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1. INTRODUCTION

Recently there is a rapidly increasing interest in
detection and tracking of targets in sensor net-
works due to its wide application background
ranging from location awareness services and in-
trusion detection to certain military applications,
etc.; see (Aslam et al., 2003; Chong and Ku-
mar, 2003; Zhao et al., 2003).

This paper investigates the detection of a random
target in a distributed network in which a set of
sensor nodes are geographically distributed and
each connected to a fusion center by a wireless
channel. At each node, due to its limited compu-
tational capability, storage capacity, and commu-
nication bandwidth constraints, the sensor needs
to form a local decision (to be called a message) to
send to the fusion center where final information
processing takes place.

Suppose the target’s state (e.g. location) is mod-
elled by a finite state Markov chain (a simple
example being a one or two dimensional random
walk for motion modelling), and is measured by
sensors in its vicinity with additive noise. The

1 This work was partially supported by ARC.

fusion center needs to combine the messages re-
ceived from all sensors to infer the state of the
target. In this paper, our interest is in obtaining
accurate instantaneous state estimation at the
fusion center. This differs from the sate estima-
tion problem considered in the companion work
(Huang and Dey, 2005). This kind of objective
is well motivated by certain applications, for in-
stance, the interception of a hostile target (Burr
et al., 1985). In such scenarios, it is important
to have reliable knowledge for the target state
at a certain time stage, rather than have good
estimation averaged over time. Furthermore, once
the fusion center is convinced of the state, for
instance the location, of the target, it needs to
communicate with a corresponding local unit to
take action (e.g. fire for interception), or it sim-
ply sends out a warning message to that local
region. Thus the network performance relies on
the correctness of its decision and the associated
local action, and further operation of the system
following this pair of decision and action is not of
primary interest. This is in contrast to the hierar-
chical algorithm proposed in (Oh et al., 2005) for
estimating the number and position of multiple
targets on a specified period.



Based on the above justification, the optimization
problem is formulated as an optimal stopping
problem where the performance measure is related
to (1) system operating cost, (2) action cost and
(3) miss penalty. Notice that here the quantization
scheme for the sensors is part of the optimization
problem. Such a model may be regarded as a
special networked control system where the fusion
center is equivalent to a controller or decision
maker which is equipped with high computing
resources and may command the actions of the
actuator (e.g. intercepter) associated with each
sensor node at the local area.

In our analysis the stopping problem is converted
into an optimal control problem for which the
solution is computed by the dynamic program-
ming equation. The state set for the stopping
action is specified in terms of the information
state. It is also shown that there is a separa-
tion between the quantization optimization and
the determination of the stopping action. Finally,
based on the general formulation in this paper, an
application example is considered for distributed
change or failure detection in a network. This
generalizes the traditional Bayesian quickest de-
tection problem studied by many authors; see,
e.g., (Shiryayev, 1978; Kailath and Poor, 1998).

2. THE SYSTEM MODEL

To begin with, the basic infrastructure of the
network is specified as follows. First, assume n

sensor nodes are placed at different sites, each
monitoring its surrounding region to be called
a cell. The n cells are assumed to be disjoint.
Second, the motion of the target is modelled by

a finite state Markov chain X
4
= {Xt, t ≥ 1}

with state space S = {s1, · · · , sn, sn+1}. Let In =
{1, · · · , n}, and In+1 = {1, · · · , n, n + 1}. The
state Xt = si, i ∈ In at time t means that
the target is in cell i. The target may transit
from one cell to another. Here the extra state
sn+1 denotes an outer site which is beyond the
network’s surveillance coverage. The target may
arrive from or leave for the outer site. This is
a natural scenario for many practical situations.
The transition probability matrix of X is given as
P ∈ R

(n+1)×(n+1).

2.1 The measurement model

At time t ≥ 1, node i has a noisy measurement Yi,t

which depends on the current state of X. When
the target is in its cell, the measurement has a high
signal to interference ratio, and otherwise, only
an attenuated or even negligible signal concerning
the target is reflected. Thus, the set of n nodes
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Fig. 1. A sensor network with feedback for dy-
namic quantization. The site associated with
sn+1 is beyond coverage.

produces location dependent information for the
target. The output equation is given as

Yi,t = fi(Xt) + Wi,t

where fi(sn+1) = 0 for all i ∈ In, i.e., for Xt =
sn+1 only the background noise is obtained due
to the limitation of network coverage.

To simplify the analysis and specify the location
dependent observations, it is assumed that the
sites are aligned along a line, and in addition that
the target has negligible effect on more distant
sensors, i.e., the target only affects the measure-
ments of its visiting and immediate neighboring
cells. The generalization of our analysis to the
more general network topology is straightforward.

Now the measurement can be written as

Yi,t =

n
∑

j=1

Fij1(Xt=sj) + Wi,t

where the matrix F = (Fij) is a tridiagonal matrix












f1(1) f1(2) 0 · · · 0
f2(1) f2(2) f2(3) · · · 0
· · · · · ·
0 · · · · · · fn−1(n − 1) fn−1(n)
0 · · · 0 fn(n − 1) fn(n)













(1)

where fk(i)
4
= fk(si) for i ∈ In. The above

equation may be written in the vector form

Yt = FDiag(1(Xt=si))n1n + Wt (2)

where Yt = [Y1,t, · · · , Yn,t]
T , 1n is a column vector

with n entries being 1, and Wt = [W1,t, · · · ,Wn,t]
T .

The noise {Wt} is assumed to be a sequence of
i.i.d. random variables taking values in R

n.

2.2 The dynamic binary quantization

In order to reduce the communication capacity
requirement of each node, the binary quantization
scheme is adopted which, in turn, is denoted by a



parameter ri,t partitioning the range space of Yi,t,
i ∈ In, t ≥ 1. Each sensor needs to send a symbol
in a set of two entries to the fusion center based
on its own measurement. Without losing gener-
ality one can use the same alphabet set {a1, a2}
with two distinct entries for all sensors. However,
now a static quantization scheme is inadequate
for two reasons. On one hand, unlike the usual
hypothesis testing as examined in (Chamberland
and Veeravalli, 2003), here the distribution of
the underlying measurements evolves in a dy-
namic manner as driven by the Markov chain;
on the other hand, the super-diagonal and sub-
diagonal entries in F make the signal discrepancy
associated with neighboring cells further blurred.
Hence in the paper a dynamic binary quantization
scheme is adopted. By doing so the local node can
optimize its quantization threshold by following
the command of the fusion center so that refined
information can be conveyed to the latter.

Now, for a given quantization parameter ri,t for
the i-th sensor at time t, the resulting output is

Y
q
i,t =

{

a1 Yi,t < ri,t

a2 Yi,t ≥ ri,t.
(3)

Y
q
t = [Y q

1,t, · · · , Y
q
n,t]

T shall be called a message to
be received by the fusion center. For optimizing
the quantizer rt = (ri,t)n, a set Sth of threshold
candidates is selected first. Since the threshold
needs to be set by the command from the fu-
sion center via the inverse channel, it is difficult
to implement and optimize the quantization by
choosing Sth as a continuum. Instead, a discrete
subset Ld is used with corresponding components
located between 0 and fi(i). Here it is assumed
that |fi(i)| > |fi(i− 1)|, |fi(i)| > |fi(i+1)| in (1),
and the physical interpretation is clear.

2.3 The performance measure

The performance function to be employed is the
expectation of the cumulative sum of instanta-
neous costs c(Xt, ut) until a terminal time when
the fusion center makes a final decision as to
which cell contains the target and sends a reaction

(e.g. fire) command to be executed instantly at
that cell. Since at any time at most one node
is instructed to react, a control variable for the
set of all nodes can be introduced as a vector

u = (0, · · · , 0)T 4
= eu

0 containing all zeros or
u = eu

i , 1 ≤ i ≤ n, where eu
i has all zero entries

except the i-th being 1. Here eu
i dictates that the

i-th node takes reaction. If the k-th entry in u is
zero, it means the k-th node is in an idle state. In
our formulation, the stopping time comes once a
reaction is taken at one node. Let ut denote the
control at time t.

Let us introduce the one stage cost:

• If Xt = si, i ∈ In+1 and ut = eu
0 , this incurs a

one step operating cost c(Xt, ut) = c0(i) > 0,
and the system will evolve to next stage;

• If Xt = si, i ∈ In and ut = eu
i , there is a

reaction cost c(Xt, ut) = c1(i) ≥ 0, and the
system terminates;

• If Xt = i, i ∈ In+1 and ut = eu
j such that

j 6= i, the system terminates with a miss
penalty c(Xt, ut) = c2 > 0.

The above specification clearly defines a cost func-
tion c : S × U → R

+ where U = {eu
0 , eu

1 , · · · , eu
n}.

Write c(si, u) = c(i, u), i ∈ In+1. The motivation
to introduce the state dependent cost term c1 is
that in a practical situation, the reaction units at
different cells may function with different perfor-
mance and associated expenses. Such a heteroge-
nous cost measure may be used to encourage the
deployment of reactions at certain locations.

As an example, one may take c0(1) = · · · =
c0(n) > c0(n + 1) ≥ 0 to indicate a penalty
caused by the presence of target threat. Also, a
large c2 makes the fusion center more cautious in
requesting a reaction; in other words, the fusion
center tends to achieve a higher probability for
capturing the target since the operating cost is
dominated by the penalty for miss.

It is assumed throughout this paper that c2 >

max c0(i). In the case max{c2, c1(i), i ∈ In} ≤
min c0(i), it is optimal to react at the initial time.

Remark: This paper only considers optimization
based on “one shot”. It is possible to consider the
more general cases from the following aspects: (1)
successive reactions (fires) and (2) probabilistic
target hitting. To maintain a reasonable length,
this paper shall not pursue these generalizations.

2.4 The augmented controlled Markov process

To apply dynamic programming, the above stop-
ping problem will be converted into a Markov de-
cision problem on the horizon [0,∞). Associated
with X, let us construct an auxiliary controlled
process Xo which has state space {1, · · · , n + 2}
and controlled transition matrix

P |u=eu
0

=

[

P 0(n+1)×1

01×(n+1) 1

]

,

P |u=eu
i

=

[

0(n+1) 1(n+1)×1

01×(n+1) 1

]

, i ∈ In

where P ∈ R
(n+1)×(n+1) is the transition matrix

of X. For Xo, define the cost co(si, u) = c(i, u)
for i ∈ In+1, and co(sn+2, u) = 0, where u ∈ U .
Essentially the controlled Markov chain Xo is
obtained by augmenting the state space of X by
a fictitious absorbing state sn+2 such that the
state of Xo would transit from s1, · · · , sn+1 to
sn+2 once an action eu

i , i ∈ In is taken. Let the



observation of Xo be specified by (2) using the
same output variable Y and replacing X by Xo. If
Xo = sn+2, it is assumed that all Y

q
i , i ∈ In, take

a1. The output of Y
q
i corresponding to sn+2 does

not affect the optimal stopping rule associated
with the original Markov chain X.

See (Bertsekas, 1995) on converting an optimal
stopping problem into an optimal control problem
with an infinite horizon. In addition, once an
optimal control law for Xo is obtained, it is
straightforward to retrieve the control law for X.
Hence in the following it is sufficient to analyze in
terms of Xo. For notational brevity, in the rest of
the paper Xo is simply written as X but indicated
at various places as a controlled process with
state space S = {s1, · · · , sn+2}. Also, omitting
the superscript, c(i, u) is used instead of co(i, u)
to denote the cost associated with the n+2 states.

3. THE OPTIMAL CONTROL PROBLEM

Denote by Y q the message received by the fusion
center from all n nodes. The control ut−1 and
quantizer rt ∈ R

n for the n+2 state Markov chain

are adapted to Ft−1
4
= F(Y q

i , i ≤ t − 1) which is

the σ-algebra generated by past messages. F0
4
=

{∅,Ω}. In further analysis, a sufficient statistic
will be recursively calculated such that the param-
eter rt = (ri,t)n need not be determined using the
overall history (Y q

1 , · · · , Y
q
t−1) when the sufficient

statistic is computed at each step. In this setup,
the fusion center feeds back rt to the sensor nodes
between the time instant t− 1 and t, and at time
t, the sensors employ rt for quantization resetting.

Let In+2 = {1, · · · , n + 1, n + 2}. Before formu-
lating the stochastic control problem, it is neces-
sary to introduce the so-called information state
θt = [θ1,t, · · · , θn+2,t]

T , where

θi,t = E[1(Xt=si)|Ft], i ∈ In+2, t ≥ 1.

The recursion for the information state is given as

θt+1 =
1

zt+1
Q(s1, · · · , sn+2, rt+1, Y

q
t+1)(P |u)T θt

4
=

1

zt+1
T (s1, · · · , sn+2, rt+1, Y

q
t+1)θt (4)

where P |u is the transition matrix of Xt, and
zt+1 is a normalizing factor such that |θt+1| = 1,

where |x|
4
=

∑n+2
i=1 |xi| for x ∈ R

n+2. The matrix
Q(s1, · · · , sn+2, rt, y

q
t ) can be determined as

Q(·) =





F (s1, rt, y
q
t )

. . .

F (sn+2, rt, y
q
t )



 , (5)

where y
q
t ∈ R denotes a value for Y

q
t . Here

F (si, rt, (ai1 , · · · , ain
)) =

∫

A(rt,y
q

t
)
f(y1−si, · · · , yn−

si)dy1 · · · dyn with A(rt, y
q
t )

4
= {y ∈ R

M ,Q(rt, y) =

(ai1 , · · · , ain
) = y

q
t }, where f is the joint proba-

bility density of the noise W = (W1,t, · · · ,Wn,t)
T

and Q is defined in an obvious manner as the
quantizer function associated with rt.

Denote the range space for θt by the simplex

D = {x ∈ R
n+2
+ , |x| = 1}.

Define the subset D0 = {x ∈ D, xn+2 = 0}. If
θ1 ∈ D0, θt will stay in D0 until a stopping action
eu
i , i ∈ In is taken at time k. To solve the stopping

problem for the original (n + 1) state Markov
chain, it suffices to find here a solution restricted
to D0 for the case of (n + 2) states.

A sequence of controls {ut} (simply written as
u) is said to be admissible if each ut is adapted
to Ft. We may use r to denote the sequence
{rt, t ≥ 1} or simply a value in R

n. Define the
optimal cost, or value function to the completely
observed optimal control problem (in terms of the
information state) as

v(θ) = inf
rt,ut

E[

∞
∑

t=1

θT
t c(·, ut)|θ1 = θ] = inf

u,r
J(θ, u).

(6)

The dynamic programming equation is given as

v(θ)

= min
r,u

[

θT c(·, u) +
∑

Y q

|T (r, Y q, u)θ|v
( T (r, Y q, u)θ

|T (r, Y q, u)θ|

)

]

4
= min

r,u
H(r, u, θ) (7)

where the cost c(·, u) is an R
n+2 vector for u ∈

{eu
0 , eu

1 , · · · , eu
n} and r is chosen from the finite

set Ld ⊂ R
n.

4. SEPARATION OF QUANTIZATION AND
ACTION REGION PARTITION

Let us introduce the assumption:

(H1) The transition matrix P of Xt ( with n + 1
states) is ergodic and in (5) each F (si, rt, y

q
t ) > 0

for all rt ∈ Ld and y
q
t ∈ {a1, a2}

n.

Proposition 1. Under (H1) and restricted to D0

the value function v : D0 → R is continuous.

Proof. Let θ(1) and θ(2) be two initial conditions
in D0 at t = 1. Then for the same admissible {ut}
adapted to Ft with any given quantization scheme
{rt}, one may apply the comparison technique as
in (Fleming and Rishel, 1975) to obtain

|v(θ(1)) − v(θ(2))| = | inf
u

J(θ(1), u) − inf
u

J(θ(2), u)|

≤ sup
u

|J(θ(1), u) − J(θ(2), u)|. (8)



On the other hand, by the results in (Arapostathis
and Marcus, 1990) it follows that

|θ
(1)
t − θ

(2)
t | ≤ C|θ(1) − θ(2)|αt (9)

for generic constants C and α ∈ (0, 1), where θ
(i)
t

is given by (4) with initial condition θ(i) ∈ D0,
i = 1, 2. For any admissible {ut}, one can employ
(9) together with J(θ, u) in (6) to get

|J(θ(1), u) − J(θ(2), u)| ≤ C1|θ
(1) − θ(2)| (10)

for some constant C1 > 0, and then the continuity
of the optimal cost follows readily.

Theorem 1. Under (H1), for θ ∈ D0 the optimal
control law u is specified in a feedback form in
terms of θ. Specifically, each action eu

i , i ∈ In, is
associated with a convex action region contained
in D0, and in the case θt ∈ D0 lies in none of
these action regions, the system should continue
with its observations.

Proof. For each eu
i , i ∈ In, its action region is

defined as a subset of D0 by the relation:

D0 ⊃ Ai
4
= {θ ∈ D0 : min

r
H(r, eu

i , θ) = min
r,u

H(r, u, θ)}

with the convention that the minimization is
taken w.r.t r ∈ Ld and u ∈ U .

Now let us show that each Ai is a convex subset of
D0. Letting θ1, θ2 ∈ Ai, it follows from concavity
of the value function that

v(λθ1 + (1 − λ)θ2) ≥ λv(θ2) + (1 − λ)v(θ2),

where λ ∈ [0, 1]. Notice that here one can es-
tablish concavity by the standard technique as in
(Astrom, 1969) for finite horizon case and then
taking limit to infinite horizon.

For any θ ∈ Ai, i ∈ In, the definition of Ai gives

v(θ) = min
r,u

H(r, u, θ) = min
r

H(r, eu
i , θ)

=min
r

[θT c(·, eu
i ) +

∑

Y q

|T (r, Y q, eu
i )θ|v(

T (r, Y q, eu
i )θ

|T (r, Y q, eu
i )θ|

)]

=min
r

[θT c(·, eu
i ) + v(en+2)]

=θT c(·, eu
i ) + v(en+2), (11)

where the derivation has used the fact
T (r,Y q,eu

i )θ
|T (r,Y q,eu

i
)θ| =

en+2, and
∑

Y q |T (r, Y q, eu
i )| = 1, i ∈ In. Hence

v(λθ1 + (1 − λ)θ2) ≥ λv(θ1) + (1 − λ)v(θ2)

=[λθT
1 + (1 − λ)θT

2 ]c(·, eu
i ) + v(en+2). (12)

On the other hand, it is obvious that

v(λθ1 + (1 − λ)θ2) = min
r,u

H(r, u, λθ1 + (1 − λ)θ2)

≤min
r

H(r, eu
i , λθ1 + (1 − λ)θ2)

=[λθ1 + (1 − λ)θ2]
T c(·, eu

i ) + v(en+2). (13)

where the last equality is computed in the same
manner as in (11), and therefore, (12) together
with (13) yields

v(λθ1 + (1 − λ)θ2)

=[λθ1 + (1 − λ)θ2]
T c(·, eu

i ) + v(en+2).

Thus, it follows that

v(λθ1 + (1 − λ)θ2) = min
r

H(r, eu
i , λθ1 + (1 − λ)θ2),

and λθ1 + (1 − λ)θ2 ∈ Ai.

Proposition 2. If maxi∈In
c1(i) ≤ mini∈In+1

c0(i),
then the information state ei ∈ D0 is in the action
region Ai associated with the action eu

i ∈ U .

Proof. Given θ = ei, 1 ≤ i ≤ n, if c1(i) ≤
min c0(i), then clearly the action u = eu

i ∈ U

minimizes H(r, u, θ)|θ=ei
.

4.1 Threshold policy for a single sensor

With a single sensor, the detection framework
using a network structure is meaningful since
the sensor node does not have the data storage
capacity and the past quantized measurements
are preserved by the fusion center which can form
more reliable estimates.

Proposition 3. Assume there is one sensor node
and the condition in Proposition 2 holds, then the
optimal control is specified as a threshold policy.

Proof. Since it has been shown that the action
region for eu

1 ∈ U is a convex set. In the single
sensor node scenario, it can be concluded that the
action set A1 is specified as an interval containing
the end point e1 ∈ D0 ⊂ R

2. Hence the optimal
control is determined as a threshold policy.

4.2 Threshold policy for two sensors

Consider two sensors with full coverage of the
target transition, i.e., in the network there is not
an outer site. In this case, the optimal control for
the sensor nodes is still a threshold policy.

Proposition 4. Assume there are two sensor nodes
for a two state target and the condition in Propo-
sition 2 holds, then the optimal control at each
node is specified as a threshold policy.

Proof. The proof is similar to that of Proposition
3 and is omitted here.



5. APPLICATION TO DISTRIBUTED
CHANGE DETECTION

In this section, a specific model for the uncon-
trolled Markov chain X is considered as moti-
vated by failure detection in large distributed
systems consisting of subsystems. Suppose the
underlying change or failure occurrence is asso-
ciated with spatial locations each monitored by
a sensor node with noisy measurements, and the
sensors report local decisions to a fusion center.
Typically, a system failure can be modelled by
a geometric (or exponential in continuous time)
distribution, and the tradition scheme is quick-
est detection with a tradeoff between the false
alarm rate and detection delay; see (Kailath and
Poor, 1998) (pp.2253-2254) and (Huang and Kr-
ishnamurthy, 2004). (Veeravalli, 2001) generalizes
the traditional change detection in a sensor net-
work where a set of i.i.d. measurements of sensor
nodes switches all together from one distribution
to another after disruption.

In our current formulation, based on sensor out-
puts, the fusion center not only needs to have a
prompt decision about the change, but also needs
to infer the associated site for the event. In other
words, one needs to know when and where. Let us
introduce the uncontrolled Markov chain X with
a transition probability matrix

P =











1 · · · 0
0 1 · · · 0

...
pn+1,1 pn+1,2 · · · pn+1,n+1











.

Let the initial “good” state of X be sn+1 (corre-
sponding to the outer site in the target detection
setting), and the change point τ be denoted by the
time the state reaches from sn+1 to other states
each being absorbing. It is easily verified that the
distribution of the change point is geometrically
distributed. Let the sensor measurement be de-
noted by Yi,t, and assume that indexed by i and
t, Yi,t are i.i.d with distribution F1 conditioned
on t < τ . Conditioned on the event that the
change occurs at site î and time τ = t, then Yî,t,
for all t ≥ τ has distribution F2 6= F1. For all
i 6= î, each observation Yi,t is still described by
the distribution F1.

Apart from quantization optimization, here one
can define the detection delay as well as false
alarms by appropriately specializing the one stage
cost in Section 2.3. Specifically, the fusion center
decision should specify the location of the event
and in the case of a mismatch, it is counted as
a false alarm when delay, if applicable, is also
taken into account. Such a distributed detection
problem may be stated as a stopping problem and
then converted into an optimal control problem,

and one can further analyze the stopping region.
The details are omitted here.
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