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Abstract. Feedback control with limited data rates is an emerging area which incorporates
ideas from both control and information theory. A fundamental question it poses is how low the
closed loop data rate can be made before a given dynamical system is impossible to stabilize by any
coding and control law. Analagously to source coding, this defines the smallest error-free data rate
sufficient to achieve “reliable” control, and explicit expressions for it have been derived for linear time-
invariant systems without disturbances. In this paper, the more general case of finite-dimensional
linear systems with process and observation noise is considered, the object being mean square state
stability. By inductive arguments employing the entropy power inequality of information theory, and
a new quantizer error bound, an explicit expression for the infimum stabilizing data rate is derived,
under very mild conditions on the initial state and noise probability distributions.
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1. Introduction. Communications and control have traditionally been areas
with little common ground. For the most part communications theory is concerned
with the reliable transmission of information from one point to another, and is rel-
atively indifferent to its specific purpose or whether it is eventually fed back to the
source. Control theory, in contrast, is concerned mainly with using information in a
feedback loop to achieve some performance objective, and usually assumes that limi-
tations in the communications links are not significant enough to affect performance
drastically.

The reasons usually given for this mutual indifference are firstly, that a com-
munications system is generally used for a broad range of purposes and can rarely
be designed to match a particular objective and, secondly, that to explicitly model
communication limitations would complicate controller synthesis. However, in recent
years emerging applications such as micro-electromechanical systems, mobile tele-
phone power control, and networked industrial control systems have begun to cross
the boundary between these disciplines. In these applications, the aim is to control
a dynamical system consisting of many separate components connected by a digital
communication network. Although the total available capacity in bits per second
may be large, each component is effectively allocated only a small portion. This can
introduce significant quantization errors and delays, due to the low resolution and
finite transmission time of each discrete-valued, digital symbol. Quantization resolu-
tion can be improved at the expense of delay and vice-versa, but nonetheless there
remains an upper bound on the amount of information, in some sense, that may be
exchanged per unit time. Clearly, by designing coders and decoders that are matched
to the dynamical system and controllers, a more economical use of communication
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resources ought to be possible. Conversely, closed-loop performance should improve
by matching the feedback laws to the specific coding and decoding schemes used.

The first step towards gaining a comprehensive understanding of these issues is
to analyze the simplest possible network topology, consisting of one controller and
dynamical system connected by a feedback loop with a given data rate in bits per
unit time. In view of the limited communication resource, a natural question is:
what is the smallest data rate above which there exists a coding and control law that
stabilizes the system? This is analogous to Shannon’s source coding theory, which
seeks to determine the smallest data rate above which a given random process can be
reliably communicated, i.e. with arbitrarily small error, by some coder and decoder
[25, 7]. However, despite this analogy Shannon’s theory has generally not been fruitful
in real-time control systems since its reliance on arbitrarily long block coders entails
arbitrarily long delays. While this can be overcome by recursive coders such as delta
and differential pulse code modulators, stationarity or ergodicity are still assumed
[17]. Although this may be justified in communications, it does not always suit the
unstable dynamics often encountered in control.

In recent years, somewhat more progress on this topic has been made in the control
literature. Beginning with the seminal paper [8] and continuing with [29, 2, 6, 10,
3, 23, 11, 16, 18], various schemes have been proposed, and proven to asymptotically
or practically stabilize linear time-invariant (LTI) systems at sufficiently high data
rates. The first rigorous results on minimum data rates were in [29, 2], where it was
shown that a discretized scalar plant with parameter a was stabilizable iff the data
rate was not less than log2 |a| bits per sampling interval. Similar tight bounds were
subsequently obtained for noiseless autoregressive moving average [20] and and linear
state-space systems [27, 22, 14], using different formulations and techniques. With
regard to stochastic plants, separation principles, causal rate-distortion theorems [28,
5] and the notion of feedback capacity [24] have been introduced.

This paper focuses on finite-dimensional, stochastic linear plants, under very mild
assumptions on the noise and initial state probability distributions. In particular, the
objective is to construct a coding and control scheme which achieves mean square
state stability while consuming as little data rate as possible. The problem is formu-
lated precisely in the next section, and the main result, which specifies the infimum
stabilizing data rate, is stated. Somewhat counter-intuitively, it depends only on the
unstable dynamics of the plant and not on the noise statistics.

The remainder of the paper essentially constitutes the proof. As the presence of
noise makes it difficult to extend the asymptotic quantization approach of [20, 22], a
completely different method is developed here. In section 4, the well-known entropy
power inequality of information theory [7, 9] is used to derive a strict lower bound on
the data rate of any stabilizing, causal coding and control scheme, regardless of struc-
ture. It is shown that as the feedback data rate approaches this bound from above,
the mean square state norms become arbitrarily large. In section 5, a specific, finite-
dimensional scheme is then proposed. By applying a new, finite-level quantizer error
inequality, it is proven to achieve mean square stability at any data rate exceeding
the critical bound.

2. Formulation. First, certain conventions are defined. Vectors are written in
bold-face type, matrices in bold-face upper-case, random variables in upper-case and
their realizations in corresponding lower-case letters. All random variables are as-
sumed to exist on a common probabability space with measure P. The probability
density of random vector X in Euclidean space with respect to (w.r.t.) Lebesgue mea-
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sure λ on the space is denoted by pX, the probability density conditioned on the σ-field
generated by an event A = a by pX|a, expectation by E, and expectation conditioned

on A = a by Ea. The (differential) entropy of X is written H{X} ∆= −E{ln pX(X)},
the conditional entropy of X given A = a as Ha{X}

∆= −Ea{ln pX|A(X)}, and the
average conditional entropy of X given A = a,B = b, and averaged over B, as
Ha{X|B}

∆= −Ea{HA,B{X}}. Sequences {aj}k
j=0 are denoted ãk (defined as the

empty sequence when k < 0), and ‖ · ‖ represents either the Euclidean norm on a real
vector space or the matrix norm induced by it. The d× d identity matrix is written
Id, the m×n null matrix 0m×n, real numbers R, positive reals R+, complex numbers
C, integers Z, positive integers Z+, and non-negative integers W.

Consider the partially-observed, discrete-time, stochastic linear system

xk+1 = Axk + Buk + vk, yk = Cxk + wk, ∀k ∈ W,(2.1)

with state xk and process noise vk ∈ Rn, control signal uk ∈ Rm, and measurement
yk and measurement noise wk ∈ Rp. It is assumed that
A1 (A,B) is reachable and (C,A), observable;
A2 x0,vk, and wk are realizations of random variables X0,Vk, and Wk respectively,

where X0,Vk,Wj are mutually independent, ∀k, j ∈ W;
A3 ∃ε > 0 such that X0,Vk,Wk have uniformly bounded (2+ε)th absolute moments

over k ∈ W;
A4 the probability distribution of each random variable Vk is absolutely continuous

with respect to Lebesgue measure λ on Rn;
A5 infk∈W H{Vu

k} > −∞, where Vu
k ∈ Rf×n is the process noise seen by the f ≥ 1

unstable eigenvectors of A; i.e. the process noise injects a minimum amount
of uncertainty into the unstable dynamics.

Suppose that the sensor producing the measurements is connected to the con-
troller via a digital channel, onto which one symbol sk from a finite alphabet Sk,
of possibly time-varying size µk ≥ 1, is transmitted during the (k + 1)th sampling
interval. It is assumed that each transmitted symbol is received without error, as in
Shannon source coding, after a delay of d intervals. The (asymptotic average) data
rate of the channel may then be defined as

R
∆= lim inf

t→∞

1
t

t−1∑
k=0

log2 µk.(2.2)

This is a more general definition than in [21, 22], in which the alphabet size µk is
constant. In particular, it permits the alphabet Sk to vary periodically. For technical
reasons, it is also assumed that µk/k → 0 as k →∞.

As the symbols in the channel are discrete-valued but the plant measurements
are continuous-valued, analog-to-digital conversion, or coding, is required. In practice
constraints such as complexity and finite memory may be important but, in the spirit
of source coding, such limitations will be largely ignored here to concentrate on the
communication aspect of the problem. Each transmitted symbol may thus depend on
all past and present measurements and past symbols,

sk = γk(ỹk, s̃k−1), ∀k ∈ W,(2.3)

where γk : Rp×(k+1) × S̃k−1 → Sk is the coder mapping at time k. Note in particular
that sk does not necessarily correspond to a quantized version of the latest measure-
ment alone. At time k the controller has the symbols s0, . . . , sk−d available to it and
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can then generate a control signal of the general form

uk = δk(s̃k−d), ∀k ∈ W,(2.4)

where δk : S̃k−d → Rm is the controller mapping at time k. As s̃k is the empty
sequence {} when k < 0, the first d control signals u0, . . . ,ud−1 are just preset inputs.
Similarly, in the coder equation (2.3) at time k = 0, s0 is a function only of y0.

Now, define the coder-controller as the triple of alphabet, coder and controller
mapping sequences (S̃∞, γ̃∞, δ̃∞). The objective here is to construct a coder-controller
which stabilizes the plant in the mean square sense

sup
k∈W

E‖Xk‖2 <∞,(2.5)

while using as small a data rate as possible. The main result of this paper is now
stated:

Theorem 2.1. Given assumptions A1–A5, any coder-controller which stabilizes
the plant (2.1) in the mean square sense (2.5) must have a data rate R (2.2) strictly
satisfying

R >
∑
|ηj |≥1

log2 |ηj | =: H,(2.6)

where η1, . . . , ηn are the open-loop eigenvalues. As R approaches this bound from
above, the supremum mean square state norm (2.5) approaches ∞.

This inequality is also tight. I.e. for any number R′ > H, a mean-square-
stabilizing coder-controller at data rate R ≤ R′ can be constructed, which furthermore
is finite-dimensional with periodic alphabet.

This result assumes nothing about the coding and control laws but causality, and
imposes only mild requirements on the noise distributions. It thus draws a fundamen-
tal line of demarcation between what is and is not achievable with stochastic linear
systems when communication rates are limited. In this sense, H plays a role similar
to source entropy in errorless Shannon source coding, and can be taken as a measure
of the rate at which information is generated by an unstable, stochastic linear plant.
Hence (2.6) states that to achieve stability, the channel must transport data as fast
as it is produced.

A more physical insight can be gained by rewriting the inequality above as 2R >∏
|ηj |≥1 |ηj |. The right-hand side (RHS) is simply the factor by which a volume in the

unstable subspace increases at each time step due to the plant dynamics, while the
left-hand side (LHS) is the asymptotic average number of disjoint regions into which
the coder can partition it. In other words, the system is stabilizable if and only if the
dynamical increase in “uncertainty volume” due to unstable dynamics is outweighed
by the partitioning induced by the coder.

Note also that the data rate bound above is completely independent of the noise
distributions and link delay, a consequence of the weak notion of stability used here.
Increasing the noise variances (or delay) would obviously increase the the mean square
state norms, but as long as (2.6) is satisfied it remains possible to keep the state
uniformly bounded in a mean square sense. The reason for this is that the noise
increases state uncertainty volumes in an additive rather than multiplicative fashion
but is averaged out exponentially, in effect, by the coder. However, as the data rate
approaches the critical limit, this exponential averaging becomes increasingly weak,
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leading to an unbounded increase in uncertainty volumes and hence mean square
states.

Finally, it is remarked that in the problem formulation above there is no explicit
communication constraint between the controller and actuator. This is reasonable if
they are co-located, but even otherwise the formulation above is applicable, since from
a plant output-to-input perspective the location of the controller is purely nominal.
The symbols that would be transmitted by it over an additional digital link to the
actuator would have to be converted once again into inputs, making intermediate
calculations redundant. In other words the “bottle-neck” link determines the effective
data rate, as expected, and Theorem 2.1 still applies. This is stated below more
precisely:

Proposition 2.2. Suppose that two cascaded digital links connect the sensor to
the actuator, with associated mappings

s1k = γ1
k(ỹk, s̃

1
k−1) ∈ S1

k , (link-1 coder)(2.7)
s2k = γ2

k(s̃1k−d1
) ∈ S2

k , (link-2 coder)(2.8)

uk = δ2k(s̃2k−d2
) ∈ Rm. (actuator)(2.9)

Let R1 be the data rate (2.2) of the first link and R2 that of the second. Then this
coding and control scheme can be expressed as a single-link coder-controller of the
form (2.3)–(2.4), with delay d = d1 + d2 and data rate R = min{R1, R2}.

Conversely, any single-link coder-controller with periodic alphabet, data rate R,
and delay d can always be expressed as a two-link coding and control scheme of the
form above, with periodic alphabet sizes, link data rates both equal to R, and arbitrary
delays d1, d2 ∈ W such that d1 + d2 = d.

Proof: See Appendix A.
The remainder of this paper is devoted to proving Theorem 2.1, in three stages.

In the next section, the system dynamics are transformed into a simpler form. In
section 4, the strict necessity of (2.6) is established via an inductive argument us-
ing the entropy power inequality of information theory [9]. Finally, its sufficiency is
demonstrated in section 5 by constructing coder-controller, and using a new quantizer
error result to recursively bound the mean square state norms.

3. Real Jordan Form. Before proceeding, it is convenient to transform the
system so as to decouple its dynamical modes. The obvious approach of putting the
matrix A into Jordan canonical form generally requires a transformation matrix with
complex elements. As this would complicate the analysis somewhat, the real Jordan
canonical form [15] is used here.

Let λ1, . . . , λb be the distinct eigenvalues of A ∈ Rn×n, ordered by non-increasing
magnitude with conjugates excluded, and let the algebraic multiplicity of each λi be
mi. The real Jordan canonical form J then has the block diagonal structure

J ≡ diag(J1, . . . ,Jb) ∈ Rn×n,(3.1)

where the block Ji ∈ Rni×ni with

ni
∆=
{
mi if λi ∈ R
2mi otherwise .(3.2)

More detail regarding the structure of each block can be found in e.g. [15](pp. 150–3)
or [26]. For the purposes of this paper, the most important fact is that each block Ji
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is similar to the block-diagonal matrix of all standard Jordan blocks corresponding
to λi, λ∗i . Hence Ji has either exactly one distinct eigenvalue λi or a pair of complex
conjugate eigenvalues λi, λ

∗
i , each with multiplicity mi.

The real Jordan canonical form is related to the matrix A via a real similarity
matrix T ∈ Rn×n such that T−1JT = A. Defining the transformed state

x́k
∆= Txk, ∀k ∈ W,(3.3)

the system equations (2.1) can then be written

x́k+1 = Jx́k + TBuk + Tvk ∈ Rn, yk
∆= CT−1x́k + wk ∈ Rp, ∀k ∈ W.(3.4)

By partitioning the transformed state vector into the vectors x́(1)
k , . . . , x́(b)

k correspond-
ing to each subsystem, the dynamical equation above can be rewritten more explicitly
as

x́(i)
k+1 = Jix́

(i)
k + (TBuk)(i) + (Tvk)(i) ∈ Rdi , ∀k ∈ W, i ∈ [1, . . . , b],(3.5)

where (·)(i) denotes that portion of the vector argument that feeds into the ith sub-
system.

The original system has thus been decomposed into b real subsystems, with dy-
namics characterized by either a single eigenvalue or a pair of complex conjugate
eigenvalues, possibly repeated. As T is invertible, it follows that the problems of
stabilizing (3.4) and (2.1) are equivalent.

4. Proof of Necessity. The first step towards proving Theorem 2.1 is to estab-
lish the necessity of (2.6) for mean square stability. In order to do so, a recursive lower
bound for E‖X́k‖2 shall be sought which is independent of the coder-controller, and
easier to analyze in terms of dynamics and data rate. More precisely, this bound will
be sought for the state vector corresponding to subsystems with eigenvalue |λi| ≥ 1.

If a strict inequality in (2.6) was not desired, a lower bound could quickly be
obtained by observing that since the noise terms are independent, the mean square
state norm cannot increase if they are all suppressed. In other words, the mean square
state norm is bounded below by that of the plant with a random initial state but no
noise. This is precisely the situation explored in [22] and, by a slight modification of
the quantization argument used there, the nonstrict version of (2.6) is easily seen to
be necessary for mean square stability.

However, this reduction to a noiseless system does not reveal that stability is in
fact impossible at a data rate equal to the critical bound H. More importantly, it
states nothing about behaviour near H, in particular the fact that as the data rate
approaches it the supremum mean square state norm (2.5) becomes arbitrarily large,
drastically degrading performance, regardless of the coder-controllers used. This is
made apparent by the entropy-based analysis below.

Denote the index set of unstable subsystems and their total dimension respectively
by

U ∆= {i : |λi| ≥ 1}, f
∆=
∑
i∈U

ni(4.1)

and stack the unstable subsystem states x́(i)
k , i ∈ U , to construct

xu
k :=

[
x́(1)T

k · · · x́(|U|)T
k

]T
≡ Rx́k ∈ Rf , ∀k ∈ W,

where R ∆=
[
If 0f×(n−f)

]
∈ Rf×n.(4.2)
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Now, suppose that the coder-controller (S̃∞, γ̃∞, δ̃∞) stabilizes (2.1), and hence (3.4),
in mean square state norm. As ‖xu

k‖ ≤ ‖x́k‖, it follows that {Xu
k}k∈W is also bounded

in mean square norm. Following the usual definition of entropy power (see, e.g. [9]),
let the conditional entropy power of a random variable X ∈ Rf given an event A = a
be

Na{X}
∆= (2πe)−1e2Ha{X}/f .(4.3)

In connexion with the uncertainty volume interpretation of Theorem 2.1, (NaX)f/2

can be regarded as the volume of the effective support set of pX|a. Furthermore,

Na{X} ≤ e1/f−1Ea‖X‖2,(4.4)

with equality if and only if X is symmetric Gaussian with zero mean when conditioned
on A = a (see Appendix B). This is essentially a statement of the well-known entropy-
maximizing property of Gaussian distributions.

By analogy with the notation for average conditional entropy, denote the average
conditional entropy power of X given A = a, averaged over A, by

N{X|A} ∆= E {NA{X}} .(4.5)

Setting X = Xu
k and A = S̃k−d−1 the random variable associated with the symbol

sequence s̃k−d−1,

nk := N{Xu
k|S̃k−d−1} = E

{
NS̃k−d−1

{Xu
k}
}
,

≤ e1/f−1E
{

ES̃k−d−1
‖Xu

k‖2
}

= e1/f−1E‖Xu
k‖2, ∀k ∈ W,(4.6)

so that {nk}k∈W must also be bounded. Note here that nk can be interpreted as the
average unstable subspace uncertainty volume given the symbol sequence s̃k−d−1.

Another important property of conditional entropy power is its super-additivity
for summed independent random variables, i.e.

Na{X + Y} ≥ Na{X}+ Na{Y},(4.7)

where X,Y ∈ Rf are mutually independent when conditioned on an event A = a
(see, e.g. [7, 9]). By means of a recursive argument that employs this so-called entropy
power inequality, it shall be shown that any stabilizing data rate must satisfy (2.6)
strictly. First, observe from (4.2) that

RJ = JuR, where Ju ∆= diag(J1, . . . ,J|U|) ∈ Rf×f .(4.8)

Left-multiplying (3.4) by R and using (2.4), the dynamical equation for xu
k is then

xu
k+1 = Juxu

k + RTvk + RTBδk(s̃k−d).(4.9)

⇒ NS̃k−d
{Xu

k+1} = NS̃k−d
{JuXu

k + RTVk + RTBδk(S̃k−d)},
= NS̃k−d

{JuXu
k + RTVk},(4.10)

≥ NS̃k−d
{JuXu

k}+ NS̃k−d
{RTVk} = NS̃k−d

{JuXu
k}+ N{RTVk},(4.11)

= |detJu|2/fNS̃k−d
{Xu

k}+ N{RTVk}, ∀k ∈ W.(4.12)
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The equality in (4.10) is due to the property that Ha{X+g(A)} = HaX for any func-
tion g (translation invariance). The inequality (4.11) uses the mutual independence
of Vk and Xk, S̃k−d, the latter both being determined by X0,Vj ,Wj , j ≤ k − 1, to
apply the entropy power inequality (4.7) and finally (4.12) expresses the effect of an
invertible linear transformation on differential entropy; see corollary 9.6.4 in [7].

Now, denote the conditional entropy power of X given A = a, S = s and averaged
only over S by Na{X|S}

∆= Ea{NA,S{X}}. The next step utilizes the result below.
Lemma 4.1. Let X ∈ Rf and S ∈ S a finite alphabet be random variables

conditioned on an event A = a. Then

Na{X|S} ≥ |S|−2/fNa{X}.(4.13)

Proof: See Appendix C.
As (Na{X|S})f/2 can be viewed as the average uncertainty volume of X given S

conditioned on A = a, this inequality states that knowledge of a correlated random
variable S ∈ S with |S| distinct values reduces the average uncertainty volume of X
by at most a factor of |S|. In a sense, this is an extension of deterministic volume
partitioning to a stochastic setting.

Setting X = Xu
k, A = S̃k−d−1, S = Sk−d, and averaging (4.12),

nk+1 ≡ E
{

NS̃k−d
{Xu

k+1}
}
,

≥ |detJu|2/fE
{

ES̃k−d−1

{
NS̃k−d

{Xu
k}
}}

+ E {N{RTVk}} ,

= |detJu|2/fE
{

NS̃k−d−1
{Xu

k|Sk−d}
}

+ N{RTVk},

≥
∣∣∣∣ detJu

|Sk−d|

∣∣∣∣2/f

E
{

NS̃k−d−1
{Xu

k}
}

+ N{RTVk},

≡
∣∣∣∣detJu

µk−d

∣∣∣∣2/f

nk + N{RTVk}, ∀k ∈ W.(4.14)

By assumption A5 in §2, ∃θ ∈ R s.t. H{RTVj} ≥ θ, ∀j ∈ W. Hence

N{RTVj} ≥ (2π)−1e2θ/f−1 =: β > 0, ∀j ∈ W,(4.15)

by definition (4.3). Substituting this into (4.14) and for convenience setting µi = 1
when i < 0,

nk+1 ≥
∣∣∣∣detJu

µk−d

∣∣∣∣2/f

nk + β ≥ β
k∑

j=0

k∏
i=j+1

∣∣∣∣detJu

µi−d

∣∣∣∣2/f

,

≡ β
k∑

j=0

hk

hj
, where hk :=

k∏
i=0

∣∣∣∣detJu

µi−d

∣∣∣∣2/f

.

⇒ ∞ > α
∆=

1
β

sup
k∈Z+

nk ≥
k∑

j=0

hk

hj
⇔ α− 1

hk
≥

k−1∑
j=0

1
hj
, ∀k ∈ Z+.(4.16)

As hk > 0, α > 1. By upward induction on k it can be verified that

hk ≤ α(1− 1/α)kh0, ∀k ∈ Z+.
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⇒ 0 > log2(1− 1/α) ≥ 1
k

log2

(
hk

α

)
,

=
2(k + 1)
fk

log2 |detJu| − 2
fk

k∑
i=0

log2 µi−d −
log2 α

k
, ∀k ∈ Z+,

≥ 2
f

log2 |detJu| − lim inf
k→∞

[
2
fk

k∑
i=0

log2 µi−d −
2 log2 |detJu|

fk
+

log2 α

k

]
,

≡ (2/f) (log2 |detJu| −R) ≡ (2/f)(H −R).(4.17)

This proves the strict necessity of (2.6). Furthermore, after rearranging the inequali-
ties above and using (4.6),

sup
k∈Z+

E‖Xu
k‖2 ≥ e1−1/f sup

k∈Z+

nk = e1−1/fβα ≥ e1−1/fβ

1− 2−2(R−H)/f
.(4.18)

As β (4.15) depends only on process noise statistics, this is a universal lower bound
on the supremum mean square state of all coder-controllers with data rate R. Hence
as R↘ H, the supremum mean square state becomes arbitrarily large.

Note that the argument above can be adapted to deal with stability in the sense of
uniform boundedness with bounded disturbances. The idea is to replace the average
conditional entropy power nk with the maximum state uncertainty volume given past
symbols and then use the deterministic analogue of the entropy power inequality, the
Brunn-Minkowski inequality (see, e.g. [7]). This states that, given two λ-measurable
regions X,Y ⊂ Rf , the volume of the set sum X+Y

∆= {x+y|x ∈ X, y ∈ Y }, satisfies
λ(X+Y )1/f ≥ λ(X)1/f +λ(Y )1/f . It then follows that (2.6) is also strictly necessary
for uniformly bounded stabilizability.

5. Achievability of Data Rate Bound. The final step in proving Theorem
2.1 is to establish that (2.6) is attainable, i.e. that the system (2.1) can in principle
be stabilized at any data rate arbitarily close to but greater than the critical bound
H. The general, entropy-based argument of the preceding section does not offer
many clues as to how to prove this, so in this section a completely different approach
is taken. Based on a semi-heuristic line of reasoning, a finite-dimensional coder-
controller with periodically-varying coding alphabet is constructed in §5.2. By means
of a new quantizer bound, it is then demonstrated in §5.3 that it achieves means
square stability at data rates arbitrarily close to H.

The chief complications in the design and analysis of this scheme arise from the
unbounded support of the noise terms. With uniformly bounded noise, any coding and
control law which achieves asymptotic contraction without disturbances, in the sense
that ∃γ ∈ (0, 1) such that for all sufficiently large k, ‖xk‖ < γr, ∀r > 0, ‖x0‖ ≤ r,
can easily be modified to achieve uniformly bounded stability. The idea is to recast
such a law as an equivalent open-loop scheme which generates symbols according to
the initial state alone. Assuming no noise, ∃ a sufficiently large τ ∈ Z+ such that
any state with norm ≤ r will after τ steps have norm ≤ γr. The effect of bounded
disturbances then boosts the radius of this worst-case region by an additive constant
c · τ , so the open-loop scheme can then be reapplied with rnew = γr + cτ . As the
recursion r 7→ γr + cτ is stable, a uniform bound on the state at times 0, τ, 2τ, . . . is
guaranteed, and trivially leads to a bound over all integer times.

The situation is quite different when dealing with unbounded stochastic dis-
turbances, because of the impossibility of a coder-controller which uniformly con-



10 G. N. NAIR AND R. J. EVANS

tracts mean square norms in an analogous sense. Briefly, the reason for this is that
even though a distribution may have finite second absolute moment, the tail integral∫
‖x‖≥t

‖x‖2dPX(x) can approach 0 arbitrarily slowly with large t. In §5.3 this diffi-
culty is overcome by dealing with a functional Mε (5.9) instead of the mean square
state norm. Before proceeding to the construction and analysis of the stabilizing
coder-controller, several structural issues are first discussed below.

5.1. Structural Issues. In order to make the analysis tractable, a certain
amount of structure will need to be imposed on the general coder-controller equa-
tions (2.3)–(2.4). It is known (see, e.g. [28]) that for a linear, Gauss-Markov system
under a mean quadratic cost, there exist optimal coding and control schemes with the
following form:

1. Prior to coding, a Kalman filter is applied to recursively calculate the linear
minimum variance prediction x̄k+d|k of x́k+d given the measurement and control se-
quences ỹk, ũk+d−1. Note that the control signals are not observed directly by the
coder, but inferred from knowledge of the symbol sequence s̃k−1 and the controller
mappings.

2. Based on the past symbol sequence s̃k−1, the latest prediction x̄k+d is recur-
sively (and possibly non-uniformly) quantized to yield a coded estimate

x̂k+d ≡ Qk(x̄k+d|k, s̃k−1) ≡ $k(sk)

with µk possible values. The index sk of the selected quantizer point $k(sk) is
transmitted.

3. Upon receiving sk at time k+d, the controller uses it and the previous symbols
to regenerate x̂k+d and applies a certainty-equivalent linear control law uk+d ≡ Lx̂k+d.
Although no Gaussian assumptions are made in this paper, it is convenient to use a
modified version of this tri-stage structure as a basis to construct a stabilizing scheme.

Considering the first stage, recall that the linear minimum variance predictions
satisfy the separation principle

E‖X́k‖2 = E‖X́k − X̄k|k−d‖2 + E‖X̄k|k−d‖2, ∀k ∈ W,

even with non-Gaussian noise. The first term on the RHS is uniformly bounded, by
the observability and (2 + ε)th moment assumptions A1 and A3 in section 2, and
independent of the control law (see e.g. [1]). Hence the mean square stability of the
partially observed system (3.4) is equivalent to that of the fully observed filter process.
Furthermore, this process satisfies a recursive equation of the same form as (3.4), i.e.

x̄k+1+d|k+1 = Jx̄k+d|k + TBuk + zk+1, ∀k ∈ W,(5.1)

where, by assumption A3, the (2+ε)th absolute moments of the innovation Zk+1 can
be shown to be uniformly bounded over k ∈ W.

The second stage above is not quite so straightforward, since the optimal quantizer
Qk(·, ·) is generally time-varying and stores all past symbols. As the objective here is
not optimality but stability, it is natural to investigate if simpler quantizer structures
will suffice. One possibility is a static, memoryless coder,

x̂k+d ≡ Q(x̄k+d|k) ≡ $(sk) ∈ Rn,(5.2)

where Q is a fixed quantizer with points $(0), $(1), . . . , $(µ − 1). Another option
is a finite-state, predictive quantizer (see, e.g. [12]), in which the latest coded state
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estimate is stored and the prediction error is recursively coded according to a finite-
valued internal variable ιk ∈ I,

Q
(
x̄k+d|k − (J + TBL)x̂k−1+d|k−1, ιk

)
≡ $(sk),(5.3)

x̂k+d ≡ (J + TBL)x̂k−1+d +$(sk),(5.4)
ιk+1 ≡ g(ιk, sk),

where L is a certainty-equivalent control gain such that J + TBL is stable. The
symbol sk, corresponding to the index of the selected quantizer point, is then used
to update the finite state, (ιk, sk) 7→ ιk+1. Examples are differential pulse code and
delta modulation in speech processing.

For noise distributions with compact support, it can be shown that either type of
coder can achieve stability. It may seem as if this should also hold in the case of infinite
support, since if stability has been achieved then the states and prediction errors
remain with high probability in some bounded region, which could then be quantized
without memory. However, this somewhat circular argument fails drastically if the
plant is strictly unstable and either the initial state or a process noise term has infinite
support in all directions:

Proposition 5.1. Suppose that the plant (2.1) has at least one open-loop eigen-
value with magnitude strictly greater than 1, and that, for any non-zero h ∈ Rn,
either

P{hTX0 > θ} > 0, ∀θ ∈ R, or ∃t ∈ W s.t. P{hTVt > θ} > 0, ∀θ ∈ R.(5.5)

Then for any static memoryless coder (5.2) or finite-state predictive quantizer (5.3)–
(5.4), the rth absolute state moments are unbounded with time, ∀r > 0, regardless of
the number of quantization points.

Proof: See Appendix D.
This distinguishes the stochastic, communication-limited stabilization problem

from the deterministic, bounded disturbance version, for which either memoryless or
finite-state quantization suffice. The reason for the difference is basically that the
finite range of the quantizer causes controller saturation. If the initial state or process
noise has infinite support, there is consequently a finite chance that at some time k,
the propagated state Axk is beyond reach of the control signal. The unstable plant
dynamics then amplify this short-fall, causing the same phenomenon to occur with
increasing probability at subsequent times, and inevitably leading to instability.

An obvious solution is to use an adaptive quantizer with possibly unbounded
range, thereby allowing the control signal to “catch up” with the state. One simple
approach is to use a predictive scheme with a scaling factor lk > 0 which is recursively
adjusted according to the symbols transmitted:

Q

(
x̄k+d|k − (J + TBL)x̂k−1+d|k−1

lk

)
≡ $(sk),

x̂k+d ≡ (J + TBL)x̂k−1+d + lk$(sk),
lk+1 ≡ g(lk, sk) ∈ R+.

This approach, similar to [6, 19], is adopted in §5.2.
Another characteristic of the coder-controller constructed here is that its symbol

alphabet varies periodically with time, a point of departure from the time-invariant,
constant data rate schemes in [3] and elsewhere. If the symbol alphabet was fixed then
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the data rate in bits/interval could only take the discrete values log2 µ, µ = 1, 2, . . .,
making it impossible in general to attain data rates arbitrarily close to H. In [3] this
is not an issue, since the underlying plant is in continuous-time and the corresponding
data rate bound, in bits/second, can be approached by increasing the sampling period.
In the scenario considered in this paper, it is assumed that the sampling interval is not
adjustable. However, by using a symbol alphabet which varies periodically, average
data rates as close as desired to H can be achieved with sufficiently large cycle lengths,
similar to the way that irrationals are approximated by rationals.

A periodic alphabet is also suggested by a consideration of the plant dynamics.
By the block structure of the real Jordan form J, the filter process (5.1) consists of b
subsystems with decoupled dynamical matrices Ji ∈ Rni×ni , i = 1, . . . , b. The speed
at which the ith subsystem grows in any direction is determined by the eigenvalue
λi and, intuitively, a larger |λi| necessitates using a higher data rate. A natural
approach is to cycle through the subsystems and encode each at a rate determined by
the corresponding level of instability.

Notwithstanding the discussion above, the implementation of time-varying alpha-
bets can be difficult. In the coder-controller presented below, the alphabet size is in
fact kept constant for the initial part of each cycle and no data is transmitted for the
remainder. The subsystems are then allocated different effective data rates by means
of a time-sharing protocol. More explicitly, time is divided into cycles of sufficiently
large duration τ ∈ Z+ and within each cycle, the components of the unstable sub-
system states x̄(i)

k ∈ Rni are allocated transmission slots of fixed length τi, roughly
proportional to log2 |λi|. During each slot a fixed alphabet of size µk ≡ µ ≥ 2 is used
to quantize the corresponding subsystem state component with a total of µτi levels.
Towards the end of each cycle, there is then a quiet slot during which no information
is transmitted, i.e. µk = 1.

5.2. Stabilizing Coder-Controller. The coder-controller to be applied is de-
fined below and analyzed in subsection 5.3. First however, the static quantizer which
is its basis is constructed, and a key lemma which stochastically bounds the quantizer
errors is presented.

5.2.1. Quantizer. Recall that the floating point representation of a number
x ≥ 1 can be generated recursively by means of the following algorithm:

1. At iteration i, let x ∈ Ji, where J0 = [1,∞).
2. At iteration i+ 1, if Ji was the semi-infinite interval [10i,∞) then partition

it into 9 contiguous, disjoint subintervals of length 10i and 1 semi-infinite interval
[10i+1,∞). If Ji was bounded however, then partition it into 10 equally long subin-
tervals. In both cases set Ji+1 to the subinterval containing x.

3. Repeat step 2 until i = some predefined ν ≥ 1.
4. Approximate x by the lower limit of Jν .

At termination, each interval [10i−1, 10i), i = 1, . . . , ν, has been partitioned into
9 × 10ν−i subintervals of equal length, and each x in it approximated as a floating
point number with ν − i significant figures. Including the semi-infinite ‘overload’
subinterval [10ν ,∞), there are 10ν subintervals in total and so this algorithm can be
viewed as a non-uniform quantization of x ≥ 1 with 10ν points.

The scalar quantizer which underpins the coder-controller constructed here is
basically an extension of this floating-point scheme to x ∈ R, with a base which may
be non-decimal. First, select % > 1 and let

ri
∆= %i−1, i ∈ Z+.(5.6)
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Then select a base µ ≥ 2 and for any integer ν ≥ 2 generate µν disjoint, exhaustive
intervals symmetrically about the origin by

(i) partitioning [−r1, r1] = [−1, 1] into (µ2−2)µν−2 intervals of length 2/[(µ2−
2)µν−2],

(ii) partitioning (ri−1, ri] and [−ri,−ri−1) each into (µ − 1)µν−i intervals of
length (%i−1 − %i−2)/[(µ− 1)µν−i], ∀i ∈ [2, 3, . . . , ν],

(iii) leaving (rν ,∞) and (−∞,−rν) as the right- and left-most intervals.
In general, there are precisely (µ2 − 2)µν−2 + 2 +

∑
2≤i≤ν 2(µ − 1)µν−i = µν

intervals. Label them I(0), I(1), . . . , I(µν − 1), from left- to right-most, and ∀x ∈ R
let

κν(ω) ∆=

 half-length of I(ω) if 1 ≤ ω ≤ µν − 2,
0.5(1− 1/µ)−1(rν+1 − rν) if ω = µν − 1,
−0.5(1− 1/µ)−1(rν+1 − rν) if ω = 0.

,(5.7)

qν(x) := $ν(ω) :=

 midpoint of I(ω) if 1 ≤ ω ≤ µν − 2,
rν + κν(ω) if ω = µν − 1,
−rν − κν(ω) if ω = 0.

 if x ∈ I(ω),(5.8)

The precise form of the equations above is immaterial, some of the constants
being selected solely to simplify subsequent analysis. Observe that like the floating
point quantizer, the intervals of qν+1 can be generated recursively by partitioning
each interval of qν into µ subintervals. Furthermore, as ν → ∞ the range [−rν , rν ]
covered by finite I’s becomes unbounded, and at the same time any number x is
eventually captured in an interval with length → 0. Both these competing properties
are necessary for the quantization error of a random variable with infinite support to
approach zero pointwise as ν increases.

However, to show the attainability of (2.6) convergence in a stronger sense will
be required; in particular, the mean square quantization error should diminish like
the inverse square of the number of levels, µ−2ν . Guaranteeing this for fat-tailed
distributions is the real motivation for the exponential form of (5.6). If the distribution
being quantized had exponentially-decaying tails, then it can be shown that (5.6) leads
to a waste of quantizer levels on regions of very low probability and, consequently,
a shortage of levels in high-probability regions. However, as the tails may decay
according to a power law, a sufficiently large % ensures that both the low- and high-
probability mean square error contributions die off like µ−2ν .

In fact, a slightly stronger result can be proven. Before stating it formally, for
any random variable L ∈ R+ and random vector X define the functional

Mε{X|L} := E{L2}+ E{‖X‖2+εL−ε}.(5.9)

This cannot be smaller than the mean square norm of X, since

E‖X‖2 = E
{
‖X‖2 [χ(‖X‖ ≤ L) + χ(‖X‖ > L)]

}
,

≤ E{L2}+ E
{
‖X‖2(‖X‖/L)εχ(‖X‖ > L)

}
,

≤ E{L2}+ E
{
‖X‖2+εL−ε

}
≡ Mε{X|L},(5.10)

where χ is the usual indicator function. The mean square quantizer errors generated
by qν can then be bounded as follows:

Lemma 5.2. Let X ∈ R, L > 0 be random variables with E|X|2+ε <∞ for some
ε > 0. If the quantizer parameter % of (5.6) and the base µ ∈ [2, 3, . . .) are selected so
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that % > µ2/ε, then the quantizer errors X − Lqν(X/L) satisfy

Mε

{
X − Lqν

(
X

L

)∣∣∣∣Lκν(Ω)
}
≤ ζ

µ2ν
Mε{X|L}, ∀ν ∈ [2, 3, . . .)(5.11)

where qν , κν are defined in (5.8)–(5.7), Ω ∈ [0, 1, . . . µν−1] is the index of the quantizer
level qν(X/L), and ζ > 0 is determined only by ε, µ, and %.

Proof: See Appendix E.
By (5.10), the LHS exceeds the mean square quantizer error E|X − Lqν(X/L)|2,

so this result upper-bounds the latter and guarantees that it decreases as fast as the
square of the number of quantizer levels. The condition % > µ2/ε is crucial here, as it
relates the speed at which the quantizer range increases with ν to the fatness of the
distribution tails, and thereby ensures that the contribution of the overload regions
decays faster than µ−2ν , for any fixed integer µ ≥ 2.

However, the real utility of this lemma lies in the appearance of Mε on both sides,
together with the independence of the constant ζ of the distribution of X. These two
facts permit (5.11) to be used recursively when proving coder-controller stability in
subsection 5.3. In contrast, a similar inequality relating the mean square norms of
the error and X, via a density-independent factor decaying like the number of levels
squared, is impossible.1 What can be done instead is to upper-bound the mean square
error by some higher moment of X as in Lemma 6.6 of [13], an approach which does
not permit recursive application.

5.2.2. Time-Sharing Protocol and Coder. The quantizer above will now
be used to construct a coder-controller. The measurements are first passed through
a Kalman filter to generate a fully-observed process of the form (5.1). In order to
simplify the analysis, and reduce subscript clutter, a non-predictive filter with output
x̄k := x̄k|k is used. As discussed in §5.1, its mean-square stability is equivalent to that
of the original system (2.1), and its innovations zk, k ∈ Z+, are uniformly bounded
in (2 + ε)th absolute moment.

Divide times k ∈ W into cycles [jτ, . . . , (j + 1)τ − 1], j ∈ W, of uniform integer
duration τ ∈ Z+. Let R′ be any given number greater than H (2.6), and select
any integer µ ≥ 2R′

. With U denoting the index set of unstable subsystems (4.1),
subdivide each cycle into f transmission slots of duration τi, for each scalar component
of x̄(i)

jτ ∈ Rni , followed by a quiet slot of duration τ −
∑

i∈U niτi, where

τi
∆= bτ logµ(ξ|λi|)c+ 1, ∀i ∈ U ,(5.12)

with b·c denoting rounding down. If the parameter ξ is chosen to satisfy

0 < f log2 ξ < R′ −
∑
i∈U

ni log2 |λi| ≡ R′ −
∑
|ηl|≥1

log2 |ηl|,(5.13)

then the choice of transmission slot durations (5.12) is feasible, since

∑
i∈U

niτi ≤
∑
i∈U

ni

(
τ

log2(ξ|λi|)
log2 µ

+ 1
)
≤ τ

∑
i∈U ni log2 |λi|+ f log2 ξ

R′
+ f.(5.14)

1The reason for this is essentially that even if pX has a finite second moment, |x|2pX(x) may
decay so slowly with large x that the overload regions dominate the mean square error, making it
decrease slower than the inverse square number of levels.
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As the coefficient of τ is less than unity by (5.13), the sum of transmission slot
durations is less than any sufficiently large cycle length τ .

Let the symbol alphabet Sk = Zµ during transmission slots, and = {0} during the
quiet slot. Then by reasoning similar to the above, the asymptotic average data rate
R of this periodic alphabet, equal to the average data rate over one cycle, satisfies

R =
1
τ

∑
i∈U

niτi log2 µ ≤
log2 µ

τ

∑
i∈U

ni

(
τ

log2(ξ|λi|)
log2 µ

+ 1
)
,

=
∑
i∈U

ni log2 |λi|+ f log2 ξ +
f log2 µ

τ
< R′,

for all sufficiently large τ . As R′ is any number exceeding H, this confirms that the
data rate of this protocol can be made arbitrarily close to H, leaving aside for now
the question of stability.

Just before the start of a cycle at time k = jτ , let lj ∈ R+ be the adaptive
quantizer scaling factor discussed in §5.1, and x̂jτ ∈ Rn be an estimate of x̄jτ internal

to the coder. The coder state is then defined as ψj
∆= (x̂jτ , lj). Indexing the scalar

components of vectors ∈ Rni by an additional superscript h ∈ [1, . . . , ni], at the start
of the transmission slot for x̄(i,h)

jτ let it be scaled and quantized via

$τi
(ω(i,h)

j ) ≡ qτi
([x̄(i,h)

jτ − x̂
(i,h)
jτ ]/lj) ∀h ∈ [1, . . . , ni],(5.15)

where $ν and qν are defined in (5.8). The index ω(i,h)
j ∈ [0, . . . , µτ −1] of the selected

quantizer level is then expanded as τi base-µ digits and transmitted. After this has
been done for all unstable state components, the coder state is updated via

x̂(j+1)τ = Jτ [x̂jτ + lj$(ωj)] +
(j+1)τ−1∑

k=jτ

J(j+1)τ−1−kTBLx̂k,(5.16)

where x̂k+1 = (J + TBL)x̂k, ∀k ∈ [jτ, . . . , jτ + τ − 2], x̂0 = 0,(5.17)

lj+1 = max
i∈U,h∈[1,...,ni]

{
σ, lj |λi|τκτi

(
ω

(i,h)
j

)}
, ∀j ∈ W, l0 = σ.(5.18)

In the above $(ωj) ∈ Rn is the vector with (i, h)th component $τi
(ω(i,h)

j ) for i ∈ U
and 0 for i /∈ U , L ∈ Rp×n is the certainty-equivalent controller gain matrix, and σ2+ε

is a uniform upper bound on the (2 + ε)th absolute moment of

Gj :=
τ∑

i=1

Jτ−iZjτ+i, ∀j ∈ W.(5.19)

5.2.3. Controller. Similar to the coder, define a controller internal state ψcon
j

∆=
(x̂con

jτ , lconj ) ∈ Rn×R+, initialized when j = 0 to (0, σ). At any time k ∈ [jτ, . . . , jτ +
τ − 1] in the cycle, a certainty-equivalent control signal

uk = Lx̂con
k(5.20)

is applied, where x̂con
k is given by (5.17) (with superscripts ‘con’), and L is the given

gain matrix s.t. J + TBL is strictly stable.
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By the time-sharing protocol, the last transmission slot during this cycle ends
at time jτ + c(τ) − 1, where c(τ) ∆=

∑
i∈U niτi. Recalling that the channel has a

delay d, at time k = jτ + c(τ)−1+d the controller then has available all the symbols
sjτ , . . . , sjτ+c−1, comprising the base-µ expansions of the quantizer level indices ω(i,h)

j ,
h ∈ [1, . . . , ni], i ∈ U . By reasoning similar to (5.14), c(τ) + d ≤ τ sufficiently large,
so that these indices are guaranteed to be received before the beginning of the next
cycle at time (j + 1)τ . The controller then updates its internal state via the same
recursive equations (5.16)–(5.18) as the coder.

5.3. Analysis. A uniform bound on the mean square norms of the filter process
(5.1) using the coder-controller above will now be derived, for a data rate arbitrarily
close to the lower bound (2.6). First, it is shown that the coder error Fk

∆= X̄k − X̂k

is uniformly bounded in mean square norm over times k = jτ , j ∈ W, by using the
functional Mε defined in (5.9) and Lemma 5.2. The mean square stability of Fk over
all integer times is then deduced, which in turn will be shown to imply that of X̄k,
k ∈ W.

Observe that since the initial controller and coder internal states ψcon
0 , ψ0 are

equal and, furthermore, the same update equations (5.16)–(5.18) are used for each, it
follows that x̂con

k = x̂k and lconj = lj , ∀j, k ∈ W. The superscript ‘con’ is thus dropped
in the analysis. Substituting (5.20) into the filter recursion (5.1) and iterating over a
cycle,

x̄(j+1)τ = Jτ x̄jτ +
(j+1)τ−1∑

k=jτ

J(j+1)τ−1−k (TBLx̂k + zk+1) ,

= Jτ x̄jτ + gj +
(j+1)τ−1∑

k=jτ

J(j+1)τ−1−kTBLx̂k,

where gj
∆=
∑τ

k=1 Jτ−kzjτ+k (5.19). Subtracting this from (5.16), and then exploiting
the block-diagonal structure J ≡ diag(J1, . . .Jb) of the real Jordan form, where Ji ∈
Rni×ni ,

f(j+1)τ = Jτ [fjτ − lj$(ωj)] + gj ,

⇔ f (i)
(j+1)τ = Jτ

i

[
f (i)
jτ − lj$(ωj)(i)

]
+ g(i)

j ∈ Rni , ∀i ∈ [1, . . . , b], j ∈ W.(5.21)

By (5.15) and the definition of $(ωj), $(ωj)(i)
∆= 0, ∀i /∈ U , in which case the RHS

above simply becomes the recursion f (i)
(j+1)τ = Jτ

i f
(i)
jτ + g(i)

j . Recall that each block Ji

has exactly either one real eigenvalue λi or two complex conjugate eigenvalues λi, λ
∗
i .

As |λi| < 1, ∀i /∈ U , and furthermore the noise term has a uniform moment bound
E‖G(i)

j ‖2 ≤ σ2, it immediately follows that E‖F(i)
jτ ‖2 must be uniformly bounded for

all strictly stable subsystems.
Hence, only the unstable subsystems i ∈ U need be considered. For each such

i, $(ωj)(i) ∈ Rni is defined to be the quantizer point vector with hth component
qτi(f

(i,h)
jτ /lj). Applying square-norms and the triangle-inequality to (5.21), ∀i ∈ U , j ∈

W,

‖f (i)
(j+1)τ‖

2 ≤ 22

[
‖Jτ

i ‖2
∥∥∥f (i)

jτ − lj$(ωj)(i)
∥∥∥2

+ ‖g(i)
j ‖2

]
,
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= 4

[
‖g(i)

j ‖2 + ‖Jτ
i ‖2

ni∑
h=1

∣∣∣f (i,h)
jτ − ljqτi

(
f

(i,h)
jτ /lj

)∣∣∣2] ,(5.22)

using (5.15) and the definition of $(ωj). As each Ji is similar to the block diagonal
matrix of all Jordan blocks associated with λi, a trivial adaptation of a result in [15]
(pg. 138) states that ∃ζ0 > 0 such that

‖Jτ
i ‖ ≤ ζ0τ

ni−1|λi|τ , ∀i ∈ [1, . . . , b], τ ∈ Z+.(5.23)

Let the stacked vector of unstable subsystem errors be fu
k

∆= [f (1)T
k , . . . , f (|U|)T

k ]T and
define gu

j in a similar way. By summing (5.22) over i ∈ U , applying the growth rate

bound above, and twice using the trivial inequality
(∑

1≤l≤r |yl|
)α

≤ rα
∑

1≤l≤r |yl|α,
∀r ∈ Z+, α > 0, it then follows that ∃φ ≥ 1 s.t.

‖fu
(j+1)τ‖

2+ε =

(∑
i∈U

‖f (i)
(j+1)τ‖

2

)1+ε/2

,

≤ φ

(
‖gu

j ‖2+ε +
∑
i∈U

|τni−1λτ
i |2+ε

ni∑
h=1

∣∣∣f (i,h)
jτ − ljqτi

(
f

(i,h)
jτ /lj

)∣∣∣2+ε
)
.

Dividing by lεj+1 and taking expectations,

E
{
‖Fu

(j+1)τ‖
2+εL−ε

j+1

}
≤ φ

(
E

{
‖Gu

j ‖2+ε

Lε
j+1

}
+
∑
i∈U

∣∣τni−1λτ
i

∣∣2+ε
ni∑

h=1

E

{
|F (i,h)

jτ − Ljqτi(F
(i,h)
jτ /Lj)|2+ε

Lε
j+1

})
,

≤ φ

(
E

{
‖Gu

j ‖2+ε

σε

}
+
∑
i∈U

∣∣τni−1λτ
i

∣∣2+ε
ni∑

h=1

E

{
|F (i,h)

jτ − Ljqτi(F
(i,h)
jτ /Lj)|2+ε

[Lj |λi|τκτi(Ω
(i,h)
j )]ε

})
,

= φ

(
E

{
‖Gu

j ‖2+ε

σε

}
+
∑
i∈U

τ (ni−1)(2+ε)|λi|2τ
ni∑

h=1

E

{
|F (i,h)

jτ − Ljqτi
(F (i,h)

jτ /Lj)|2+ε

[Ljκτi
(Ω(i,h)

j )]ε

})
,

(5.24)

where the second inequality is a consequence of the definition of lj+1 (5.18).
Now, let

ϑj := Mε{Fu
(j+1)τ |Lj} ≡ E{L2

j}+ E{‖Fu
(j+1)τ‖

2+εL−ε
j }, ∀j ∈ W.(5.25)

By (5.10), the RHS is never less than E‖Fu
(j+1)τ‖

2, so to establish the mean square
boundedness of the errors it is sufficient to show that supj∈W ϑj <∞. Observe that

E{L2
j+1} ≡ E

{
max

i∈U,h∈[1,...,ni]

{
σ2, L2

j |λi|2τκτi

(
Ω(i,h)

j

)2
}}

,

≤ σ2 +
∑
i∈U

|λi|2τ
ni∑

h=1

E
∣∣∣Ljκτi

(
Ω(i,h)

j

)∣∣∣2 .
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Adding this to (5.24), noting that E‖Gu
j ‖2+ε ≤ σ2+ε, τ ≥ 1, and using definition

(5.25),

ϑj+1 ≤

φ

(
σ2 +

∑
i∈U

τ (ni−1)(2+ε)|λi|2τ
ni∑

h=1

Mε

{
F

(i,h)
jτ − Ljqτi

(
F

(i,h)
jτ

Lj

)∣∣∣∣∣Ljκτi

(
Ω(i,h)

j

)})
(5.26)

Applying Lemma 5.2 to each term in the inner sum, with X = F
(i,h)
jτ , L = Lj , ν = τi

and Ω = Ω(i,h)
j , ∀j ∈ W,

ϑj+1 ≤ φ

(
σ2 +

∑
i∈U

τ (ni−1)(2+ε)|λi|2τ
ni∑

h=1

ζ

µ2τi
Mε

{
F

(i,h)
jτ |Lj

})
,

≤ φ

(
σ2 +

∑
i∈U

τ (ni−1)(2+ε)|λi|2τ
ni∑

h=1

ζ

µ2τi
Mε

{
Fu

jτ |Lj

})
,

≡ φσ2 + φζ

(∑
i∈U

niτ
(ni−1)(2+ε) |λi|2τ

µ2τi

)
ϑj ,(5.27)

where the second inequality is obtained from the definition of Mε (5.9) and the trivial
fact that the magnitude of a vector is never less than the magnitude of any of its
components.

The inequality above is a first order, sublinear recursion for ϑj with a forcing
term. By (5.12) and the fact that x − bxc < 1, ∀x ∈ R, τi > τ logµ(ξ|λi|), ∀i ∈ U ,
τ ∈ Z+. This is equivalent to ξτ |λi|τ < µτi , which when substituted into the above
yields

ϑj+1 ≤ φσ2 + φζ

(∑
i∈U

niτ
(ni−1)(2+ε) 1

ξ2τ

)
ϑj , ∀j ∈ W.

As ξ > 1 by the left inequality of (5.13), τ (ni−1)(2+ε)ξ−2τ → 0 as τ → ∞, ∀i. Hence
by choosing a sufficiently large, finite cycle length τ , the coefficient of ϑj above can be
be made strictly less than 1. As the τ -dependent noise term σ2 is finite for any fixed
τ , the recursion above is then stable and yields uniformly bounded ϑj . By definition
(5.25) and the inequality (5.10), E‖Fu

jτ‖2 is then also uniformly bounded over j ∈ W.
Recalling the discussion after (5.21), the overall error vector Fjτ must be as well.

The rest of the proof is straightforward. Subtracting (5.17) from (5.1), iterating
forward r steps from time jτ , and taking norms, at any time k ≡ jτ + r with r ∈
[0, . . . , τ − 1],

‖fk‖ ≤ ‖Jr‖‖fjτ‖+
r−1∑
l=0

‖Jr−lTBL‖‖Zjτ+l+1‖.

As Fjτ and Zjτ+l+1 are uniformly bounded in mean square norm and r can only take
a finite number of values, the RHS and hence LHS are also uniformly mean square
bounded over k ∈ W. Rewriting (5.1) as

x̄k+1 = (J+TBL)x̄k+TBL(x̂k−xk)+zk+1 = (J+TBL)x̄k−TBLfk+zk+1, ∀k ∈ W,
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the strict stability of J + TBL then ensures the uniform boundedness of the mean
square filter outputs E‖X̄k+1‖2 over k ∈ W. This completes the proof that the
coder controller constructed in subsection 5.2 stabilizes the system (2.1) at data rates
arbitrarily close to, but exceeding, the critical bound (2.6).

In the foregoing analysis, the assumption that the coder and controller internal
states have the same initial value is crucial. Even if true, real digital channels invari-
ably introduce data errors, causing the coder and controller states to eventually differ.
It is thus important to emphasize that the scheme presented here is not intended in
the present form to be a practical solution to communication-limited stabilization
problems, but is primarily a theoretical construct for demonstrating stabilizability in
the limited sense (2.5). Nonetheless it does possess some attributes, such as finite
dimensionality, which make implementation easy and may serve as a foundation for
a more practical scheme. In this respect, an important and as yet open extension of
this research is the internal stability of finite-dimensional, data-rate-limited control
loops, i.e. ensuring that the plant and coder-controller internal states remain mean
square stable with a random overall initial condition, channel errors, and process and
measurement noise. It is easy to see that redundancy must be incorporated in the
transmitted symbols to counteract channel noise, but it is not evident if an analogue of
the well-known source-channel separation theorem of information theory [25] applies.

6. Conclusion. In this paper, the problem of stabilizing a general stochastic
linear system in mean square state norm under a feedback data rate constraint was
investigated. By employing information theoretic techniques and a new quantizer
error bound, an expression was derived for the smallest data rate above which such
a system is stabilizable by a coding and control law, without imposing any structural
or computational constraints and with very mild conditions on the system noise.
This infimum rate is determined only by the unstable eigenvalues of the dynamical
matrix and it was demonstrated that as the data rate approaches it from above the
mean square states become unbounded for any coder-controller. To establish the
attainability of this bound, a finite-dimensional scheme was constructed and shown
to achieve stability at data rates arbitrarily close to it. Extensions of these results to
nonlinear systems, linear systems with Markov parameters, and decentralized control
are being investigated.

Appendix A. Proof of Proposition 2.2. Suppose that R1 ≤ R2. By direct
substitution of (2.8) into (2.9), each input uk depends (in a time-varying way) on the
link-1 symbol sequence s̃1k−d1−d2

,

uk ≡ φk(s̃1k−d1−d2
), ∀k ∈ W.

This mapping, (2.7), and the alphabet sequence S̃1
∞ then constitute a coder-controller

with data rate R1 (2.2) and link delay d = d1 + d2.
Now suppose that R2 < R1. By (2.7), the link-1 symbol sequence s̃1k−d1

is also
a time-varying function of the measurement sequence ỹk−d1 . Hence (2.8) can be
rewritten in the form

s2k ≡ θk(ỹk−d1).

Defining the d1-step-ahead link-2 symbol ck
∆= s2k+d1

, ∀k ∈ W, the expression above
and the actuator mapping (2.9) become

ck = θk(ỹk) ∈ S2
k+d1

, uk = δ2k(c̃k−d1−d2).
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This is a single-link coder-controller with delay d = d1+d2. As the asymptotic average
data rate is independent of constant time shifts of the alphabet, its value remains R2.

The proof of the second part is straightforward. Let the coder (2.7) for link-1,
with delay d1, be given by (2.3) and set the coder and actuator for link-2, with delay
d2 = d− d1, to be

s2k = s1k−d1
≡ sk−d1 , uk = δk(s̃2k−d2

) ≡ δk(s̃k−d1−d2).

Evidently, with regard to the plant this is equivalent to the single-link coder-controller
(2.3)–(2.4). Furthermore, the link-2 alphabet is obviously periodic if that of link-1 is,
with the same average data rate.

Appendix B. Proof of Inequality (4.4). The argument is essentially that of
Lemma 5 in [9]. Denote the mean square norm of X given A = a by σ2 and let φ be
the symmetric, f -dimensional Gaussian distribution with zero mean and variance σ2.
By the nonnegativity of the Kullback-Leibler information distance D,

0 ≤ D(pX|a‖φ) ∆=
∫

Rf

pX|a(x) ln
pX|a(x)
φ(x)

dλ(x),

=
∫

Rf

pX|a(x) ln pX|a(x)dλ(x)−
∫

Rf

pX|a(x) lnφ(x)dλ(x),

= −Ha{X} −
∫

Rf

pX|a(x)
(
−f

2
ln(2πσ2)− ‖x‖2

2σ2

)
dλ(x),

= −Ha{X}+ 0.5f ln(2πσ2) + 0.5.
⇒ Na{X} ≡ (2πe)−1e2Ha{X}/f ≤ e1/f−1σ2.

Appendix C. Proof of Lemma 4.1. By standard properties of joint and
average differential entropy [7, 9],

Ha{X|S} = Ha{X, S} −HaS ≥ Ha{X} −HaS ≥ Ha{X} − ln |S|.

Differential entropy is undefined for discrete-valued random variables, but the joint
entropy above may be taken to denote −Ea ln

(
pX|S,A(X)P{S|A}

)
while Ha{S} rep-

resents the base-e discrete entropy of S given A = a. The first inequality arises from
the fact that the entropy of joint random variables can never be smaller than the
individual entropies, while the second inequality is a consequence of the fact that the
base-e entropy of a random variable in a finite alphabet S is at most ln |S|. Using
Jensen’s inequality for convex functions [7] and the lower bound above,

2πeNa{X|S} = Ea{e2HS,A{X}/f} ≥ eEa{2HS,A{X}/f},

≡ e2Ha{X|S}/f ≥ e2(Ha{X}−ln |S|)/f = |S|−2/f2πeNaX.

Appendix D. Proof of Proposition 5.1. Consider the finite-state predictive
quantizer (5.4). As there are a finite number |I| of possible internal variables ιk, Q(·)
is bounded. By the strict stability of J + TBL, it then follows from (5.4) that x̂k is
bounded over k, and hence ∃ρ > 0 s.t. ‖uk‖ = ‖Lx̂k‖ ≤ ρ.

Now, convert (2.1) into standard Jordan form via a complex similarity matrix S.
There is then at least one scalar component xk ∈ C of the transformed state vector
that satisfies the scalar, decoupled recursion

xk+1 = ηxk + vk + uk =
k∑

j=−1

ηk−j(vj + uj) ∈ C,
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where |η| > 1 and vk, uk are the corresponding scalar components of Svk, Suk

respectively. For convenience, u−1
∆= 0 and v−1

∆= Sx0. Evidently V−1, V0, . . . are still
independent, and |uk| ≤ ρ. Defining

βk := ρ

k∑
j=0

|η|k−j ≥

∣∣∣∣∣∣
k∑

j=0

ηk−juj

∣∣∣∣∣∣ ,
gk :=

k∑
j=−1

ηk−jvj , v̄k
∆=

∑
−1≤j≤k,j 6=t

η−jvj , ∀k ∈ W,

where the time t ≥ −1 is specified in (5.5), it follows that

P{‖SXk+1‖ ≥ βk} ≥ P{|Xk+1| ≥ βk} = P


∣∣∣∣∣∣Gk −

k∑
j=0

ηk−jUj

∣∣∣∣∣∣ ≥ βk

 ,

≥ P{|Gk| − βk ≥ βk} = P{|Gk| ≥ 2βk},

= P


∣∣∣∣∣∣

k∑
j=−1

ηk−jVj

∣∣∣∣∣∣ ≥ 2ρ
k∑

j=0

|η|k−j

 = P


∣∣∣∣∣∣

k∑
j=−1

η−jVj

∣∣∣∣∣∣ ≥ 2ρ
k∑

j=0

|η|−j

 ,

≥ P


∣∣∣∣∣∣

k∑
j=−1

η−jVj

∣∣∣∣∣∣ ≥ θ

 ≡ P{|η−tVt + V̄k| ≥ θ} ≥ P
{
<(η−tVt) + <(V̄k) ≥ θ

}
,

≥ P
{
<(η−tVt) ≥ αθ, <(V̄k) ≥ (1− α)θ

}
,

= P
{
<(η−tVt) ≥ αθ

}
P
{
<(V̄k) ≥ (1− α)θ

}
, ∀α ∈ R, k ≥ t,

(D.1)

where θ ∆= 2ρ
∑

j∈W |η|−j = 2ρ/(1− |η|−1) and the last step follows from the mutual
independence of Vj , j ≥ −1.

Furthermore, as E|Vj |2 is uniformly bounded, it follows from Holder’s inequality
that

E|<(V̄k)|2 ≤ E

∣∣∣∣∣∣
∑

j≥−1,j 6=t

η−jVj

∣∣∣∣∣∣
2

≤
∑

j≥−1

|η|−jE

∑
j≥−1

|η|−j |Vj |2
 <∞, ∀k ∈ W.

By theorem 22.6 in [4], <(V̄k) then converges with probability 1, and thus in distri-
bution, to a random variable V̄ . Hence ∃α∗ ∈ R, ε > 0, k∗ ∈ W s.t. ∀k ≥ k∗,

P
{
<(V̄k) ≥ (1− α∗)θ

}
≥ P

{
V̄ ≥ (1− α∗)θ

}
− ε > 0.

In addition, since <(η−tVt) is just a scalar linear function of Vt, (5.5) implies that
P{<(η−tVt) > ϑ} > 0, ∀ϑ ∈ R. Applying this and the inequality above to (D.1),

P{‖Xk+1‖ ≥ βk} ≥ P
{
<(η−tVt) ≥ α∗θ

} [
P
{
V̄ ≥ (1− α∗)θ

}
− ε
]
≡ ν > 0, ∀k ≥ k∗.

It then follows that ∀r > 0,

E‖Xk+1‖r ≥ E {‖Xk+1‖rχ(‖Xk+1‖ ≥ βk)} ≥ βr
kP{‖Xk+1‖ ≥ βk} ≥ βr

kν →∞,
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since βk →∞. The same reasoning applies to static memoryless coding (5.2).

Appendix E. Proof of Lemma 5.2. Let φ = lκν(ω), where ω ∈ Zµν is the
index of the selected quantizer point qν(x/l) ≡ $ν(ω) and κν , $ν are defined by (5.8),
(5.7) respectively. If 1 ≤ ω ≤ µν − 2, then the interval I(ω) which contains x/l is
bounded with length 2κν(ω) ≡ 2φ/l and midpoint qν(x/l) ∆= $ν(ω). In this case,
|x− lqν(x/l)| < φ, and ∀ω ∈ [1, . . . µν − 2],

Eω,l

{
|X − Lqν(X/L)|2+εΦ−ε

}
≤ Eω,l{Φ2+εΦ−ε} = φ2.(E.1)

If ω = µν − 1, then x/l lies inside the semi-infinite interval I(µν − 1), defined as
($ν(ω)− φ/l,∞). Hence

Eω,l

{
|X − Lqν(X/L)|2+εΦ−ε

}
= Eω,l

{
|X − L$ν(Ω)|2+εΦ−εχ(|X − L$ν(Ω)| ≤ Φ)

}
+ Eω,l

{
[X − L$ν(Ω)]2+ε Φ−εχ(X − L$ν(Ω) > Φ)

}
,

≤ Eω,l{Φ2+εΦ−ε}+ Eω,l

{
X2+εΦ−εχ(X − L$ν(Ω) > Φ)

}
,

= φ2 + Eω,l

{
|X|2+ε [Lκν(ω)]−ε

χ (X − L$ν(ω) > Lκν(ω))
}
,

≤ φ2 + κν(ω)−εEω,l{|X|2+εL−ε},

= φ2 +
[
0.5(1− 1/µ)−1(1− %−1)%ν

]−ε
Eω,l{|X|2+εL−ε},

≤ φ2 +
[
0.5(1− 4−1/ε)%ν

]−ε

Eω,l{|X|2+εL−ε},(E.2)

since 1 − %−1 > 1 − µ−2/ε > 1 − 4−1/ε for µ ≥ 2. By the symmetry of the quantizer
about the origin, the same bound applies if ω = 0, corresponding to the other semi-
infinite interval I(0). Averaging this, (E.1) and (E.2) over Ω, L,

E
{
|X − Lqν(X/L)|2+ε

Φε

}
≤

E{Φ2}+
[
0.5(1− 4−1/ε)

]−ε

%−ενE
{
|X|2+ε

Lε

}
=: βν .(E.3)

By the definitions of φ ≡ lκν(ω) (5.7), and qν (5.8),

El{Φ2}

=
[

l

(µ2 − 2)µν−2

]2
Pl

{
|X|
L

≤ r1

}
+

ν∑
i=2

[
(ri − ri−1)l

2(µ− 1)µν−i

]2
Pl

{
ri−1 <

|X|
L

≤ ri

}

+
[
(rν+1 − rν)l
2(1− 2/µ)

]2
Pl

{
|X|
L

> rν

}
,

=
[

l

(µ2 − 2)µν−2

]2
Pl

{
|X|
L

≤ r1

}
+
[
%−1 − %−2

2(µ− 1)µν

]2 [ ν∑
i=2

(%µ)2il2Pl

{
ri−1 <

|X|
L

≤ ri

}
+ (%µ)2(ν+1)l2Pl

{
|X|
L

> rν

}]
,

≤
[

µ2l

(µ2 − 2)µν

]2
+
[
%−1 − %−2

2(µ− 1)µν

]2 ν+1∑
i=2

(%µ)2il2Pl

{
|X|
L

≥ ri−1

}
,
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≤
[

2l
µν

]2
+
[

1
2(µ− 1)%µν

]2 ν+1∑
i=2

(%µ)2il2Pl

{
|X|
L

≥ ri−1

}
,

(E.4)

since µ2/(µ2 − 2) ≤ 2 for µ ≥ 2 and % > 1. By a Chebychev inequality type of
argument,

l2Pl{|X| > ri−1L} ≤ l2El

{
[|X|/(ri−1L)]2+ε

χ(|X| > ri−1L)
}
,

= r−2−ε
i−1 El

{
|X|2+εL−εχ(|X| > ri−1L)

}
≤ r−2−ε

i−1 El{|X|2+εL−ε} = %−(i−2)(2+ε)El{|X|2+εL−ε}, ∀i ≥ 2.

Substituting this into (E.4), averaging over L and letting b ∆= E{|X|2+εL−ε},

EΦ2 ≤ 4EL2

µ2ν
+
[

1
2(µ− 1)%µν

]2 ν+1∑
i=2

(%µ)2ib

%(i−2)(2+ε)
=

4EL2

µ2ν
+
[

%1+ε

2(µ− 1)µν

]2 ν+1∑
i=2

(
µ2

%ε

)i

b.

As % > µ2/ε, the geometric sum on the RHS is bounded with limit µ4%−2ε/(1−µ2%−ε).
Hence

EΦ2 ≤ 4EL2

µ2ν
+
[

%1+ε

2(µ− 1)µν

]2
µ4%−2ε

1− µ2%−ε
b ≡ 4ELm + ζ0b

µ2ν
.

Adding this to (E.3),

Mε{X − Lqν(X/L)|Φ} ≤ EΦ2 + βν ≤ 2
4EL2 + ζ0b

µ2ν
+

[0.5(1− 4−1/ε)]−εb

%εν
,

≤ 2
4EL2 + ζ0b

µ2ν
+

[0.5(1− 4−1/ε)]−εb

µ2ν
,

≤ max
{

8, 2ζ0 + [0.5(1− 4−1/ε)]−ε
} EL2 + b

µ2ν
.

Note that virtually the same argument holds for the mean mth power quantization
error, m > 0, by defining Mε,m{X|L}

∆= ELm +E{|X|m+εL−ε} and setting % > µm/ε.
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