE of con-
tinuously differentiable plants in Euclidean space in Section V.
By using real Jordan forms and volume partitioning arguments,
we demonstrate that the LTFE of the plant is the sum of the
base-2 logarithms of the unstable eigenvalues of the Jacobian at
the fixed point. This agrees exactly with results derived previ-
ously for noiseless linear plants. We then discuss extensions and
open questions in the concluding section.

Throughout this paper, the real numbers are denoted by
, complex numbers , positive integers , and nonnegative

integers .

II. TOPOLOGICAL FEEDBACK ENTROPY

Before discussing the problem of data-rate-limited control,
we consider how to quantify the rate at which a dynamical
system with inputs generates information. The answer to
this question is obviously related to the data-rate problem.
However, in this section we define this information rate in an
abstract manner that makes no reference to coders, controllers
or feedback communication constraints. This underlines its
fundamental nature as an intrinsic property of the dynamical
system.

As mentioned in the Introduction, Shannon’s pioneering
work motivated Kolmogorov, and subsequently others, to
construct definitions of entropy for completely deterministic
nonlinear maps [18]. One of the most general of such constructs
is the topological entropy of Adler et al., which applies to con-
tinuous maps on compact topological spaces; see [19] and [20]
for details. Briefly, the idea behind this definition is to first fix
an open cover for the space, through which each iteration
of the map is observed, i.e., all that is known is the sets of the
open cover in which the iterations fall. Each observed open set
is then inverted to yield an open set in the initial state space.
As the number of iterations increases, the family of all possible
intersections of initial state open sets forms an increasingly fine

open cover for the space. The topological entropy of the map is
then obtained by supremizing the asymptotic rate of increase
of the cardinality of this open cover over all observation open
covers. This in some sense measures the fastest rate at which
uncertainty about the initial state can be reduced, or equiva-
lently the fastest rate at which initial state information can be
generated.

A later definition of topological entropy by Bowen and
Dinaburg [20]–[22]partially extended this to noncompact
metric spaces, under the assumption of uniform continuity.
However, the purely topological nature of Adler’s version is
highly attractive, and we will use similar open cover tech-
niques here to construct a definition of TFE. This may appear
to be an extension of normal topological entropy to maps
on noncompact spaces with inputs, but there is a significant
difference in interpretation, as discussed later. Note that the
fact that we seek to return the state to a specified compact set
via appropriate controls is also the reason that we can use open
cover arguments in the style of Adler, even though Bowen’s
techniques for noncompact metric spaces may appear more
directly relevant. We also mention that there is also a body of
recent work which explores connections between the entropy of
a dynamical system and Bode’s sensitivity integral [23]–[25].

We first introduce some basic notation and terminology. Let
be a space endowed with some topology . A (possibly un-

countable) collection of open sets is called an open cover of a
compact set if . By the topological defini-
tion of compactness there then exists a finite subcover of , i.e.,
a finite family which also covers ,
and let denote the minimum cardinality of such finite
subcovers.

Now, consider the fully observed, time-invariant, dynamical
system

(1)

where the state , the input a set and
is continuous . We analyze this system on a compact

set with nonempty interior, under two alternative conditions
of increasing strength.

WI) (Weak Invariability) can be made weakly invariant
under , i.e., there exists and a compact

s.t. an input sequence
in which ensures .

SI) (Strong Invariability) can be made strongly
invariant under , i.e., there exists a compact

s.t. an input
which ensures .

We remark that for the purposes of this section and the subse-
quent one, it would be possible to weaken these definitions to
only require that the subsequent state or lies in the interior
of , without positing the existence of an inner set . How-
ever, the more stringent definition of strong invariability above,
in particular, is needed in the proofs of Section IV, and for the
sake of a uniform approach an analagous definition has been
adopted for weak invariability.

Let be an open cover of , a positive integer, and
a sequence of maps that assign input
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variables to all sets in . Depending on which of the aforemen-
tioned invariability conditions holds, impose the following cor-
responding constraint on , , and .

WI’) compact set s.t. , the
sequence of inputs yields , i.e.,

(2)

SI’) compact set s.t. , the
sequence of inputs yields

. That is,

(3)

To demonstrate the feasibility of WI’), set equal to the invari-
ance time in assumption WI). By the continuity of and the
openness of there is an open set s.t.

. The open cover
is then chosen to be a finite subcover of the open
cover , guaranteed to exist by the compactness
of . Let be a point in such that and set

(4)
By the preceding observations, we then automatically have
that if , then

. This confirms the feasibility
of constraint WI’) under assumption WI). A similar argument
demonstrates the feasibility of SI’) under SI), where the func-
tions are defined recursively in terms of and

by

, with being any positive integer.
Next, let be elements of and define

(5)

In words, the set corresponds to the region in which is
known to lie, given the observations , , and
inputs , . The openness of may
be explicitly confirmed by writing it as

(6)

since the composition is
continuous.

Furthermore, every must lie in a set of the form
(5). To see this, observe that if then it must lie in
some open set . By the constraint WI’) or SI’), the se-
quence of inputs then forces . Repeating this
process indefinitely, it is clear that there is a sequence

of sets in such that with an input se-
quence . Hence,

(7)

is an open cover for . As no set in a minimal subcover
of is contained in a union of other sets, each carries new
information. Hence, as increases, so does the amount
of information gained about the initial state. The asymptotic rate
of information generation of on with inputs in , relative
to a given triple , may thus be measured by

(8)

To verify that the limit on the RHS above exists and equals
the infimum, we appeal to a subadditivity theorem of [26]; see
also [27]. Observe from (6) that , consists of
all sets of the form

with running freely over . Note that the term
inside the square brackets runs over all sets in the open cover

, while the argument inside the large parentheses runs over
all elements of . Now, constrain to index sets in
a minimal subcover of , and to index those
in a minimal subcover of . Denote the constrained
family of sets thus formed by . To see that
is still an open cover for , observe that any must
lie in a set indexed by some sequence in

. Furthermore, and, thus, lies
in some set in the minimal subcover . Hence,

, and so is still a cover for
. As there are sets in , and to each there cor-

respond possible sets ,
the number of distinct elements in cannot exceed

. By the definition of minimal subcovers
and the monotonicity of , we must then have that

Polya and Szego’s subadditivity theorem [27] then states that
the limit in (8) exists and is precisely equal to the infimum.

Infimizing (8) again over , the weak invariance TFE
of on with inputs in is finally defined as

(9)

under constraint WI’) on , , , and assumption WI) on , ,
. Analogously, the strong invariance TFE is given by

(10)

under constraint SI’) on , and assumption SI) on , , and
. As the constraint SI’) is more restrictive than WI’), it follows

that .
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The infimum in the definitions of TFE suggests that it can be
interpreted as the smallest rate at which initial state information
can be generated while maintaining invariance. In contrast, the
standard definition(s) of topological entropy measure the largest
rate at which a fixed map can generate initial state information.
This distinction is apparent for the simple example of the tent
map on the unit interval with an additive control term

As for any , it is easy to show that
the TFE for weak and strong invariance are both 0. On the other
hand, the topological entropy of this map with is strictly
positive (in fact 1 bit/sample).

Observe that we trivially have the monotonicity property

(11)

since the inputs can have more possible values and thereby re-
duce the infimum in the definitions of TFE. However, a similar
monotonicity property cannot be deduced for a compact
satisfying condition [WI] ([SI]) with the same input set . Even
though an open cover for is automatically an open cover for

, it may not satisfy the constraint WI’) [SI’)] on the infimiza-
tion with the same and . Thus we can not conclude that TFE
increases as the state region shrinks.

The feedback entropies introduced above are defined purely
in terms of open sets for a very general class of maps with inputs.
As we have made no reference whatsoever to coding and control
structures, feedback communication constraints, or other ex-
ternal constructs, topological feedback entropy as defined above
is an inherent property of the dynamical system (1) alone. In the
next section, we close the feedback loop and discuss the signif-
icance of TFE in the particular context of data-rate-limited con-
trol. This leads to an alternative and perhaps more practically
relevant characterization of TFE.

III. INVARIANCE UNDER DATA-RATE-LIMITED FEEDBACK

In this section, we investigate a class of nonlinear control
problems that involve limited data rates in the feedback loop. As
discussed in the introduction, such a communication constraint
has a negative effect on the attainable control performance. Dif-
ferent approaches to analyzing and mitigating this effect have
recently been described in [28] and [29]. Our specific interest
here is characterizing the smallest possible data rate that permits
a specified compact set to be made invariant, by a causal coding
and control law belonging to a general class. We then show that,
in this context, the infimum data rate is precisely equal to the in-
trinsic information rate of the plant, as measured by its TFE.

Let the plant be given by (1). Suppose that a sensor measures
its states and is connected to a controller by a noiseless dig-
ital channel which carries one discrete-valued symbol per
sampling interval, selected from a coding alphabet of time-
varying size . The transmission data rate of the channel
may then be defined as the asymptotic average bit rate

(12)

For technical reasons, we impose the mild requirement that
as . Suppose that each symbol trans-

mitted by the coder may depend on all past and present states
and past symbols, i.e.,

(13)

where is the coder mapping
at time . In practice, a finite-dimensional coder would obviously
be desired, but the more general formulation shown previously
allows us to focus on the limitations imposed by the digital
link. Assuming that the digital channel is errorless, at time

the controller has available and generates

(14)

where is the controller function at time
.
Define the coder-controller as the triple of

alphabet, coder and controller sequences
. If

for some and all the coder-controller satisfies

(15)

we call it periodic with period . Coding and control equations
of this class are easier to implement, due to the finite memory
requirement, and are also useful analytically elsewhere in this
paper.

Given an asymptotic average data rate , our objective is
to investigate whether there exists a coder-controller, with inputs
in , which renders either

1) weakly invariant, i.e., and compact
s.t. ; or

2) strongly invariant, i.e., compact s.t.
.

We now state the first major result of this paper.
Theorem 1: Consider the continuous-w.r.t.-state plant (1),

with states in a topological space , inputs lying in a set
and initial state in some compact region with nonempty in-
terior. Assume that the weak (strong) invariability assumption
WI) [respectively, SI)] holds on , , .

For to be made weakly (strongly) invariant by a coder-con-
troller of the form (13)–(14), the feedback data rate (12)
cannot be less than the weak (strong) invariance topological
feedback entropy (9) [(10)] of the plant on with input set

(16)

Furthermore, this lower bound is tight, i.e., there exist coder-
controllers that achieve weak (strong) invariance at data rates
arbitrarily close to it.

This theorem relates the practical problem of data-rate-lim-
ited feedback to the abstract concept of topological feedback
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entropy. Recalling that the TFE of a plant measures the rate at
which it generates feedback information, the result above states
that invariance is possible if and only if information can be trans-
ported across the channel as fast as it is generated. This is similar
to the role that Shannon’s source coding theorem plays in infor-
mation theory and digital communications [16].

In light of the previous theorem, it is tempting to simply de-
fine feedback entropy as the smallest data rate which permits
invariance. However, the problem with such an operational def-
inition is that it is tied to the specific assumptions imposed on
the the digital channel, the coder, and the controller. In contrast,
TFE is completely independent of all external constructs and
is, thus, a purer measure of the intrinsic information rate of the
plant. Again, there is an analogy with source coding, where the
entropy of a statistical source is defined axiomatically in terms
of a functional on its distribution, instead of the smallest data
rate for “reliable” communications. As mentioned in the intro-
duction, this avoids the problems associated with different for-
mulations of coding and “reliability”.

In the remainder of this section, we present a proof of this the-
orem. For conciseness only weak invariance is considered; the
proof for strong invariance is nearly identical. To reduce clutter,
the superscripts and arguments are dropped.

A. Necessity of Lower Bound

We prove the lower bound (16) by basically showing that any
coder-controller which achieves weak invariance with rate
induces an open cover , mapping sequence , and recurrence
time , as defined in the previous section, with entropy rate also

.
For any such coder-controller , there exist

and compact s.t. and ,
. It then follows from (12) that , there exist infin-

itely many s.t.

Set , so that for some .
Then

(17)

for sufficiently large, since . Let .
Evidently, , so if we “reset the clock” to zero
and perform the coding and control again with

we then get a at time .

This resetting process can be repeated, so by induction we can
thus convert the original, possibly recursive, coder-controller

into a periodic coder-controller with pe-
riod . The most important point about this conversion is that the
new coder-controller achieves -invariance with average data
rate within of the original (NB: period invariance time).
The alphabet and coding and control equations of the periodic
scheme are formally given by

Observe that with the coder-controller fixed as above, the
symbol sequence is completely determined by

, by a fixed map that incorporates both coder and
controller functions. Thus,

(18)

where , are mappings that do not change with .
Now, consider the disjoint regions as

the symbol sequence varies over all possible sequences
in . The total number of distinct symbol se-
quences is just , so the total number of nonempty
and distinct regions must be less than or equal to this. Denote
these coding regions by , noting that .
We can then rewrite the control equation in (18) as

(19)

by defining the map iff
.

We are now in a position to construct the , the open
cover and the mapping sequence
required in the definition of TFE. Set and then construct
the open cover as follows. Observe that any coding
region

where the left—hand side denotes the dynamical map ap-
plied times with the input sequence (19). By the conti-
nuity of (hence of ) and the openness of , it
then follows that , there is an open set s.t.

. In this way we can construct
an open set s.t.

(20)
As and , is an
open cover for . Finally, construct the mapping sequence as

Substituting this construction into (20), it is then evident that the
constraint (WI’) on , , and is satisfied.
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We now generate the (finite) open covers of (7). Ob-
serve that the minimum cardinality of a subcover
of the number of sets in , which by (7) must be

the number of possible sequences of sets in ,
i.e.,

From (17), we can ensure that , the last term on the
by choosing sufficiently large. Hence,

.

B. Achievability of the Lower Bound

To prove that data rates arbitrarily close to can be achieved,
we first show that any triple which satisfies constraint
WI’) in the previous section induces a periodic coder-controller
which renders -invariant. The (uninfimized) entropy with
respect to such a triple is defined as

(21)

where is defined by (6) and (7). It then follows that
s.t.

Recalling that is an open cover for the compact set , select a
minimal subcover of and denote it by , where

by definition. We construct a periodic coding
law using these overlapping sets via the rule

when
otherwise

(22)
Evidently, the coding alphabet size when is a multiple
of and otherwise, so the (average) data rate of this coder
is simply

(23)

The next step is to construct the controller from the map-
ping sequence . By definition, for each set there are
sets s.t. (5) holds. Upon receiving the symbol

which indexes an open set containing
in the minimal subcover of , the controller finds in

which yields and then applies control inputs via the
periodic rule

(24)

By the constraint (2), , so that -invariance is
achieved at rate . As is the infimum of ,
we can find s.t. . Hence, and
the result follows by choosing arbitrarily small.

The key point about the construction above is that the coder
and controller do not simply index all elements of and in-
dicate which element of each state lies in. This demands a
data rate equal to and ignores the fact that not
all sequences occur. A more efficient approach is
to generate the initial state cover and transmit the index of
an element of which contains , . For each -th
“cycle” of duration , this suffices to determine sets con-
taining , , which can then be used to
generate control inputs via the mapping .

Observe as well that the periodic coder-controller constructed
above actually achieves a slightly stronger objective than weak
invariance, since every point in the open set is
mapped in instants into the interior of . The strong invari-
ance version of this property will be particularly useful when
we discuss asymptotic stability in the next section. For conve-
nience, we state it here without further proof.

Lemma 1: Consider the continuous-w.r.t.-state plant (1) with
states in a topological space , and let the compact region

with nonempty interior satisfy the strong invariability
assumption SI) with input set .

Then for any , there exists a periodic coder-controller
with data rate

for which compact and open such that
.

Explicit formulas for the TFE of various plants are somewhat
difficult to derive. However, for a controllable linear time-in-
variant plant , theorem 1 and techniques adapted from
[11], [12] can be used to show that the TFE for both weak and
strong invariability on a set with unconstrained inputs is just

, as expected.

IV. LOCAL TOPOLOGICAL FEEDBACK ENTROPY AND

ASYMPTOTIC STABILIZABILITY

In many control systems, the objective is not just to keep the
state of the plant (1) within some compact region but to steer
it asymptotically to a specified point , using feedback inputs
approaching a constant value . In this section, we construct a
local topological feedback entropy (LTFE) to characterize such
situations. We then show that the smallest data rate for local
uniform asymptotic stabilizability (LUAS) is precisely equal to
the LTFE of the plant at the target point.

It is still assumed that is continuous . As local
uniform asymptotic stability is a stronger objective than making
a compact initial state set invariant, additional assumptions will
also be placed on the plant (1), as listed as follows.

A) The state–space has metric and the inputs
belong to a space with metric .
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B) There is a constant input and point
s.t. .

C) (Local Strong Invariability) For any , s.t.
the state region

satisfies the strong invariability
condition [SI] with an input set

.
With these assumptions in place, define the LTFE of the plant

at the target point as

(25)

under the topology of induced by its metric, where is
the strong invariance TFE defined in (10). Note that since TFE
increases with decreasing input sets (11), the outer limit is just a
supremum over and hence exists in the extended half-line

.
We call the plant locally uniformly asymptotically stabilizable

(LUAS) at the target point if , such that
there is a coder-controller yielding

(26)

We now state the second main result of this paper.
Theorem 2: Consider the continuous-w.r.t.-state plant (1)

under assumptions A)–C) above. Any coder-controller (13) and
(14) which locally uniformly asymptotically stabilizes it in the
sense (26) must have a data rate (12) not less than the local
topological feedback entropy (25) of the plant at the target
point

(27)

Furthermore, this lower bound is tight, i.e., there exist coder-
controllers at data rates arbitrarily close to it that achieve (26).

Like Theorem 1, this result states that local asymptotic sta-
bilizability is possible if and only if the rate at which infor-
mation can circulate in the feedback loop is greater than the
rate at which the plant generates initial state information at the
target point. We now present the proof of necessity and then
sufficiency.

A. Necessity

Suppose that the plant is locally stabilizable in the sense (26)
at data rate . For any arbitrary , we can then find

such that for any there is an and a coder-
controller s.t. ,

In other words, the coder-controller makes
strongly invariant with controls in . By Theorem 1, the
data rate cannot be less then the strong invariance TFE of the
plant with and

(28)

By definition of LTFE (25), , we can find arbitrarily
small such that

so there must exist arbitrarily small such that

Substituting this into (28)

As can be made arbitrarily small, it follows that
.

B. Sufficiency

We now prove that the data rate lower bound (27) is tight. By
definition (25) of LTFE and the monotonicity of with respect
to input sets (11)

As such, such that

(29)

Setting the minimum of and the of the local strong
invariability condition C), Lemma 1 then states that for each

there exists an open set , a compact set
, and a periodic coder-controller such that any

initial state in is driven into at every subsequent instant.
Furthermore, this coder-controller can be chosen to have data
rate

(30)

Now, , define the set of
finitely switched periodic coder-controllers as follows. For
each there is a finite, strictly increasing
sequence of nonnegative switching times and cor-
responding periods , with , such
that at any time , the coder-controller
satisfies

(31)
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In other words, the coder-controller is periodic with period on
each interval , where for convenience

, . Furthermore, let each i)
have average data rate satisfying (30), and ii) render the initial
state ball strongly invariant using control inputs

.
Now, let

(32)

As the periodic coder-controller corresponding to discussed
immediately after (29) is clearly an element of , we
must have . To see that in fact , suppose that .
By (32), and which
achieves

(33)

However, as discussed after (29) there is a periodic coder-con-
troller which sends an open set of ini-
tial states into a closed set at all positive times,
using inputs in and with average data rate satisfying (30).
It is straightforward to show, using openness and compactness,
that there exist a) such that ,
and b) such that . Thus,
choose in (33), apply ,
and then switch to the periodic coder-controller
at a suitably large time , when lies inside .
We then have a new finitely switched periodic coder-controller

which guarantees that for any
, . This contradicts the

definition of as the infimum (32) so we conclude that .
By (33), we have thus shown that there exists

such that , there is a coder-controller
which takes the initial state ball into

at all sufficiently large times , with controls
and the state remaining in some compact ball

lying strictly inside at all times. Furthermore, as the
average data rate of each periodic “section” satisfies (30), so
does the overall data rate.

It is now straightforward to construct a coder-controller
which achieves local uniform asymptotic stability in the sense
(26). Let be any sequence of input ball radii tending
monotonically to zero and a sequence of corresponding
initial state ball radii, as per the definition of local strong in-
variance in assumption [C]. As each can be as small
as pleased, let tend monotonically to zero as well. Set

and let be the time it takes for the corresponding
coder-controller to take the state
ball into . Define ,
with . Construct an (infinitely switched periodic)
coder-controller by applying during times

. Then during each such interval
the controls and states are respectively confined to balls
and , respectively, with radii tending monotonically
to zero. Furthermore, by the strong invariance property of
the finitely switched periodic coder-controllers used to con-
struct it, the state is confined to a compact set in the interior

of . Finally, as each periodic section has
average data rate satisfying (30), the asymptotic average data
rate of also satisfies (30).

V. LOCAL UNIFORM ASYMPTOTIC STABILITY IN

EUCLIDEAN SPACE

In this section, we place the plant (1) and its inputs in Euclidean
spaces, and turn our attention to deriving an explicit formula
for the LTFE of the plant at a fixed point. To do so, we exploit
Theorem 2, which states that the LTFE is precisely equal to
the infimum feedback data rate for LUAS in the sense (26).
We then use local real Jordan forms and volume partitioning
arguments to derive an expression for the infimum data rate,
and hence the LTFE.1

First, we define certain conventions used in this section. Se-
quences are denoted and represents either the
Euclidean norm on a vector space or the matrix norm induced by
it. Matrices and vectors are written in boldface. Lebesgue mea-
sure is denoted , the identity matrix is denoted by , the

matrix by , the matrix by
, and the spectrum of a matrix is represented as , with

multiple eigenvalues permitted.
Let the state space , the input space , and

assume that A)–C) from the previous section still hold, with the
following additional assumptions.

D) (Continuous differentiability) is differentiable
once with continuous first-order partial derivatives.

E) The pair is controllable, where and are
the Jacobians of w.r.t. state and control respectively
at .

The main result of this section follows.
Theorem 3: Let assumptions A)–E) hold on the plant (1).

Then, the local topological feedback entropy (25) of the plant at
the fixed point is given by

(34)

where is the Jacobian of with respect to state, evaluated at
the set-point, and is the spectrum of .

This theorem states that the rate at which a plant generates
information at a fixed point is determined by the unstable local
open-loop dynamics at the desired set-point. The RHS is simply
the base-2 rate at which a volume in the local unstable subspace
increases over time, so LTFE here measures the rate at which
initial state uncertainty volumes are increased by the action of
the plant dynamics. Note that for the case of a linear system,
this result is consistent with the work in [11], [3], and [12] on
infimum data rates for stabilizability in various other senses.

The remainder of this section is devoted to proving Theorem
3. From Theorem 2, we can do so by first showing that for local
uniform asymptotic stabilizability in the sense (26) with some
coder-controller (13)–(14), the the data rate (12) must satisfy

(35)

1The material in this section was presented in preliminary form in [30].
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This is done in the following section, using the volume inter-
pretation mentioned above. We then demonstrate the tightness
of the data rate lower bound in Section V-C, by constructing a
coder-controller that achieves local uniform asymptotic stability
at a data rate arbitrarily close to it.

A. Necessity

The intuition we use to prove the necessity of (35) is that the
open-loop growth in unstable subspace uncertainty volume near
the set-point must be counteracted by a reduction in volume due
to the coding partitions. Similar ideas have been employed for
linear plants [11], [3], [12]. However, the nonlinearity of the
plant here complicates matters and necessitates rather different
technical tools.

Suppose that local uniform asymptotic stability has been
achieved by some coder-controller with an initial state
ball . Recall that is the Jacobian of the dynamical
map w.r.t. the state at the set-point

(36)

and let be a real similarity transform such that

(37)

is a real Jordan form; see, e.g., [31] for details. Briefly, has
a block-diagonal structure with each block possessing either
one real or two complex conjugate eigenvalues, not counting
repeats. In terms of plant dynamics, can then be
interpreted as a vector of modes with decoupled open-loop dy-
namics near the target point.

Define to be the vector of those modes governed by
eigenvalues of not less than 1 in magnitude. Assuming without
loss of generality that the blocks of are ordered according to
descending eigenvalue magnitudes

(38)

It then trivially follows that
, so that uniformly over .

Next, for any symbol sequence define the lo-
cally unstable uncertainty set

(39)

i.e., the set of all possible points that can take given the
symbol sequence . Then, define the maximum lo-
cally unstable uncertainty volume

(40)

Now, if denotes the supremum distance of points in a measur-
able set from , then is wholly contained in the
ball of radius centred at . Hence

where is the -dimensional sphere constant. Thus

(41)

(42)

(43)

i.e., as well. Equality (42) is a consequence of the
invariance of Lebesgue measure to constant translations, while
the equality in (41) follows from the fact that, with the coder-
controller fixed, the same cannot yield two different symbol
sequences, i.e., the regions

must be disjoint and exhaustive.
A recursive lower bound for the worst-case volume will

now be derived. We have

(44)

where for convenience, the locally stable components of
are denoted and .
The next step is to replace the nonlinear function with its local
linearization. As has continuous first-order derivatives, we
have that s.t. ,

where the uniformly over , and
, the real Jordan form governing

the locally unstable subspace. From this it can established that
s.t. for any measurable

Substituting this into (44) with , , ,
, and , and writing

(45)

(46)

(47)
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where (45) follows from the translation-invariance of Lebesgue
measure and (46) describes the effect of an invertible linear
transformation on volume.

The trivial decomposition (47) leads to an observation that
is the heart of the necessity argument developed here. The un-
certainty sets are not neces-
sarily disjoint as the single symbol runs over its possible
values. However, since is a well-defined function of the ini-
tial state and previous symbols, their union must cover the set

, i.e.,

Hence

(48)

Substituting this into (47)

by repeating the recursion times. As and , for
all sufficiently large we must have

Hence

(49)

where (49) follows since . This completes the proof of
necessity for (35).

B. Tightness of Bound

The final step in proving Theorem 3 is to establish that the
bound (35) is achievable, i.e., there exist coding and control
schemes with asymptotic average data rates arbitrarily close to
it that still achieve local uniform asymptotic stability. In order
to do, so a specific coder-controller will be constructed and
analyzed.

Note that this scheme is not proposed as a practical control
law, as issues such as performance, robustness and complexity
would then need to be considered. It is intended only to demon-
strate that the data rate lower bound (35) can be approached ar-
bitrarily closely from above, making it the infimum data rate for
LUAS.

First, recall that the real Jordan form of the Jacobian of
w.r.t. state at the set-point has a block diagonal structure

Each block has either one distinct, real eigenvalue
of multiplicity , or two distinct, complex conjugate

eigenvalues of multiplicities . The components
of the transformed state vector corresponding to the block
are denoted . A further property of these blocks that
will be used later is that s.t.

(50)

This states that powers of a Jordan block grow exponentially
according to the magnitude of its eigenvalue, with possibly an
extra polynomial factor arising from multiplicity.2

Suppose that at time , some known . Let
be any number that satisfies (35) and divide times

into epochs , , of some uniform
integer duration . At time , suppose is a uniform
bound such that

The way in which is generated will be specified later.
Overbound this region by an -dimensional cube centred at
with sides of length . Then partition this cube by dividing
each coordinate axis corresponding to a component of into

intervals of equal length

for for (51)

where denotes rounding down and the parameter is
selected to satisfy

(52)

2To show this, observe that each real Jordan block is similar to a standard
Jordan block (or two) and apply an argument from [31, p. 138]
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Note that as the RHS is guaranteed positive, candidates for
always exist. The total number of subcuboids thus formed is

, so index them in a predefined way by the integers
, where

(53)

At time , transmit the index of the one which contains .
At remaining times in the epoch , set

, i.e., transmit no information. Clearly, the asymptotic
average data rate is

(54)

by (52), for sufficiently large .
Now, consider the controller at the other end of the channel,

which receives the symbol at time . As it also knows the
uniform bound and the number of intervals , ,
it then knows which subcuboid lies in and uses its centre as
an estimate . Hence

(55)

where the additional superscript denotes the scalar compo-
nents of vectors in . It then calculates the next control sig-
nals by using the controllability of ,
and hence of , to force the linearised system with nom-
inal initial state to the origin in steps, i.e., by solving

(56)

where and
. The remaining control

signals in the epoch are set to Note that as the controlla-
bility matrix has rank , it possesses linearly independent
columns and only the corresponding scalar components
of the stacked control vector are needed. If the inverse of the
matrix formed by these columns is padded with null
rows, corresponding to the unnecessary components of , to

form , then the stacked control may be expressed
more explicitly as

(57)

i.e., a linear function of .
The crucial remaining step is to determine how to update the

uniform upper bound from one epoch to the next. In the fol-
lowing, we will construct a recursion for which ensures that
it decays exponentially to zero for a sufficiently large but fixed
epoch duration . As by definition, this will
effectively complete the proof.

First observe that, as lies in a cube of sides cen-
tered at , . In addition, by (57)

, independent of , and s.t. for all
times in the th epoch. Now consider the map iterated
times from some initial state and with inputs ,
denoted for convenience. By the con-
tinuous differentiability of , it follows that ,

, and

(58)

where , which may depend on , approaches 0 as .
Substituting , , rearranging and looking at
each th local mode

(59)

(60)
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Hence

(61)

(62)

where (59) follows from (56), (60) from (50) and (55), and (61)
from the triangle inequality.

Now, consider the -independent term on the RHS of
(62). If , and as . If

, from (51), so

Hence, can be made arbitrarily small, independently of .
Select some value for large enough that . As for any
fixed , set so that
some selected . It then follows that , and
by induction it can be established that .

Hence exponentially. Recall that there is a
constant such that

. The continuity of and the linear dependence of
on (57) can similarly be used to show that
such that

. Thus for all a ball of sufficiently small
radius centered at , the plant has been locally exponentially
stabilized in state and control using controls . .

VI. CONCLUSION

This paper addressed the fundamental question of how to
define the intrinsic rate at which a nonlinear plant generates
stability information. By using general open cover techniques,
the concept of TFE was introduced and proposed as a rigorous
measure of the rate at which a plant on a noncompact topological
space generates initial state information. The problem of data-
rate-limited stabilzation was then addressed. It was proven that
the infimum feedback data rate to be able to keep the states
confined to a compact set is precisely equal to the TFE of the
plant on the target set. By taking appropriate limits in a metric
space, the notion of local TFE (LTFE) was then defined at
fixed points of the plant. It was then shown that local uniform
asymptotic stabilizability to a fixed point is possible if and
only if the data rate exceeds the plant LTFE at the fixed point.
For continuously differentiable plants in Euclidean space, a
formula for LTFE as the sum of the base-2 logarithms of the
unstable eigenvalues of the Jacobian at the fixed point was
then derived. Extensions of these results to nonlinear systems
with disturbances are presently being investigated.
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