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Abstract: This paper considers the optimal control of linear systems where
measurement data is transmitted from the plant output to the controller over
a noiseless communication channel with limited instantaneous data rate. The cost
is defined to be the average, over a random initial state, of the usual infinite
horizon quadratic regulation criterion, and the number of bits transported by the
channel during each sampling interval is bounded. Several fundamental properties
of the optimal cost functional are derived for initial state densities that satisfy a
mild moment condition. Using these properties, precise expressions for the optimal
cost and policy are obtained assuming a uniformly distributed initial state. These
expressions agree with the classical optimal LQR results in the high data rate limit
and with recent minimum rate results in the low rate regime. Extensions to the
case of non-uniform densities and vector-valued states are discussed.
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1. INTRODUCTION

In recent years, there has been an immense
amount of research into the interaction between
communication and feedback control objectives in
various settings (see, e.g. (Special Issue on Net-
worked Control Systems, 2004)). This activity has
primarily been motivated by applications in which
multiple sensors and actuators communicate over
non-ideal communication channels that may be
shared, have low data rates, suffer from time-
varying or random delays, introduce errors and
so on. These limitations can have a significant
adverse effect on the control objectives and need
to be explicitly addressed when analysing and
designing such systems.

In order to be able to analyse a full networked
control system, it is necessary to have a thorough

1 Email: gnair@ee.unimelb.edu.au
2 This work was partially supported by Australian Re-
search Council grant DP0345044 and NICTA Ltd.
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standing of the effects that these commu-
on constraints have in the simplest possible
ion where one sensor communicates to one
ller over a single channel. Continuing a line
uiry begun in (Delchamps, 1990; Wong and
ett, 1999; Brockett and Liberzon, 2000; Bail-
2001), this paper focuses on communica-
hannels in which the critical limitation is
ata rate, in bits/sample. From a practical
of view, this emphasis is valid in systems
the sampling interval is sufficiently long

ommunication delays have negligible effect.
dition, many control network protocols are
mented with a standard overhead of error
tion coding which significantly reduces the
er of bit errors. It is well-known now that

data rates, control performance degrades
cally and even the most basic objective
as stability can become impossible. Much

theoretical research in this area has fo-
on determining minimum feedback data

for various notions of stabilisability (Wong



and Brockett, 1999; Baillieul, 2001; Nair and
Evans, 2000; Tatikonda and Mitter, 2000; Nair
and Evans, 2003; Nair and Evans, 2004; Li and
Baillieul, 2004), and precise expressions have been
derived in terms of the unstable open-loop eigen-
values of the plant.

However, a similarly precise characterisation of
the effect of a finite data rate on achievable per-
formance is generally lacking. A universal lower
bound on the average state power of stochastic
linear systems was derived in (Nair and Evans,
2004), and in (Tatikonda et al., 2004) a separation
principle was derived for Gaussian linear plants
when the control is a linear function of a state
estimate. With regard to deterministic plants, up-
per bounds on performance for specific coding and
control policies have been obtained, under differ-
ent performance criteria (Petersen and Savkin,
2001; Ishii and Francis, 2003; Liberzon, 2003)
and, in (Fagnani and Zampieri, 2003; Fagnani
and Zampieri, 2004a), the relationships between
mean entrance times, invariant set contraction
ratios and the number of quantisation levels were
characterised for memorlyess quantisers.

This paper studies the optimal data-rate-limited
control of noiseless linear systems where the coder
and controller are permitted to be time-varying
with memory. The performance cost adopted is
the average, over a random initial state, of the
usual quadratic regulation criterion. In sec. 3,
the infimum cost is treated as a functional of
the initial state probability density and several of
its fundamental properties are obtained under a
mild moment condition. Using these properties,
precise formulae for the optimal cost and policy
are derived in sec. 4 when the initial state is uni-
formly distributed. These expressions agree with
the classical optimal LQR results in the high data
rate limit and with the minimum rate results men-
tioned above. Although lower and upper bounds
on infinite-horizon LQR performance under com-
munication constraints are known (Fagnani and
Zampieri, 2004b), to the best of the authors’
knowledge these results represent the first ex-
act characterisation of optimal data-rate-limited
performance in any setting. Extensions to non-
uniform distributions are also discussed.

2. FORMULATION

The notation used in this paper is first defined.
Sequences {sj}n

j=0 (of real numbers, discrete sym-
bols, or functions) are denoted s̃n, with s̃−1 being
the empty sequence and s̃ := {sj}∞j=0. All random
variables (rv’s) are assumed to exist in a com-
mon probability space and are written in upper-
case, with their realisations represented by the
corresponding lower-case letters. The probability
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y function (pdf) of a random variable X is
n as fX(·) and its expected value as E{X}.
y, the conditional pdf and expectation of X
an event S = s are written as fX|s(·) and
} respectively.

ven a, b ∈ R, consider a scalar, discrete-time,
input-output system

+1 = axt + but ∈ R, t ∈ [0, 1, 2, . . .), (1)

evolves from some initial condition x0 ∈ R

eal-valued input sequence ũ = {ut}∞t=0. As-
that x0 is a realisation of a random variable
ith known pdf fX0 and finite absolute (2+ε)-
ment E{|X0|2+ε} <∞ for some ε > 0.

efinitions of the coder, channel and con-
below are nearly identical to (Nair and

, 2003). Suppose that the sensor which ob-
the states of the system is connected to

ontroller via a digital channel onto which
ymbol st from a fixed, finite alphabet S is

itted during the (t + 1)th sampling inter-
ssuming that error coding or retransmission
cols are employed and that the propagation
is not larger than one sampling interval, it
sonable to suppose that each transmitted
ol is received without at the other end of
annel after a nominal delay of one sampling
al. The data rate of the channel may be
d as R := log2 |S|. In order to focus on
erformance degradation caused by the finite
rate, it is assuming that there are no com-
ional constraints at the coder or controller.
symbol st transmitted by the coder may
depend in a time-varying way on all past
resent states and past symbols,

= γt (s̃t−1, x̃t) ∈ S, ∀t ∈ [0, 1, 2, . . .), . (2)

γt is measurable. At time t the controller
e symbol sequence s̃t−1 available and can
enerate a control signal of the general form

ut = δt (s̃t−1) ∀t ∈ [0, 1, 2, . . .), (3)

other measurable, time-varying function δt.
rrent analog-digital and digital-analog con-
s often have adjustable bias levels and dy-
ranges, the assumption of time-varying,

ive coders and controllers is not an imprac-
ne.

e the coder-controller as (γ̃, δ̃), the ordered
f coder and controller mapping sequences,
enote the set of all possible coder-controllers
e given channel alphabet S by C. An impor-
ssumption made throughout this paper is

both coder and controller know the initial
X0 exactly, though of course the controller

t precisely know the specific realisation x0.

erformance cost considered in this paper is
erage of the classical quadratic regulation

ion,



J(fX0 , γ̃, δ̃) :=
∞∑

t=0

E{X2
t+1 + rU2

t } (4)

where r ≥ 0 is a selected constant. Note that an
average over the initial state pdf is taken because
the controller here does not know the exact ini-
tial state, whereas the unaveraged LQR-optimal
policy would not necessarily be independent of x0

as in the classical case, due to the nonlinearity
induced by the digital channel. It can be shown us-
ing (Nair and Evans, 2003) that, unlike the deter-
ministic classical LQR problem, a finite cost here
is possible iff |S| > max{|a|, 1}, provided also that
X0 has a finite absolute moment E{|X0|2+ε} <∞
for some ε > 2. Assuming throughout this paper
that these conditions hold, the infimum cost

J∗(fX0) := inf
(γ̃,δ̃)∈C

J(fX0 , γ̃, δ̃) (5)

is then well-defined.

The objectives of this paper are twofold. In the
following section, certain fundamental properties
of the functional J∗ are presented, in particular
the effects of scaling and shifting the initial state
distribution, and a recursive expression for J∗ is
obtained. Using these results, it is then shown
in sec. 4 that explicit formulae can be derived
for J∗(fX0) and the associated optimal coder-
controller, for the case of uniformly distributed
X0.

3. GENERAL PROPERTIES OF J∗
FUNCTIONAL

In this section several fundamental characteristics
of the infimum cost functional J∗ are presented. In
order to ensure a finite infimum cost it is assumed
that E{|X0|2+ε <∞ for some ε > 0 and that the
alphabet size |S| > max{|a|, 1}. Due to a lack of
space, proofs of these properties are omitted.

The first property describes the effect of stretching
or compressing the distribution by a constant
factor. A similar scaling law trivially applies to the
unaveraged LQR cost of any linear controller, but
in the nonlinear channel-constrained case it can
only be generally proven for the optimal average
cost functional.

Property 1. (Scaling). For any real constant c �= 0
and any random variable X ∈ R with finite
moment E{|X|2+ε} <∞ for some ε > 0,

J∗(fcX) = c2J∗(fX).

�

The second property describes the effect on J∗(fX)
of shifting the distribution of X by its mean.
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rty 2. (Removing the Mean). For any ran-
variable X ∈ R such that E{|X|2+ε} < ∞
me ε > 0,

J∗(fX) = J∗(fX−x̄) + p(x̄)2,

x̄ := E{X} and p ∈ R+ is the solution to
eady-state scalar Riccati equation

p =
a2(p+ 1)r
b2(p+ 1) + r

. (6)

ext result states that the class of coder-
llers can be constrained without extra cost
se that encode only the current state given

symbols, using coding regions in the form
l intervals. This structural result is vital in
ng the main result of the following section. It
e generalised to the general vector case, with
ding regions then being convex polyhedra
than intervals.

a 1. (Interval Coding). LetX be absolutely
uous w.r.t. Lebesgue measure and have fi-
oment E{|X|2+ε} < ∞ for some ε > 0.

X) ≡ inf
(γ̃,δ̃)∈C

J(fX , γ̃, δ̃) = inf
(γ̃,δ̃)∈Ci

J(fX , γ̃, δ̃),

Ci :=
{

(γ̃, δ̃) ∈ C : γt(·, x̃t) ≡ ηt(·, xt) s.t.

{x ∈ R : ηt(c̃t−1, x) = ct} is an

interval ,∀c̃t ∈ St+1
}

(7)

heorem below exploits the properties above
tandard dynamic programming arguments
ld a general recursion for the infimum cost
onal J∗. The key point is that expression
ependent of the controller and involves an
m over only the coding function.

em 1. Let the initial state X0 ∈ R of (1)
finite moment E{|X0|2+ε} < ∞ for some
Then the infimum cost (5) satisfies

(fX0) = a2[var{X0} + p(x̄0)2]

a2 inf
γ0

{ ∑
s0∈S

P{S0 = s0}J∗(fX0−x̄0|s0)

}
,

p ∈ R+ is given by the Riccati equation (6),
E{X0} and the inf is over all measurable

g functions γ0 : R → S that take x0 
→ s0.

by-product of the proof of the preceding
m, the following result can also be shown:



Theorem 2. (Certainty Equivalence). For any fixed
coder γ̃, the unique optimal control law for (1) is
given by

u∗t = δ∗t (s̃t−1) := − bp
ar

Es̃t−1{Xt}. (8)

If at time t ∈ [0, 1, 2, . . .) there exists a globally
optimal coding function γ∗t : St × R

t+1 → S
taking (s̃t−1, x̃t) 
→ st, then it must satisfy the
(controller-independent) minimisation

γ∗t ∈ Arg min
γt{ ∑

st∈S
P{St = st|s̃t−1}J∗(f(Xt−Es̃t−1{Xt})|s̃t

)

}
.(9)

�

A finite-horizon analogue of this result was given
in (Yuksel et al., 2004). As ut = −bp/(ar)xt

is the optimal control policy when no commu-
nication constraint is present, (8) confirms that
the certainty-equivalence principle applies in the
infinite-horizon problem. The inclusion (9) implies
that optimal coding laws are determined only by
the conditional distribution of the current state
given past symbols, and thus can be restricted to
encode only the current state given past symbols.
Note that this inclusion and the main theorem are
properties of the global infimum cost and do not
assume a fixed controller.

Despite its recursive nature, using Theorem 1 to
obtain explicit expressions for the infimum cost
is difficult, because the form of the functional J∗
for a given initial state distribution will generally
not remain the same after being conditioned on
an interval. If tractable approximations or upper-
bounds are available for J∗(f(Xt|s̃t

), (8) - (9) pro-
vide a method to systematically design subopti-
mal coder-controllers with guaranteed cost. How-
ever, in those special cases where J∗ does retain
the same form after conditioning, Theorem 1 can
be exploited to derive exact formulae for the op-
timal cost and policy. This is illustrated in the
following section.

4. EXPLICIT SOLUTION FOR UNIFORM X0

In this section, it is shown that explicit formulae
for the optimal cost J∗(fX0) and coder-controller
can be derived when X0 is distributed uniformly
on a given interval. In deriving these expressions,
the general properties obtained in the previous
section are exploited, together with the following
simple observation.

Lemma 2. Let X be uniformly distributed with
mean zero on a given interval. Then

J∗(fX) ≡ αvar{X},

where
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α ∈ R+ is a constant that depends only on
rameters a, b of the system (1), the coding

bet size |S| and the control weight r of (4).

: Omitted.

g the optimal channel-constrained average
problem for a uniform distribution is there-
quivalent to determining the parameter α.
combined with Theorem 1 and Properties

1, this observation leads to the result below.

em 3. Let the initial state X0 of (1) be
mly distributed on some given interval. The
um cost (5) is then given by

J∗(fX0) = p(x̄0)2+

a2

[
1 + p+

a2(1 + p) − p

|S|2 − a2

]
var{X0}, (10)

x̄0 := E{X0}, |S| is the size of the coding
bet S, and p is the solution to the Riccati
ion (6) .

: By Lemma 1, the function γ0 can be con-
ed without additional cost to have coding
s in the form of intervals, so {x0 ∈ R : s0 =
) = s} can be assumed to be an interval,
S. Note that since the support of fX0 is an
al, that of fX0|s0 must also be an interval,
lso that since fX0 is constant on its support
fX0|s0 . Hence, the conditional pdf fX0|s0 is
arily uniform on some interval, with mean
:= Es0{X0} and variance

X0} := Es0{[X0−μ(s0)]2} ≡ Es0{X2
0}−μ(s0)2.

(11)
Property 2 and Lemma 2,

0−x̄0|s0) = J∗(fX0−μ(s0)|s0) + p[μ(s0) − x̄0]2,

≡ αvars0{X0} + pμ(s0)2

+ p[(x̄0)2 − 2x̄0μ(s0)],

= (α− p)vars0{X0} + pEs0{X2
0}

+ p(x̄0)2 − 2px̄0μ(s0).

,

fX0−x̄0|S0)}= (α− p)E{varS0{X0}} + pE{X2
0}

+ p(x̄0)2 − 2px̄0E{X0},
= (α− p)E{varS0{X0}} + pvar{X0},

sing (11), where p is given by (6) and α
as-yet-undetermined constant of Lemma 2.
rly,

J∗(fX0) = αvar{X0} + p(x̄0)2. (12)

ituting this and (12) into Theorem 1,



αvar{X0} + p(x̄0)2 = a2var{X0} +
a2(p+ 1)r

(p+ 1)b2 + r
(x̄0)2

+ a2 inf
γ0

{(α− p)E{varS0{X0}} + pvar{X0}} .

By (6), this simplifies into

[α−a2(1+p)]var{X0} = a2 inf
γ0

(α−p)E{varS0{X0}}.
(13)

There are two possibilities at this point, α ≤ p or
α > p. Suppose first that α ≤ p. Then

[α−a2(1+p)]var{X0} = a2(α−p) sup
γ0

E{varS0{X0}}.
(14)

Recall that a standard property of means is that
∀ψ ∈ R, Es0{|X0 − ψ|2 ≥ Es0{|X0 − μ(s0)|2 =
vars0{X0}. Setting ψ = x̄0, it follows that for any
coding function γ0,

var{X0}= EEs0{|X0 − x̄0|2},
≥EEs0{|X0 − μ(s0)|2} = E{varS0{X0}}.

Furthermore, the left-hand side can be approached
arbitrarily closely by a parametrised coder γn

0

such that s0 = 0 iff x0 ∈ [−n, n]. As n →
∞ P{S0 = 0} → 1, ES0=0{X0} → x̄0,
ES0=0{X2

0} → E{X2
0}, and consequently by (11)

E{varS0{X0}} → var{X0}. Thus supγ0
E{varS0{X0}}

= var{X0}, which upon substitution into (14)
yields

α− a2(1 + p) = a2(α− p) ⇔ α = a2/(1 − a2).

If |a| > 1 this is clearly impossible, since α cannot
be negative. On the other hand if |a| ≤ 1 it can
be shown from (6) that this contradicts the initial
hypothesis α ≤ p.

Hence, α > p and (13) becomes

[α−a2(1+p)]var{X0} = a2(α−p) inf
γ0

E{varS0{X0}}.
(15)

As E{varS0{X0}} = E{|X0−μ(S0)|2} is the mean
square error in quantising a uniform distribution
using |S| levels, it is straight-forward to show
that the optimal quantiser is also uniform (see
e.g. (Gersho and Gray, 1993)), yielding

E{varS0{X0}} = E{|X0−μ(S0)|2} = var{X0}/|S|2.
(16)

Substituting this into (15), it then follows that

α = a2(1 + p) + a2 a
2(1 + p) − p

|S|2 − a2
.

The theorem then follows from (12). �

Assuming a uniformly distributed initial condi-
tion, this formula gives the smallest possible cost
which can be achieved with a given number of
coding symbols. By inverting it, the minimum
number of levels needed to obtain a given cost
can also be found. Though not shown explicitly,
it should be plain from (15) - (16) and (9) that
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timal coder at time t simply partitions the
rt interval of fXt|s̃t−1 into |S| equal sub-
als, as might be expected from the uniform
ution of the initial state.

ve that the minimum cost → ∞ as |S| −
0, agreeing with results from (Nair and

, 2000; Nair and Evans, 2003). As a fur-
heck, note that since the quantisation errors
e negligible as the channel alphabet size
ows, the channel-constrained optimal cost
approach the unconstrained mean classical

al LQR cost. However, a point of difference
he usual LQR formulation is that the initial
u0 = δ0 is a known constant independent of
known initial state x0, because the channel
remains fixed at 1. At any time t ≥ 1

h, the controller receives a codeword st−1 ∈
ch encodes xt−1 with arbitrarily high resolu-
and consequently can calculate the value of
xt−1+bδt−1(s̃t−2) with high precision. Thus

assical LQR control law can only be applied
time t ≥ 1, with associated deterministic
x2

1 = p(ax0 +bδ0)2. The overall optimal cost
e unconstrained system is then obtained by
g the incremental cost (ax0 + bδ0)2 + rδ20 at
, averaging over the initial state and then
ising over δ0,

l(fX0)

in
0

E
{
p(aX0 + bδ0)2 + (aX0 + bδ0)2 + rδ20

}
(p+ 1)var{X0}
min
δ0

{(p+ 1)(ax̄0 + bδ0)2 + rδ20},
(p+ 1)var{X0} + p(x̄0)2.

arison with Theorem 3 reveals that this
cisely the limiting optimal cost J∗(fX0) as

∞. Furthermore, the optimal channel-
ained cost can then be written

X0) = J ideal
∗ (fX0) +

a2(1 + p) − p

(|S|/a)2 − 1
var{X0},

(17)
second term is the average loss of optimal

mance due to a finite channel alphabet.

unlikely that the infimum cost expressions
d above also apply to general non-uniform
Nonetheless, the techniques used in this
offer a way to obtain formulae for those

s of density functions that retain their form
conditioning on an interval.

stance, consider the class PM of densities
re piecewise constant on at most M real in-
s. Each pdf is completely specified by 2M−2
eters, and it is a reasonable conjecture that
is class of densities J∗(fX) is a quadratic
on of these parameters. Thus, determining
) reduces to determining the constant co-



efficients of this quadratic form. Then note that
any such density remains an element of PM when
conditioned on an interval, since it can still take at
mostM different values. The recursive equation of
Theorem 1 and the scaling and shifting properties
of J∗ can then be used to obtain exact formulae for
each of these coefficients. If these formulae happen
to retain a well-defined structure as M → ∞, then
this could also be a way to derive the infimum cost
of arbitrary pdf’s, by approximating them with
sufficiently fine piecewise constant densities.

5. CONCLUSION

This paper studied the optimal data-rate-limited
control of noiseless linear systems when the coder
and controller are permitted to be time-varying
with memory. The performance cost considered
was the average quadratic regulation criterion.
Several fundamental properties of the infimum
cost functional were obtained under a mild mo-
ment condition and, using them, precise formulae
for the optimal cost and policy were derived for
the case of a uniformly distributed initial state.
These expressions agreed with the classical opti-
mal LQR results in the high data rate limit and
with known minimum rate results in the low rate
regime. To the best of the authors’ knowledge
they are the first exact characterisation of optimal
data-rate-limited performance in any formulation.
The derivation of analagous formulae for non-
uniform distributions and vector-valued states re-
mains an open problem.

REFERENCES

Baillieul, J. (2001). Feedback designs
in information-based control. In: Stochastic
Theory and Control Proceedings of a Work-
shop held in Lawrence, Kansas (B. Pasik-
Duncan, Ed.). Springer. pp. 35–57.

Brockett, R. W. and D. Liberzon (2000). Quan-
tized feedback stabilization of linear systems.
IEEE Trans. Autom. Contr. 45(7), 1279–89.

Delchamps, D. F. (1990). Stabilizing a linear sys-
tem with quantized state feedback. IEEE
Trans. Autom. Contr. 35, 916–24.

Fagnani, F. and S. Zampieri (2003). Stability anal-
ysis and synthesis for scalar linear systems
with a quantized feedback. IEEE Trans. Au-
tom. Contr. 48(9), 1569–84.

Fagnani, F. and S. Zampieri (2004a). Quan-
tized stabilization of linear systems: com-
plexity versus performance. IEEE Trans. Au-
tom. Contr. 49(9), 1534–48.

Fagnani, F. and S. Zampieri (2004b). Tree struc-
tured vector quantization and quantized con-
trol. Preprint.

Gersh
ti

Ishii,
st
q

Li, K.
fo
(d
4

Liber
e
T

Nair,
w
ta
5

Nair,
ti
sy
3

Nair,
it
fe
ti
in

Peter
ra
ti
c
C

Specia
(2

Tatiko
S
ti
4

Tatiko
c
A
p

Wong
te
c
m
4

Yukse
C
o
A

1120
o, A. and R. M. Gray (1993). Vector Quan-
zation and Signal Compression. Kluwer.
H. and B. A. Francis (2003). Quadratic
abilization of sampled-data systems with
uantization. Automatica 39(10), 1793–1800.
and J. Baillieul (2004). Robust quantization
r digital finite communication bandwidth
fcb) control. IEEE Trans. Autom. Contr.
9(9), 1573–97.
zon, D. (2003). On stabilization of lin-
ar systems with limited information. IEEE
rans. Autom. Contr. 48(2), 304–7.
G. N. and R. J. Evans (2000). Stabilization
ith data-rate-limited feedback: tightest at-
inable bounds. Sys. Contr. Lett. 41(1), 49–

6.
G. N. and R. J. Evans (2003). Exponen-
al stabilisability of finite-dimensional linear
stems with limited data rates. Automatica
9, 585–93.
G. N. and R. J. Evans (2004). Stabilizabil-
y of stochastic linear systems with finite
edback data rates. SIAM Jour. Contr. Op-
m. 43(2), 413–36. Short version published
Proc. 41st IEEE Conf. Dec. Contr., 2002.

sen, I. R. and A. V. Savkin (2001). Multi-
te stabilization of multivariable discrete-
me linear systems via a limited capacity
ommunication channel. In: Proc. 40th IEEE
onf. Dec. Contr.. pp. 304–9.
l Issue on Networked Control Systems
004). IEEE Trans. Autom. Contr.
nda, S., A. Sahai and S. Mitter (2004).

tochastic linear control over a communica-
on channel. IEEE Trans. Autom. Contr.
9(9), 1549–61.
nda, S. and S. Mitter (2000). Control under

ommunication constraints. In: Proc. 38th
nn. Allerton Conf. Comm. Contr. Comp..
p. 182–90.
, W. S. and R. W. Brockett (1999). Sys-
ms with finite communication bandwidth

onstraints II: stabilization with limited infor-
ation feedback. IEEE Trans. Autom. Contr.
4, 1049–53.
l, S., O. C. Imer and T. Basar (2004).
onstrained state estimation and control
ver communication networks. In: Proc. 38th
nn. Conf. Inf. Sci. Syst.


	Welcome Page
	Hub Page
	Program at a Glance
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Girish N. Nair
	Also by Minyi Huang
	Also by Robin J. Evans
	------------------------------

