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ABSTRACT

This paper considers the problem of estimating the
state of a dynamic system from measurements ob-
tained via a digital link with finite bit-rate R. It
is shown that, under a quadratic cost, the problem
reduces to coding and estimating the sequence of ex-
pected states conditioned on past measurements. The
existence of deterministic, optimal coder-estimators
for Markovian processes in R? is then established
and their structure derived. These results are then
combined to prove that the optimal coder for a Gauss-
Markov system consists of a Kalman filter followed by
a stage which encodes the latest Kalman estimate ac-
cording to the symbols previously transmitted.

1. INTRODUCTION

In many problems in estimation theory, the implicit
assumption is that the estimator has direct access to
a sequence of possibly noise-corrupted measurements.
That is, if {Xy}x>0 is some process to be estimated
from measurements of a related process {Y% }>0, then
in most instances the estimator would have direct
knowledge of each Y;. However, in certain situations
there is a constraint on the amount of information
available to the estimator. In particular, if the esti-
mator is not at the same location as the measurement
sensor and receives information via a digital commu-
nication channel with a finite bit-rate, then it can only
have partial knowledge of {Y%}+>0, since at each time
k the output of the system must be mapped to a finite
set of symbols before transmission to the estimator.
This causes a loss of resolution and also introduces
an additional delay into the system, since the bits
that constitute each symbol require a finite amount
of time for complete transmission. Natural questions
to then ask are how to perform the coding so as to
minimize the estimation error and how high a bit-rate
is needed to achieve a specified estimation accuracy.

Similar problems are addressed in the fields of rate
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distortion theory [1] and estimation via compressed
information [2, 3]. However, the techniques used in
these areas typically require the measurements to be
collected into long blocks before coding, thereby caus-
ing long delays that are impractical in many situ-
ations. In such cases, a causal coding and estima-
tion scheme which improves in accuracy incremen-
tally would be more appropriate. The field of es-
timation with quantized measurements [4, 5] is also
related, but the fixed quantizer that is generally as-
sumed there makes it significantly different from the
problem discussed here. By allowing the coder out-
put to be a time-varying function of all past obser-
vations, the estimator in our problem effectively has
the freedom to choose what to measure. This has
the potential to significantly increase the estimation
accuracy, if done appropriately.

The idea of causal coder-estimators for dynamical
systems was first investigated in [6]. Subsequently, a
number of different coder-estimators have been pro-
posed, under various conditions on the noise and ini-
tial condition distributions, leading to a number of
convergence conditions and estimation error bounds
[7, 8,9, 10]. The aim of this paper is to investigate
the structural questions underlying this problem. In
the next section, a general framework is developed
and in the subsequent section various results on the
structure of optimal coder-estimators are derived.

2. GENERAL FORMULATION

Consider any random, discrete-time process { X }r>o
in RP observed via a sequence of measurements

{Yi}t>0 in RP " Suppose estimates of the current
state X are required at a distant location that is
linked to the measurement sensor by a digital com-
munication channel with a capacity of R bits of infor-
mation per sampling interval [11]. For simplicity, we
convert this into the more restrictive condition that
only R bits of data may be sent per sampling pe-
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riod, where R is now constrained to be an integer.
Hence at each time k, one symbol from an alphabet
of size M = 2% is transmitted without error to the
estimator. Assuming that there is no restriction on
the complexity of the coder, the transmitted symbol
may depend on all past and present measurements as
well as all previous symbols, i.e.

Sk =Tx(Yx,8%—1) € Znm, Vk>0, (1)

where s is the symbol transmitted at time k and the
notation Z denotes the sequence {z;}%_,, with the
convention that Z_; is the empty sequence. For gen-
erality, the mapping I : RD X(*+1) « Zh = Zy is
allowed to be probabilistic, that is given Y3, Si—1 the
symbol Si occurs according to a prescribed probabil-
ity mass function P{Sk|V,Sk-1}. Due to the finite
bit-rate, each transmitted symbol takes one sampling
interval to reach the estimator, neglecting the prop-
agation delay. Hence at time k the estimator has
the sequence 3;_; available and estimates the current
state x via
Xk = Ag(Sk-1), VkE>0, (2)

where Ay : Z%, — RP is another probabilistic map-
ping, defined by the conditional density Pxy 18

The objective is to find a causal coder-estimator,
defined by {T'x,Ar}s>0, such that some measure of
estimation error is as small as possible. Unlike the
classical situation, corresponding to R — 0o, mini-
mizing E{|| Xy — Xi||?} for each k > 0 is not appro-
priate. The reason for this is that X, still depends
on past choices of I';, 7 < k, so a coder that mini-
mizes E{||X, — Xil2} will not, in general, minimize
E{|| Xk+1 — Xe+1l}. If estimates are needed only up
to time IV, then a more suitable measure of error is a
weighted average such as

N
Dy = aB{[IXx - Xkl1*}, ®)

k=0

where {ax }I_, is a sequence of nonnegative numbers.
Possible choices might be ay = 1/N or oy, = V%,
with 0 < 3 < 1. If, on the other hand, the asymptotic
performance of the coder-estimator is of interest, an
appropriate measure would be limsupy_,., Dn, as-
suming it exists. In the next section, various struc-
tural properties of optimal coder-estimators under a
quadratic cost will be derived.

3. STRUCTURAL RESULTS

Our starting point is an extension of a result proven
in [12] in the context of block source coding.
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Theorem 1 Let {X;}r>0 be a random process in a
separable Hilbert space, with measurements {Y}}x>o.
Suppose the process is coded and estimated using (1)
and (2) under the quadratic cost

p-r({Eax-%a}, ), @

where L : R® — [—00, +) is linear and nonnegative
for nonnegative arguments. Then for a given coder
{Tt}x>0, an optimal estimator is

XPEE{XilSkmn), VE20, (5)
where X, = E{Xk|l~/k_1}, and

inf D=
{Tr,Ak}r>0

L ({E{”X}; - anz}}kzo)
+ inf

{Ti,Axbezo L ({E{"Xk - Xk"2}}k20> .(6)

Proof: The logic of our argument is essentially the
same as in [12]. First note that, given Y;_;, X is
independent of Xy, so

Ex, %, Xk} =Eg_ {Xi}, (7

where the notation E4{-} is short-hand for E{-]A}.
Now Vk > 0,

E{|| Xk — X¢|*}
= E{|IXx - Xi + Xi — X%},
= E{lIXi - Xxl’} + E{|| Xx - Xi|*}
+2E{(Xk—Xk,Xk——Xk>}. (8)
Rewrite the expected inner product as
EEy,_ Ey, 5 {(Xk — Xe, Xi — Xi)},
and note that, since_)_(;c = E{X:|Yi1)}, Xi - Xs
is a function of Xj,Y;_;. Using the fact that if f

is any function and A, B random variables such that
f(A), B lie in a separable Hilbert space, then

Ea{(f(4), B)} = (f(A),Ea{B}), 9
we obtain
E{(Xi - X1, X — Xi)}
= EEy, {(Xk - X By, p A%k~ f(k})} ,
= EEy,_, {(Xk = X, Xk - Exk,;fk_l{)i'k})} :
= EEy,_, {(Xx- X, %x By {XD},
(using (7)),
= E{(By_ (X - X}, X - By, (X))},
(using property (9) again),
= E{(0,%-Ey,_ (XD},
0.



Substituting this into (8) and using the linearity of
L, we obtain

D = L{{E{IXx - Xel*}}150)
+L({B% -2}, ). a0
which leads directly to (6) since the first term on the

R.H.S. is independent of the choice of coder-estimator.
In order to prove (5), note that Vk > 0,

E{|| Xz — Xi|*} , )
= E{|IX:s - Xilli} +AE{||X1: - XilI*}
+2B{(X) — X3, X} - Xi)}- (11)

Now, given Sy_,, X} is independent of Xy, so that
Exkygk—l {X’“} = ES'k—x{Xk}' (12)
Looking at the expected inner product in (11),
E{(X, - X7, X} - X&)}
= EE;  Ex 5  {((Xs— Xi, X; — Xi)},
= BE;,_, {(Xa— X},Ex, 5, {Xi- %},
(using property (9)),
= EEg | {(Xk - X3, X - Exk,ék_l{ffk})},
= EEg,_, {(%x - X, X - Eg_ (2]},
(using (12)),
= B{(Bs,_,{%k - X3}, X - Bg,_ (XD},
(using property (9) again),
= E{(0,%; - E5_,{X:D},
(by definition of X}),
= 0.
Substituting this into (11) and using (10) and the

linearity of L, we obtain

D =L ({E{”ch - Xkllz}}kZO)
+L ({E{uxk - X; Il2}}k20)
+L ({E{nfc,: - X'knﬂ}kzo) :

Since L is nonnegative for nonnegative arguments and
the first two terms on the R.H.S. are independent of
the choice of estimator, D is minimized w.r.t. the
estimator by setting X=X s VE>0.0

From equation (5), it can be seen that the prob-
abilistic estimator mappings {A}x>o0 may be con-
strained to be deterministic without any loss of opti-
mality. Equation (6) implies that the general prob-
lem of coding and estimating a process { X }x>0 with

measurements {Y; } x>0 under a quadratic cost is equiv-
alent to coding and estimating the sequence of con-

ditional means {E{Xklf’k__l}}bo. Hence the first

stage of an optimal coder, if one exists, consists of
a causal filter that transforms the measurements into
the sequence { Xy }x>o0. The sequence { X} }x>0 is then
causally encoded by a second stage before transmis-
sion on the digital link. This procedure agrees with
intuition. As the coding step is where information
is lost, it is sensible to preprocess the measurements
in order to extract the best possible state estimates
and to then encode them, rather than the raw mea-
surements. In addition, note that the first term on
the R.H.S. of (6) is just the classical cost that would
be obtained without a bit-rate constraint. Hence the
classical cost is a lower bound for the rate-constrained
cost, as expected.

At each time k, the coder has R bits with which
to encode {X;};<x. The next question that arises is
how it should best allocate those bits. If the filtered
process is noisy, i.e. X has a low correlation with
{X;}j<k—1, then the available bits should be used
to encode only the more recent outputs of the filter.
On the other hand, if it has very little noise, then
it might be supposed that a certain number of bits
should still be allocated to earlier filter outputs, since
they continue to influence the evolution of the filtered
process. However, if {Xk}kZO is Markovian in RP R
then the following theorem states that all R bits at
time k, which together constitute the symbol s €
Z 1, should be used to encode only the current filter
output.

Theorem 2 Let {Xy}ir>0 be a Markovian process in
RP. Suppose that the states X, are observed and then
coded and estimated via causal probabilistic mappings
of the form

Sk = Te(Xk,Sk-1) € Zns,
X, = Aw(Sk), VE€0,...,N],

so as to minimize a quadratic, finite-time cost of the
form (8). Then deterministic, optimal coder-estimators
exist and have the coder structure

Sk = v} ( Xk, Sk-1), VE€[0,...,N]. (13)
In addition,

Dy = min f(;a (14‘)

inf
{Tr,Ar}o<k<n {6x}tocran

where Yk € [0, . .., N], the functions fy, : RP xZ%, —
R U {0} are defined by the recursion

N
fr(@e-1,8k-1)=

/quxk_.(-’ﬂklmk—ﬂ x
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min {axllzk — Sk (Bk)ll® + fayi (ks 50)} das,
Sk€ZMm

(15)
with f,.,20.

Proof: From the preceding theorem, for each prob-
abilistic coder there exists a deterministic, optimal
estimator X = E{Xy|S:}, so the estimator may be
safely constrained to be deterministic. Let {dx}xz>0 be
any deterministic estimator. For all k € [-1,...,N],
define fiiy : RP*+D  ZHH1 5 R, U {0} by

N

> aillX; - X517

j=k+1

Jr+1(Zk,8k) = Egx, 3,

where the notation E 4 is shorthand for E{-|A}. From
this definition, fo 2 fo(£-1,5-1) = DN, fng1 = 0
and Vk € [-1,..., N], we have the recursion
fe(Fe-1,8k-1)
N

v 112
= Eg_, 5.3 alX; - X175,
i=k

/pxklxk_l(mklzk—l) > Plsk|Ex, 561} x
Sk
[ellzxk ~ Sk (BE)® + frr1(Ek, Sk)] dok.
(16)

Now suppose that 3k € [—1,..., N] such that

min  fip1(Ek, 5k) = fip Tk, 8), (17)
{T;}izen
i.e. the minimum exists and is independent of Zx_;.
Clearly this is true when k = N. Since px,|x,_,, 0k
and P{Si| Xk, Sk-1} (= T;) are independent of the
choice of {I';};>k+1, we have from (16)

min  fi(Tx-1,8k-1)
{Ti}tizk+ '

min /pXkIX;._l(zklxk~1) X

{Ti}tizen

E P{sk| &k, 8x-1} X
Sk
[okllzr — Sk (eI + Frar(Zk, 58)] dz,

= /kalxk_l(zklzk—l)ZP{Sklik,ﬁk—x} x

Sk

[aknxk — (@) + min

{Ti}izer

Observe that, given X’k, S’k, f!c“g)zk, S'k) is indepen-
dent of the choice of P{Sk| Xi,Sk—1}. As such the
R.H.S. is at a minimum with respect to Iy iff

P{sk|Zk,8k-1} =0,
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fk+1(‘i‘k7 gk):l dxk'

for all s; not in Argmingez,, {allzi ~ 0k (5k—1,5)|?
+fie1 @k, (Bk-1, s))}, which depends only on z; and
St—1. A deterministic, optimal coder can be con-
structed by using some arbitrary rule to select a single
minimizing s as the value of s, Furthermore, we have

min  fr(Zx-1,5k-1)
Ti}izk

= et

min {axllzk = Sk (Ek)|\® + fiyy (Tk, §k)} da
sk€Zm

fi(@k-1,8k-1), (18)

i.e. (17) holds for k — 1 as well. By induction, it then
holds Vk € [-1, ..., N], which proves (13) and (15).

To prove the existence of optimal coder-estimators,
define the finite-dimensional vector

6 £ {01(5)} 5, eznr pchan € RMMT D/,

It is easy to see that f§ is continuous w.r.t. 4, so
that its level sets are closed. In addition, note that

vk € [0,...,N),
> / pxo(@x) min_axllzr — G512 da,
spEZMH!

from which it can be shown that f§ — oo as |6} —
oo. Hence the level sets of f§ are also bounded, and
therefore compact, so a minimizing §* exists. O

What this says is quite intuitive. If the process is
Markovian, then the current state already encapsu-
lates all past information and so no bits need to be
wasted on encoding past states. In addition, it con-
firms that deterministic, optimal coder-estimators ex-
ist, so that nothing is lost by focusing on deterministic
rather than probabilistic mappings. Furthermore, the
problem of finding the infimum of Dy over all causal,
probabilistic coder and estimator mappings has been
reduced to the simpler, finite-dimensional problem of
finding the minimum of f§ with respect to the vector
é.

We next consider Gauss-Markov systems. The
corollary below follows directly from the previous the-
orems:

Corollary 1 Consider the linear system

Il

Ap Xy + Vi,
H X + Wy, VE2>0,

Xiy1
Y =

where Xy, € RP, Vi € RP' and {Xo, Vi, Wi }x>0 are
mutually independent and Gaussian. Deterministic
optimal coder-estimators for this system, under the
cost (3), exist and have the following structure:



Coder: At time k, a Kalman one-step ahead pre-
dictor recursively processes the measurements Vi to
yield B

X1 = E{Xpa|Vi}. (19)

The conditional mean Xy, is then encoded according
to the symbols previously transmitted,

Sk = Y(Xk+1, Sk-1). (20)

_ Estimator: Upon receiving the symbol sequence
Sk—1 at time k, X is estimated via

Xk = 5; (S'k—1) = E{Xklgk—l}- (21)

Proof: Equation (19) follows directly from Theorem
1. In the innovations representation,
Xk-{»l =Aka+Zk, Yk >0,

where {Xo, Zx}r>0 are uncorrelated and therefore,
by the Gaussian assumption, mutually independent.
Hence the process {Xi}x>o0 is Markovian. The rest
of the corollary then follows from Theorem 2. O

In general, it is difficult to obtain explicit formu-
lae for the optimal coder-estimator, even for the case
of a one-dimensional system. The Generalized Lloyd
Algorithm [13] or some other method could be used
to derive them numerically for a given system and
bit-rate, but the entire procedure would have to be
repeated if the system dynamics, noise distributions,
duration N or bit-rate changed. Moreover, if we are
interested in minimizing Dy as N — oo, a numer-
ical approach is impossible since the dimension of
the problem becomes unbounded. Nevertheless, the
structural properties of optimal coder-estimators are
a useful foundation upon which to construct a class
of suboptimal coder-estimators that are easier to an-
alyze [10, 14].

4. CONCLUSION

In summary, this paper presents a number of struc-
tural results for coding and estimating dynamical sys-
tems with noise. Under very general conditions and
assuming a quadratic cost, it is shown that prior
to coding, the measurements should be filtered to
yield the sequence of conditional means. It is next
shown that deterministic, optimal coder-estimators
exist for Markovian processes in RP. An expres-
sion for the minimum cost is derived and the gen-
eral structure of the optimal coder is obtained. As
a corollary of these results, the optimal coder for a
Gauss-Markov system consists of a Kalman filter fol-
lowed by a stage that encodes the latest Kalman es-
timate according to the symbols previously transmit-
ted. Although explicit expressions for the optimal
coder-estimator are difficult to obtain, these results

provide valuable structural insights for constructing
suboptimal coder-estimators that are more tractable.
Work is currently in progress on extending the results
in this paper to situations with multiple sensors and
links.
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