
Continuous Detour Queries in Spatial Networks
Sarana Nutanong, Egemen Tanin, Jie Shao, Rui Zhang, and Kotagiri Ramamohanarao

Abstract—We study the problem of finding the shortest route between two locations that includes a stopover of a given type. An

example scenario of this problem is given as follows: “On the way to Bob’s place, Alice searches for a nearby take-away Italian

restaurant to buy a pizza.” Assuming that Alice is interested in minimizing the total trip distance, this scenario can be modeled as a

query where the current Alice’s location (start) and Bob’s place (destination) function as query points. Based on these two query points,

we find the minimum detour object (MDO), i.e., a stopover that minimizes the sum of the distances: 1) from the start to the stopover,

and 2) from the stopover to the destination. In a realistic location-based application environment, a user can be indecisive about

committing to a particular detour option. The user may wish to browse multiple (k) MDOs before making a decision. Furthermore, when

a user moves, the kMDO results at one location may become obsolete. We propose a method for continuous detour query (CDQ)

processing based on incremental construction of a shortest path tree. We conducted experimental studies to compare the performance

of our proposed method against two methods derived from existing k-nearest neighbor querying techniques using real road-network

data sets. Experimental results show that our proposed method significantly outperforms the two competitive techniques.

Index Terms—Continuous queries, spatial network, spatial databases.

Ç

1 INTRODUCTION

LOCATION-BASED services allow users to search nearby
facilities and to find the shortest route between two

locations. In many cases, a user, who is traveling to a
specific destination, may be interested in finding a stopover
that does not introduce significant costs to the trip. An
application scenario can be given as: “On the way to Bob’s
place, Alice searches for a nearby take-away Italian restaurant to
buy a pizza.” One approach to addressing the problem in
this scenario is: 1) to calculate the shortest path from Alice’s
location qqs to Bob’s place qqe; 2) to find the restaurant nearest
to that path [4], [27]. In Fig. 1, the shortest path from qqs to qqe
is highlighted in gray. Objects aa, bb, and cc represent
restaurants that satisfy the search criteria. The object nearest
to the shortest path is bb, which incurs a deviation of 4 units
from the shortest path and an overall trip distance of
21 units. Although this approach is aimed at finding the
object residing closest to the route, we argue that it does not
necessarily produce the overall shortest path. This is
because, this approach uses the deviation from a precom-
puted shortest path rather than the overall trip distance.

To address this problem, we formulate a new query type,
called the detour query, which uses the trip distance as the
optimization measure. Given a set D of detour objects
(stopovers), a starting location qqs and an end location qqe, the

detour query returns a minimum detour object (MDO). An
MDO is an object pp in D that minimizes the TRIPDIST (the
sum of: 1) the distance from qqs to pp, and 2) the distance from pp
to qqe). Fig. 1 illustrates an example of the detour query where
the user wishes to travel from qqs to qqe, the MDO in this
scenario is aa, which provides the TRIPDIST of 15 units (6 units
shorter than the solution from the previous approach).

In order to provide support for realistic location-based
applications, we tackle the aforementioned problem from
two aspects. The first aspect is the ability to browse and to
compare multiple results. By displaying k MDOs at a time,
we allow a user to browse and to select the option with which
they are most satisfied. In Fig. 1, for example, the 2 MDOs
with respect to qqs and qqe are haa; bbi. Although aa provides the
smallest TRIPDIST, bb can be more appealing in terms of food
quality or prices.

The second aspect is continuous monitoring of k MDOs.
Ongoing kMDO monitoring provides users who wish to take
time browsing query results with up-to-date information in
the same manner as other continuous spatial queries [3], [4],
[28]. A user may browse to gather information without a
current intention to commit to a particular decision [1]. As a
result, browsing users usually take more time to make
decisions than users who are searching for something
specific [1], [2], [14], [25]. An application scenario where
browsing applies is given as “on the way to Bob’s party,
Alice is consulting Bob whether she should drop by an
Italian restaurant and purchase take away pizzas to bring to
the party.” Making a detour decision in this scenario can be
an ongoing process. It involves Alice and Bob collaboratively
browsing possible detour options. Using CDQ, Alice could
obtain results and discuss them with Bob. CDQ also allows
Alice to inform Bob when results change and ensures that
they always have up-to-date information to help make a
detour decision whenever they are happy.

A straightforward approach to solving the continuous
detour query (CDQ) problem is to evaluate the kMDO at each
intersection along the trajectory. Specifically, we may

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 7, JULY 2012 1201

. S. Nutanong is with the Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742.
E-mail: nutanong@umiacs.umd.edu.

. E. Tanin and K. Ramamohanarao are with the NICTA Victoria Research
Laboratory, Victoria, Australia and the Department of Computer Science
and Software Engineering, University of Melbourne, Victoria 3010,
Australia. E-mail: {egemen, rao}@csse.unimelb.edu.au.

. J. Shao and R. Zhang are with the Department of Computer Science and
Software Engineering, University of Melbourne, Victoria 3010, Australia.
E-mail: {jsh, rui}@csse.unimelb.edu.au.

Manuscript received 15 Sept. 2010; revised 20 Dec. 2010; accepted 16 Jan.
2011; published online 9 Feb. 2011.
Recommended for acceptance by T. Sellis.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-09-0499.
Digital Object Identifier no. 10.1109/TKDE.2011.52.

1041-4347/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

consider the TRIPDIST, (DISTðqsqs; ppÞ þDISTðpp; qeqeÞ), as an
aggregate distance function [19] with two query points qqs
and qqe. Then, we search for k objects with the minimum
TRIPDISTs for the give locations of qqs and qqe. Since the
starting location qqs changes over time, this approach incurs

repetitive evaluation of network distances. We use this
method as one of the comparators in our experiments.

In this paper, we propose a CDQ solution which
incrementally evaluates the kMDO results at different
intersections according to the TRIPDIST measure. Conse-
quently, repetitive distance evaluation is avoided.

The contributions of this paper are summarized as
follows:

. We formalize the problem of continuous evaluation
of k MDOs for a moving query and a fixed
destination in a spatial network.

. We propose a novel solution to the CDQ problem
that: a) is capable of handling multiple MDOs, b) does
not require access to all data objects, and c) does not
incur repetitive distance evaluation as the query
point moves.

. We conduct extensive experiments with a real road
network data set and realistic application scenarios.
Our experimental results show that our proposed
method significantly outperforms a competitive
method derived from the aggregate k nearest neighbor
(AkNN) querying domain [19], [26].

The rest of the paper is organized as follows: Section 2
presents the problem setting. In Section 3, we discuss related
work, i.e., nearest neighbor (NN) queries in spatial networks

and route planning queries. Section 4 presents background
knowledge on the Dijkstra’s algorithm and Voronoi dia-
grams (VD) which will be needed for our explanations. In
Section 5, we describe our proposed solution. A competitive
solution and discussion are presented in Sections 6 and 7,
respectively. In Section 8, we report experimental results.
This paper is concluded in Section 9.

2 PROBLEM FORMULATION

A spatial network GðN;EÞ is represented by a set N of

nodes (intersections) and a set E of edges (road segments).
For any given two points pp1 and pp2 on GðN;EÞ, the distance
DISTðp1p1; p2p2Þ is the distance via the shortest path from pp1 to
pp2. For ease of exposition, we use undirected graphs in our
presentation, which means that GðN;EÞ satisfies symmetry

and triangle inequality among the other metric space
conditions.1 Notations frequently used in this paper are
summarized in Table 1.

We first define the detour query as a query that returns
the MDO, and also give the definition of MDO as follows:

Definition 1 (Minimum Detour Object). Given a set D of
data objects in a spatial network GðN;EÞ, the MDO is the
object pp in D with the smallest TRIPDISTðqsqs; pp; qeqeÞ, where qqs
and qqe represent the coordinates of start and end locations,
respectively.

Based on this MDO definition, the kMDO is defined as a
sorted list of k detour objects with the smallest TRIPDISTs.

Second, our proposed query is defined as follows:

Definition 2 (Continuous Detour Query). Given a set D of
data objects, a moving query point qq and a destination qqe in
GðN;EÞ, the CDQ query continuously finds the kMDO with
respect to a qq and qqe.

3 RELATED WORK

3.1 NN Queries in Spatial Networks

Papadias et al. [20] introduced two frameworks for the
spatial-network kNN query: the incremental euclidean restric-
tion (IER) and incremental network expansion (INE). IER applies
the property that the euclidean distance between any two
network nodes is a lower bound of their network distance to
prune the search space. INE performs network expansion
similar to the Dijkstra’s algorithm [9] from the query point
and examines data objects in the order they are encountered.
They showed that INE performs better than IER in general.

As an optimization of IER, Deng et al. [8] proposed
incremental lower bound constraint (LBC). The LBC method
calculates distance lower bounds of objects for pruning
purposes. Hence, the workload from network distance
calculation is greatly reduced.

Kolahdouzan and Shahabi [10] presented a Voronoi-based
network nearest neighbor (VN3) approach to evaluate the kNN
query by decomposing the data space using the first-order
network Voronoi diagram with respect to data objects.

1202 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 7, JULY 2012

Fig. 1. Minimum detour object with respect to a starting point qqs and an

end point qqe.

1. In the formulation of our algorithms, however, the distance function
DIST(,), as well as, the notations EDGE(,) and PATH(,) are considered
directional. Our proposed method is therefore applicable to directed
graphs, where the symmetry condition does not hold.

TABLE 1
Frequently Used Notations

Finding the kNNs of a query point qq is done by: 1) identifying
the first NN using the Voronoi diagram; 2) deriving the
subsequent NNs from neighboring Voronoi cells. Other
precomputation-based techniques include kNN algorithms
[7], [22] that use precomputed shortest path information
stored in quadtrees and grid-based data structures.

Next we discuss continuous NN (CNN) problems in
spatial networks. In this paper, we consider the setting of
moving query objects and stationary data objects. We omit
discussion on another class of CNN techniques [7], [15] which
address problems in the setting of moving data objects.

Kolahdouzan and Shahabi [11] proposed the upper bound
algorithm (UBA) for continuous kNN queries in a spatial
network. The algorithm retrieves ðkþ 1Þ NNs with respect
to a given location and calculates an upper bound. This
upper bound is used to eliminate kNN computations
between locations that kNN does not change.

Cho and Chung [5] proposed a continuous kNN
technique that performs snapshot kNN queries at the
intersections on the query path. They showed that kNN
results between any two intersections can be inferred from
those of the intersections. They also formulated an algo-
rithm to find points where kNN changes for a predeter-
mined query trajectory.

Nutanong et al. [16] proposed a technique called the V�-
diagram. In addition to the regular k NNs with respect to a
given query point, their technique retrieves x auxiliary
objects. The value of x is generally in the same order of
magnitude as k. Retrieval of these auxiliary objects provides
additional search scope to allow the query point to move
while retaining enough information to continuously pro-
duce kNN results. As a result, the access cost is reduced.

These NN techniques are aimed at finding an object with
the smallest distance with respect to a single query point.
Using the NN query to solve the detour query problem (by
assigning the starting location to the query point) may result
in an impractical route, especially when the nearest object is
in the opposite direction to the destination. For example, in
Fig. 1, the nearest restaurant with respect to qqs is cc, which
provides the TRIPDIST greater than those of aa and bb.

3.2 Route Planning Queries

Our kMDO monitoring problem can be categorized as a route
planning problem. Specifically, we use the term route
planning to refer to problems of finding a route through
multiple destinations with respect to given routing require-
ments. Queries and techniques closely related to our problem
are summarized in Table 2, where each is categorized by:

1. optimization goal: the distance measure it aims to
minimize;

2. temporality: whether it produces snapshot or con-
tinuous results;

3. number of results: the number of resultant objects
produced/monitored;

4. global access: whether it incurs access to all objects
and nodes in the data set.

For example, to produce a kMDO result for one location, a
global-access method examines all data objects and network
nodes in the entire network.

The last row displays our proposed technique, incre-
mental order-k shortest path tree (IkSPT). To illustrate how our
proposed technique fits into the existing literature, the table
also shows the differences between existing techniques and
ours. For example, TPQ [13] and OSR [23] are snapshot
queries, while the continuous OSR monitoring method [24]
can handle a single result at a time and requires access to all
objects to construct a Voronoi diagram. The PNN monitor-
ing technique [4] aims to minimize the deviation from a
dynamically changing path instead of minimizing the
TRIPDIST. In summary, none of these existing techniques
can monitor multiple CDQ results in a spatial network.
Detailed discussions of these queries and techniques are
given as follows:

Li et al. [13] proposed the trip planning query (TPQ).
Given a list L of types of objects, the TPQ finds the shortest
route that includes objects of those types in L with respect
to given start and end points. For example, a user can be
interested in visiting a post office and a gas station before
going to work. The TPQ finds the shortest route to work
that includes a post office and a gas station. A similar
query, called the optimal sequenced route (OSR) query, was
proposed by Sharifzadeh et al. [23]. Given a point qq and a
sequence S of object types, the OSR query finds the route
that starts at qq that orderly passes through object types in
S, and minimizes the traveling distance. The main
difference between OSR and TPQ is that OSR is ordered,
while TPQ is not.

Sharifzadeh and Shahabi [24] present a safe region-based
solution to the OSR query using the additively weighted
Voronoi diagrams (AWVD). In an AWVD, each generator
point ppi is the location of the first visited object of each
possible route Ri and the associated weight wi is calculated
from the traveling distance between the first and the last
objects. The boundary between the AWVD cells of two
routes R1 : ðpp1; w1Þ and R2 : ðpp2; w2Þ is a hyperbolic curve,

NUTANONG ET AL.: CONTINUOUS DETOUR QUERIES IN SPATIAL NETWORKS 1203

TABLE 2
Queries and Techniques Related to the Continuous Detour Query

kvv� pp1k þ w1 ¼ kvv� pp2k þ w2. That is, R1 and R2 provides

the same total traveling distance with respect to the starting

location. Since associated weights wi can be any positive

value, this technique can also be applied to TPQ.
Yoo and Shekhar [27] proposed the in-route nearest

neighbor (IRNN) query. The IRNN query finds a stopover
that minimizes a deviation from a given path. Since a user
can deviate from the path via only a node, this becomes a
closest pair problem [6] between two sets of locations: the
set of possible stopovers, and the set of nodes along the
preferred path.

Chen et al. [4] studied the problem of path nearest neighbor

(PNN) for a moving query point qq. Their studies include

algorithms to maintain the shortest path from qq to a fixed

destination; and to monitor k PNNs, i.e., the k objects with

the minimum deviations from the shortest path.
Based on the INE and IER frameworks [20], Yiu et al. [26]

proposed a spatial-network variant of the aggregate

kNNðAkNN) query [19]. The AkNN query retrieves k objects

with the smallest aggregate distances to a set of query

points. Given a start qqs and destination qqe in an undirected

graph, the aggregate distance is equivalent to TRIPDIST

when the aggregate function is SUM and the query set is

fqqs; qqeg. We adopt the principle of AkNN querying and the

INE framework to formulate a comparator (in Section 6).
Safar [21] proposed an algorithm to find group k nearest

neighbors in a spatial network. That is, a set of k objects that

minimize the sum distances from a given query set. Similar

to the VN3 approach [10], the algorithm utilizes the network

Voronoi diagram and precomputed distances.

4 PRELIMINARIES

4.1 Network Distance Calculation

This section provides background understanding of net-

work distance calculations. Given two points xx and yy in a

network/graph, Dijkstra [9] introduced an algorithm to

calculate the shortest path from xx to yy based on the

concept of best-first graph traversal. Specifically, to find

the shortest path PATHðxx; yy), the algorithm uses yy as a

reference point and incrementally examines surrounding

nodes until xx is covered, or vice versa. This algorithm is

also known as “distance scan” since all nodes with

distances smaller than that of xx have to be visited. In

addition, one may resume the computation from where it

is terminated to obtain the shortest path from yy to any
node farther than xx.

In our problem setting, since we have to compute the
distances from multiple detour objects to a single destina-
tion qqe, we further explain the Dijkstra’s algorithm using
Fig. 2. To calculate PATHðnn3; qqÞ, the algorithm incrementally
discovers surrounding nodes according to their distances to
qq. In this example, nn5 is discovered first with a distance of
1 unit. Next, nn4, nn1, and nn8 are discovered with distances of
7 (via nn5), 8 (via qq), and 8 units (via nn5), respectively. The
search halts when nn3 is discovered.

Fig. 2 also shows that each of the nodes involved in the
search is associated with a label ðqq; d; nnhÞ where qq denotes
the reference point, d denotes the shortest distance, and nnh
denotes the node from which the shortest distance is
derived. The shortest path from nn3 to qq can be obtained by
recursively traversing the next hop nnh in the label ðqq; d; nnhÞ
until qq is reached. In this case, we obtain hnn3; nn4; nn5; qqi as
the shortest path. As displayed in Fig. 2, a shortest path tree
(SPT) (where the reference point qq is the root) is formed
by linking the next hop nnh of all nodes involved in the
calculation.

4.2 Voronoi Diagrams

This section provides discussion on variants of the Voronoi
diagram as background knowledge for our proposed
method. The most basic form of Voronoi diagrams [17] is
the Voronoi diagram in euclidean space with the order
value of 1. Fig. 3 shows the VD of six data objects as
generators in euclidean space (the underlying network
connectivity is ignored). Each generator is associated with a
cell in which the generator dominates. For example, the
Voronoi cell VCðff) is a region containing points vv such that
the distance from vv to ff is not greater than the distance from
vv to any other generator. The boundary between two
Voronoi cells ppi and ppj is defined by the bisector BTðpipi; pjpjÞ,
i.e., a set of locations equidistant to ppi and ppj. For example,
the boundary of VCðff) consists of the bisectors BTðff; aaÞ,
BTðff; ccÞ, BTðff; ddÞ, and BTðff; eeÞ. This technique allows the
NN problem to be treated in the same manner as a point-
location problem. That is, locating the Voronoi cell in which
the query point belongs.

Fig. 4 displays a technique to construct a network2 VD,
where three boundaries (bisectors) of a sample cell VCðff)

1204 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 7, JULY 2012

2. The qualifier “network” is omitted when context is clear.

Fig. 2. End product of the Dijkstra’s algorithm where each node contains

a label ðqq; d; nnhÞ denoting the reference point qq, the distance d to qq, and

the node nnh from which the distance d is derived, respectively. Fig. 3. Voronoi diagram in euclidean space.

are marked as crosses. A network VD can be constructed
using the shortest path tree technique [18]. The technique is
based on the best-first search principles similar to that of
the Dijkstra’s algorithm [9]. Specifically, by replacing a
single reference point with the objects (generators), we can
use the Dijkstra’s algorithm explained in Section 4.1 to
compute SPTs of multiple objects. An end product is a set
of SPTs where each is associated with its nearest generator.
Boundaries of Voronoi cells are obtained using the distance
information embedded in each node to find points
equidistant to two generators.

Fig. 4 shows a forest of shortest path trees constructed
based on the generators faa; . . . ; ffg. We consider this forest
as a single tree when each branch is associated with its
nearest generator and each generator is tied to a root. For
example, the branch of generator aa has fn4n4; . . . ; n7n7g. The
boundary between VCðaa) and VCðff) on EDGEðn5n5; n8n8) is
calculated based on DISTðn5n5; aaÞ and DISTðn8n8; ffÞ, which are 7
and 8, respectively. Therefore, the point on EDGEðnn5,nn8)
that makes aa equidistant to ff is PNTðn5n5,nn8,2), the point
2 units into EDGEðnn5,nn8) (measured from nn5). This point is
shown as the cross on EDGEðn5n5; n8n8). A Voronoi cell can be
obtained by applying this calculation to edges adjacent to its
generator and the surrounding generators. For example,
VCðff) (the region enclosed by dotted lines) is bounded by
the bisectors between ff and its three neighboring gen-
erators aa, cc, and ee. This technique can be used to provide
answers for NN queries in a spatial network. For example,
given a VD and an SPT for restaurants in a road network,
the nearest restaurant can be obtained by locating the
Voronoi cell that contains the user’s location, while the SPT
provides the shortest route to that restaurant.

In the previous example, we assume that the preference
for a particular restaurant is decided by the distance solely.
The additively-weighted VD (AWVD) [18] is devised to
address NN problems with an offset measure. For example,
restaurants can be offset by their food prices to increase the
desirability of cheaper restaurants. In the CDQ problem,
each data object is associated with an offset derived from
the distance to one common destination. However, the
AWVD construction technique [18] is inapplicable to the
CDQ problem because it only handles a single resultant
object, and requires global access to network nodes and
data objects. This technique forms the basis to describe our
proposed method in the next section.

Fig. 5 provides an example of the SPT technique using
the additive weight concept. Fig. 5a presents the order in

which the nodes are included in the SPT. The x-axis
represents the TRIPDIST measure. The SPT has six branches,
where each branch corresponds to each of the six generators
aa to ff . The initial position along the x-axis of an SPT branch
corresponds to the additive weight (the distance from qeqe) of
the corresponding generator. For example, the additive
weight of aa is 13 units so its initial position is 13. The first
node to be included in SPT is n6n6 providing the TRIPDIST of
14. The SPT incrementally expands according to the
additively weighted distance to the generators. The process
stops when all nodes are labeled. In this example, the last
node labeled is n19n19.

After the SPT is constructed, the boundaries between
Voronoi cells are calculated by finding edges EDGEðnini; njnj)
where nni and nnj belong to two different generators. In Fig. 5b,
the boundary between VCðbb) and VCðdd) on EDGEðn1n1; n2n2Þ is
the point location vvbd such that TRIPDISTðvbdvbd; bb; qeqeÞ is equal to
TRIPDISTðvbdvbd; dd; qeqeÞ. In this case, vbdvbd is PNTðn1n1; n2n2,12). This
boundary is also shown as the extension ton2n2 on the branch of
bb and the extension to nn1 on the branch of dd in Fig. 5a.

5 PROPOSED SOLUTION

In this section, we present our proposed solution,
incremental order k shortest path tree in the following steps.

NUTANONG ET AL.: CONTINUOUS DETOUR QUERIES IN SPATIAL NETWORKS 1205

Fig. 4. Shortest path trees and a Voronoi cell.

Fig. 5. Construction of an AWVD using the SPT technique.

First, we generalize the SPT technique to the order-k SPT
(kSPT). Second, we show how kSPT construction can be
done in an incremental manner. Finally, we present a
method to compute the kMDO of any point in the network
from a kSPT.

5.1 Order-k Shortest Path Tree

In this section, we present a method to construct a kSPT by
introducing overlaps between SPT branches. The kSPT
branches are overlapped in such a way that each node
appears in the tree exactly k times in k different branches. We
first define the network data structure used by our proposed
method. A network/graph is represented using the adja-
cency-list format, i.e., a list of nodes where each node entry
contains information regarding its adjacent nodes. A data
structure “Node” is defined as follows:

Definition 3 (Node structure). The structure of a node nini
contains the following attributes:

. ID: the node identification.

. Adjacency list (AdjList): a list of edges to/from
immediate neighbors and associated weights. (For a
directed graph, an adjacency list may comprise three
edge types: incoming, outgoing, and bidirectional.)

. Label list (LabelList): a list of (at most) k labels. For
each label ðpp; d; nhnhÞ in the label list of nini,

- pp represents a detour object,
- d represents TRIPDISTðnninni; pp; qeqeÞ, and
- nhnh represents the next hop in order to get to pp.

. Type: a node type is “Labelable” by default and
becomes “Permanent” upon completion of k labels.

Fig. 6 shows a 2SPT of the network in Fig. 5b. The
figure also shows the order in which nodes are processed
according to the TRIPDIST measure. Each node in the 2SPT
consists of two labels: first and second. For example, n6n6

appears twice in the 2SPT in the branches of generators aa
and ff , respectively. The first label of n6n6 corresponds to the
generator aa and TRIPDISTðn6n6; aa; qeqeÞ of 14 units. The second
label of nn6 corresponds to ff and the TRIPDIST of 20 units.
Note that the portion containing the first labels (high-
lighted in gray) is identical to the order-1 SPT shown in
Fig. 5a.

We describe kSPT construction steps in Algorithm 1.
The algorithm accepts a set D of objects, a value of k, a
graph GðN;EÞ, and a destination qeqe as input. The output
kSPT is provided as GðN;EÞ with kMDO information
embedded. Specifically, we introduce k labels for each nini
in N . The initialization (Lines 1 to 10) includes the
following steps.

. First, a priority queue PQ is initialized. A priority-
queue entry is a tuple ðnn; pp; d; nhnhÞ, where nn is the
node to which the entry corresponds, and the other
three elements pp, d, and nnh form a labeling candidate
for an entry in nn.LabelList. Entries in PQ are ranked
according to the labeling distance d.

. Second, for each object pp, we create a node entry
nnp and insert it into GðN;EÞ where affected edges
in E are accordingly modified (Lines 3 and 4). We
create a priority queue entry for npnp with the
associated detour object pp and the labeling distance

d of DISTðnpnp; qeqeÞ. The next hop nhnh (shown as a
dash “-” sign) is inapplicable in this case since npnp
is already at pp. The entry ðnpnp; pp; d;�Þ is inserted in
to PQ (Line 7).

. Third, for each network node, we create an empty
label list and set the node type to “Labelable”
(Lines 8 to 10).

Best-first search is handled by the while loop (Lines 11

to 20). The first step of each iteration is to dequeue the

head entry ðnn; pp; d; nhnhÞ from PQ (Line 12). Since we are

interested in only the first k labels of each node, the entry

is ignored if the node’s label list already contains k labels,

i.e., the node is “Permanent.” In addition, to ensure that

each node is associated with k unique MDOs, the entry is

also ignored if there exists an entry with Object pp as the

associated detour object in the label list. Otherwise, a label

ðpp; d; nhnhÞ is added to the node’s label list (Line 14). The

node type becomes permanent if this label is the kth entry

in the label list (Lines 15 and 16). In Lines 17 to 20, for

each node nana such that there exists an edge that connects

nna to nn, we create a PQ entry ea, ðnana; pp; dþ !; nnÞ, where

. nana is the node to which this entry corresponds;

. pp is the associated detour object;

. ðdþ !Þ is the labeling distance calculated by adding
the current labeling distance d to the weight of
EDGEðnana,nn);

. nn is the node from which the labeling distance is
derived.

The entry ea is then inserted into PQ. The while loop

continues until PQ is exhausted, i.e., every node is labeled

1206 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 7, JULY 2012

Fig. 6. Order-k SPT with k of 2.

k times. Finally, the graph GðN;EÞ with k labels on each
node is returned as output (Line 21).

Let us now consider the first few steps of the algorithm,
in the context of the example in Fig. 6. After the
initialization steps, the priority queue PQ has the following
initial entries:

hðaa; aa; 13;�Þ; ðff; ff; 15;�Þ; ðdd; dd; 16;�Þ;
ðee; ee; 26;�Þ; ðcc; cc; 27;�Þ; ðbb; bb; 32;�Þi:

The first entry retrieved from PQ is ðaa; aa; 13;�Þ. As a
result, Node aa is labeled with aa itself as the associated
detour object and the labeling distance of 13. Next, from
the two nodes adjacent to aa, n6n6, and n7n7, two entries
ðn6n6; aa; 14; aaÞ and ðnn7; aa; 18; aaÞ are created, respectively.
These entries are inserted into PQ resulting in the
following objects in PQ:

hðnn6; aa; 14; aaÞ; ðff; ff; 15;�Þ; ðdd; dd; 16;�Þ;
ðnn7; aa; 18; aaÞ; . . . ; ðbb; bb; 32;�Þi:

The second retrieved entry ðn6n6; aa; 14; aaÞ has n6n6 as the
corresponding node, hence we apply the label ðaa; 14; aaÞ to
n6n6. The same process continues until PQ is exhausted. The
algorithm returns GðN;EÞ with k labels associated to each
node as displayed in Table 3.

The drawback of Algorithm 1 is that it requires access to
all data objects and nodes in the data space. This global
access requirement can be disadvantageous especially in a
large network. In the next section, we show how this
drawback can be mitigated. To better illustrate this draw-
back in comparison to nonglobal access methods, we use
Algorithm 1 as a competitor in the experimental studies.

5.2 Incremental kSPT Construction

We now present our CDQ solution which incrementally
retrieves data objects and computes node labels as the
monitoring process progresses. The computation cost of a
kSPT can be greatly reduced by exploiting the fact that the
offset assigned to each object pp is the distance from pp to the
destination qeqe. Hence, objects that are far away from qqe are
likely to be involved in the computation later than objects
nearer to qqe. For example, in Fig. 6, when applying the first
label ðaa; 14; aaÞ to n6n6, Objects bb, cc, and ee cannot affect the
results since their distances to qeqe are greater than the
labeling distance of 14. Based on this property, we devise a
mechanism which is incremental in two aspects:

. Object retrieval: through monitoring of the labeling
distance and incremental retrieval of data objects;

. Node labeling: through an incremental labeling
process, which halts when a desired label list is
obtained and resumes when more label lists are
required.

As a result, we eliminate the global access requirement in
terms of both data objects and network nodes. We revisit
the running example in Figs. 5 and 6 to elaborate the
concept of incremental kSPT construction. As shown in
Fig. 7, the query point qq is initially at n10n10 (and is traveling
toward n7n7). The kMDO results of this initial location of qq
can be obtained from the label list of n10n10.

We now describe how the label list of n10n10 can be
obtained. As the labeling process progresses, detour
objects are incrementally retrieved according to their
distances to qeqe. The scope of this object retrieval (the
distance from the farthest retrieved object to qeqe) is denoted
as a search radius r. The value of r indicates whether a
node is safe to label or more detour objects are needed.
Fig. 8 presents a stepped explanation to how the k labels of
n10n10 can be computed though incremental object retrieval
and incremental node labeling.

NUTANONG ET AL.: CONTINUOUS DETOUR QUERIES IN SPATIAL NETWORKS 1207

TABLE 3
First and Second Labels of Network Nodes

(with Some Entries Omitted)

Fig. 7. Starting location of the query point qq.

. In Fig. 8a, the first retrieved object is aa which is the
object nearest to qeqe. The search radius r is set to
DISTðaa; qeqeÞ. The only one node that can be labeled
with this r value is Node aa itself. After the labeling,
we move on to consider the next object.

. In Fig. 8b, the next object nearest to qeqe is ff . The
search radius r is updated to DISTðff; qeqeÞ, which
allows labeling of n6n6 and Node ff itself, respectively.

. In Fig. 8c, dd is retrieved and the value of r is updated
DISTðdd; qeqeÞ. Node dd is the only labeled node under
this r value.

. In Fig. 8d, ee is retrieved. The value of r is updated to
DISTðee; qeqeÞ, which allows the nodes in the gray
region to be labeled. The labeling process halts upon
completion of the second label of n10n10. The figure also
shows that n10n10 appears first in the branch of ff and
again in the branch of aa. We can therefore infer that
the kMDO list of n10n10 is hff; aai.

Next, we show how a subsequent label list can be
obtained as the query point moves away from the initial
location in Fig. 7. Assume that now the query point is at a
location on EDGEðn10n10,nn7). In order to produce the kMDO

results for this location, we need the label list of n7n7 in
addition to that of n10n10. Fig. 9 shows that the second label of
nn7 can be obtained by resuming the labeling process halted
after the completion of the second label of n10n10. The figure
also shows that we are only required to label n13n13 and n7n7 in
order to obtain the second label of nn7.

Algorithm 2 provides detailed steps of how the label list
of a node nini is obtained. The first step is to check whether
the k labels of nini already exist, in which case the labels are
returned right away (Line 1 to 3). For example, after
obtaining the label list of n7n7 in Fig. 9, the label lists of nodes
n6n6, n9n9, n10n10, and n12n12 can be obtained without further graph
traversal. If the requested label list is otherwise incomplete,
we proceed to the main while loop (Lines 4 to 26). The
main while loop in Algorithm 2 is similar to that in
Algorithm 1. The following modifications are applied to
make Algorithm 2 incremental.

. The first modification is the search radius check
(Lines 6 to 12), which ensures that the value of r is
not smaller than the labeling distance d. Specifically,
until r is greater than or equal to d, the following
steps are repeated:

- retrieving the next NN with respect to qeqe (Line 7);3

- performing graph modification and priority
queue insertion (Lines 8 to 11) similar to
Algorithm 1;

- setting the search radius r to the distance from
that object to qeqe (Line 12).

. The second modification is deferral of node initi-
alization (Lines 15 to 17).

. The final modification is a halt to the node
labeling process after the requested node has
k labels (Lines 25 and 26).

Algorithm 3 provides detailed steps of how kMDO
monitoring can be conducted using Algorithm 2. Algo-
rithm 3 has the following parameters: a data set D, a
k value, a road-network graph GðN;EÞ, and a destination
qqe. The initialization steps (Lines 1 to 7) include:

1208 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 7, JULY 2012

3. We omit presentation of a marginal case where the data set is
exhausted, in which case we set r to infinity and break the loop.

Fig. 8. Incremental kSPT construction with k of 2.

Fig. 9. Incremental kSPT construction with k of 2 (cont.).

. initializing the priority queue PQ;

. retrieving the nearest object to qqe as the initial object
pp, and inserting it into GðN;EÞ and PQ;

. setting the search radius r to DISTðpp; qeqeÞ.
The kMDO monitoring process is conducted in the

while loop (Lines 9 to 12). In the context of our running

example, Algorithm 3 uses Algorithm 2 to produce the

label lists of nn10 and nn7: hðff; 19; ffÞ, ðaa; 21; nn7Þi, and

hðaa; 18; aaÞ, ðff; 22; nn10Þi, respectively. These label lists are

then used to produce the kMDO results for the current

location of the query point (Line 11). These results are then

reported to the user (Line 12). In the next section, we show

how the kMDO of any location in GðN;EÞ can be derived

from such label lists.

5.3 Derivation of kMDO from Node Labels

In the previous section, we have shown that the kMDO of

any node in the network can be incrementally obtained

using Algorithm 2. We now present a method to calculate

the kMDO list of any location on an edge. For a query point

qq on a bidirectional edge EDGEðnini,nnj), the kMDO list of qq

may comprise objects from the lists of both end. (For a

directional edge EDGEðnini; njnj), the kMDO list of qq is the same

as that of nini if and only if qq is exactly at nini. Otherwise, the

kMDO list is the same as that of nnj, since qq cannot leave

EDGEðnini; njnj) without passing njnj.
4)

We use Fig. 10 to illustrate how the kMDO list can be

obtained in such a case. Let ! denote the edge’s weight and

� denote the distance from nini to the query point qq along the

edge. In this example, the query point qq is on EDGEðn10n10; n7n7)

with � of 0.5 units and ! of 3.0 units. The (order sensitive)

kMDO lists of n10n10 and n7n7 are hff; aai and haa; ffi, respectively.

For each unique object pp in those lists, TRIPDISTðqq; pp; qeqeÞ can

be obtained by comparing the distance via n10n10 and the

distance via n7n7. Specifically, we select the node that

provides the minimum distance of (TRIPDISTðn10n10; pp; qeqeÞ þ �Þ
and (TRIPDISTðn7n7; pp; qeqeÞ þ !� �Þ. Applying this principle to

aa and ff , we can see that:

. n10n10 provides the minimum distance of 19.5 units
for ff ;

. n7n7 provides the minimum distance of 20.5 units for aa.

Algorithm 4 provides a formal description of the result
derivation process. The input parameters are 1) the edge
EDGEðnini; njnj) on which the query point resides, 2) the two
labels Li and Lj of the end nodes, and 3) the distance
offset � indicating the location of the query point relative
to nini. Lines 7 to 21 handle the case where EDGEðnini; njnj) is
bidirectional. (In Line 1, we check whether the edge is
directional. If so, we return Li if the query point is right
on nini. Otherwise, Lj is returned, since nni is reachable
only via njnj in this case.) For each unique object pp from Li
and Lj, we compare the distance di via nini and the
distance dj via njnj. If there is no entry with pp in Li, the
distance di is infinity (i.e., ignored). This is because in
such a case, the actual di cannot affect the kMDO list of qq.
The same logic also applies to dj. The minimum of di and
dj forms TRIPDISTðqq; pp; qeqeÞ. Next, a label is created with
the MDO of pp, the labeling distance of TRIPDISTðqq; pp; qeqeÞ.
The label is inserted into the list A. After the TRIPDISTs
of all unique objects are calculated, the top k resultant
labels in A are returned.

NUTANONG ET AL.: CONTINUOUS DETOUR QUERIES IN SPATIAL NETWORKS 1209

Fig. 10. Derivation of kMDO results from two label lists.

4. Assume no objects on EDGEðnini; njnj).

The correctness of Algorithm 4 is guaranteed by Lemma 1.
Specifically, the lemma states that the kMDO of a location
between two nodes of a bidirectional edge can be obtained
from the information given by the labels of those two nodes.

Lemma 1. Given an edge EDGEðnini; njnj) and a common
destination qeqe, let Ai and Aj be the kMDO lists of nini and
njnj, respectively. If an object pp is one of the kMDOs of any
point vv on EDGEðnini; njnj), then pp is a member of Ai and/or Aj.

Proof. We prove this lemma by showing that for any object
pp that is neither a member of Ai nor Aj, there are at least
k objects rr in Ai or Aj such that

For any point vv on EDGEðnini; njnj), TRIPDISTðvv; pp; qeqeÞ is
minimum between (DISTðvv; niniÞ þ TRIPDISTðnini; pp; qeqeÞÞ and
(DISTðvv; njnjÞ þ TRIPDISTðnjnj; pp; qeqeÞÞ. We therefore split de-
rivation of TRIPDISTðvv; pp; qeqeÞ into two cases. First, if nini
provides a TRIPDIST less than or equal to that of njnj, then

Let pipi be any object in Ai. If pp is not in Ai, then

This inequality implies that TRIPDISTðvv; pp; qeqeÞ must be
greater than or equal to that of any of the k objects in Ai.

Second, whennjnj provides a smaller TRIPDIST, the same
principle can be applied to show that TRIPDISTðvv; pp; qeqeÞ is
not less than that of any of the k objects in Aj.

These two cases imply that for any given point vv on
EDGEðnini,njnj), there must be at least k detour objects from
either Ai or Aj that provide TRIPDISTs smaller than or
equal to TRIPDISTðvv; pp; qeqeÞ, and hence pp can be safely
ignored as a query result at vv. tu

Note that by considering data objects as network nodes,
the kMDO results of any location on EDGEðnini; njnjÞ can be

derived from those of nini and njnj. However, in a setting
where such graph modification is inapplicable, the same
principle can still be applied. In this case, to produce the
k MDOs of any location qq on EDGEðnini; njnjÞ, we need to also
consider detour objects along EDGEðnini; njnjÞ in addition to
the kMDO results at the end nodes.

We can observe that the kMDO of any location on an
edge EDGEðnini; njnjÞ can be efficiently computed by compar-
ing the distances of entries in the label lists of nini and njnj.
Alternatively, one may apply a kNN monitoring algorithm
(e.g., the split point calculation algorithm [5] or the
incremental rank update algorithm [12]) to identify points
along EDGEðnini; njnjÞ where the kMDO changes. Using these
split points, an edge can be decomposed into intervals
where each corresponds to a particular kMDO. Conse-
quently, we can replace repetitive distance comparison and
sorting operations by boundary check and incremental
update operations, respectively. Implementation of these
techniques is independent of the proposed IkSPT con-
struction algorithm.

6 COMPETITIVE METHOD: INCREMENTAL NETWORK

EXPANSION

In this section, we formulate a competitive method based on
the existing concept of AkNN querying [19], [26]. In this
method, we apply the multiple query method [19] to retrieve
k MDOs with respect to a starting location qsqs and a
destination qeqe. We call this method INE-CDQ, since we use
the INE principle to retrieve

1. NNs from qsqs (objects pp that minimize DISTðqsqs; ppÞ);
2. NNs to qeqe (objects pp that minimize DISTðpp; qeqeÞ).

The order in which these objects are retrieved depends on
the search coverage Cs with respect to qsqs and the search
coverage Ce with respect to qeqe. That is, the next NN with
respect to qsqs is retrieved if Cs is smaller than Ce and vice
versa. Based on these coverages, each retrieved object pp is
categorized into two types.

. Candidate: pp is discovered via both qsqs and qeqe.

. Precandidate: pp is discovered via either qsqs or qeqe only.

The TRIPDIST of each candidate pp is the sum of DISTðqsqs; ppÞ
and DISTðpp; qeqeÞ, while a lower bound is used to represent
the smallest possible TRIPDIST produced by all precandi-
dates.

Let psps and pepe be the nearest precandidates discovered by
qsqs and qeqe, respectively. A TRIPDIST lower bound L of all
precandidates is calculated by substituting the search
coverages Cs and Ce for the unknown distances, i.e.,

Assume that all candidates pp are maintained in a priority
queue PQc, where entries are organized according to
TRIPDISTðqsqs; pp; qeqeÞ. The head entry of PQc is the next
MDO with respect to qsqs and qeqe if its TRIPDIST is smaller than
the lower bound L. Otherwise, the next NN has to be
retrieved in order to determine the next MDO. The process
continues until k MDOs are discovered.

Since this method constructs kMDO results based on a
specific query location, the results have to be reevaluated as

1210 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 7, JULY 2012

the query point qsqs encounters an unvisited node. However,
we can exploit the fact that qeqe is a fixed destination and
reuse the network expansion result for subsequent kMDO
evaluations. That is, all objects discovered via qeqe are cached
and the SPT with respect to qeqe is incrementally expanded
per demand. As a result, each node is visited by the
network expansion with respect to qeqe at most once.

Note that one can also modify TPQ and OSR to find
k MDOs with respect to a query location qsqs and a destination
qeqe by limiting the sequence length to 2, where 1) the first
element is a detour object pp, and 2) the second element is a
fixed destination qeqe. We can then find objects pp that minimize
the total sequence length of (DISTðqsqs; ppÞ þDISTðpp; qeqeÞ). As can
be seen, this modification results with an approach compar-
able to AkNN.

7 DISCUSSION ON PROPOSED AND COMPETITIVE

METHODS

In this section, we discuss the advantages and drawbacks of
our proposed method IkSPT� CDQ (Algorithm 3), in
comparison to the following two competitive techniques.

. INE-CDQ: incremental network expansion around qsqs
and qeqe (as described in Section 6).

. kSPT-CDQ: construction of an entire order-k short-
est path tree (as shown in Algorithm 1).

INE-CDQ applies the incremental network expansion
principle to retrieve kMDO with respect to the current
location of the query point qsqs. Since such an expansion is
query-centered, the distances from qsqs to its surrounding
nodes have to be reevaluated from scratch when qqs moves.
As shown in Algorithm 1 (kSPT-CDQ), we can avoid
repetitive distance evaluation by applying network expan-
sion in a data-centered manner. Specifically, network dis-
tances to a set D of data objects are calculated by using each
detour object pp in D as a center of expansion (where pp is
weighted by DISTðpp; qeqeÞ). Algorithm 1 terminates only when
each node nn is associated with k detour objects pp with the
smallest TRIPDISTðnn; pp; qeqeÞ. As a result, kSPT-CDQ is
disadvantageous to INE-CDQ when the query locations
are close to the destination in relative to the size of the
network.

In our proposed method, IkSPT-CDQ, we exploit a
special property of the CDQ problem where data objects are
additively weighted based on their distances to the
destination qeqe. As a result, the order in which nodes are
visited by network expansion is skewed toward qeqe. Based
on this knowledge, IkSPT-CDQ is formulated by allowing
the labeling process to halt when the requested node is
complete and to resume when more kMDO results are
required. Therefore, the query processing cost depends on
the distance from the query location qsqs to the destination qeqe.
In this respect, IkSPT-CDQ has a similar behavior to INE-
CDQ. This is because, in order to retrieve the first MDO
with respect to given locations of qsqs and qeqe, INE-CDQ has to
consider at least objects in the search space of

where d denotes DISTðqsqs; qeqeÞ. However, IkSPT-CDQ does
not suffer from repetitive result evaluation, since kMDO

results of each node are obtained via data-centric expan-
sion. To provide a more comprehensive cost comparison
between the three methods, experimental results are
reported in the next section.

8 EXPERIMENTS

This section presents experimental studies on the two
competitors, INE-CDQ and kSPT-CDQ, and our proposed
method, IkSPT-CDQ. Our experiments are conducted on a
2.66 GHz Intel Core 2 Duo machine with 4.0 GB of main
memory. All algorithms are implemented in Java. As
displayed in Fig. 11, we use a large road network
representing main roads in and around San Francisco. The
network consists of 174,956 nodes and has a network
diameter of 16,824 units.

8.1 Experimental Setup

Our experimental setup is based on an application scenario
where a user at the starting location qsqs wishes to travel to a
location qeqe. The user also would like to monitor a list of
k MDOs within a set D of detour objects. After traveling for
l units, the user selects a detour object and stops monitoring
the k MDOs. Therefore, no further monitoring is needed
and the query can terminate.

We use two performance measures: 1) the total execution
time; 2) the graph traversal cost. The total execution time is
measured as the amount of time a technique uses to process
one trajectory. The graph traversal cost is measured as the
number of times network nodes are accessed through
kSPT construction and network distance calculations.

Our experimental studies include the following para-
meters:

. the monitoring distance l along the query trajectory,

. the distance d from the original query location of qsqs
and the destination qeqe,

. the number k of requested MDOs, and

. the relative density � of nodes with respect to
objects.

Table 4 provides the details of these parameters. The default
values and ranges of these experimental parameters are
derived from the aforementioned application scenario. We
assume that a user (while moving) is capable of paying
attention to only a small number of MDOs so the range of k is
set to [2, 10]. The range of � is set to [100, 500] to emulate the
number of nodes per point of interest (e.g., a restaurant or a

NUTANONG ET AL.: CONTINUOUS DETOUR QUERIES IN SPATIAL NETWORKS 1211

Fig. 11. Main roads around the San Francisco bay area.

hotel) that matches the user’s preference. That is, in a
network with 174,956 nodes, the number of objects is ranged
from 350 to 1,750 objects. We use a high number of nodes per
object, since data objects that match user’s preference are
more realistically represented this way. For example, there
maybe hundreds of restaurants of a particular cuisine and
price range, although in total there maybe thousands of
restaurant in one city.5

The range of d is set to [800, 4,000] to represent typical
traveling distances in one city, e.g., 5 to 25 percent of
the diameter of the San Francisco network. The default
kMDO monitoring distance l and the default value of the
distance d from the origin to the destination are selected to
emulate a user making their detour decision early in their
trip. That is, the l value of 400 units and the distance d from
qsqs to qeqe of 2,400 units correspond to the user making their
detour decision after traveling 1/6 of the distance to the
destination qqe. Assume that the user intends to drive to a
destination 30 miles away from the origin and is traveling at
a constant speed of 45 mph. The detour decision is made
within the first 6-7 minutes of the trip.

We use two types of trajectories: directional and random.
For each type, we generated 10 instances as a query set.
Experimental results are reported as the average of results
from these trajectories. We used the same set of starting
locations qsqs for both types. A directional trajectory was
generated as the shortest path PATHðqsqs,qeqe) with a starting
point qsqs. The trajectory is terminated at the location vv on
PATHðqsqs,qeqe) such that DISTðqsqs; vvÞ is equal to l. A random
trajectory was generated as a sequence of subtrajectories
(where the end of one subtrajectory is the starting location
of the next one). Each subtrajectory is a shortest path to a
random destination (independent of qeqe) and has a length of
100 units. The trajectory length l is measured as the total
length of all subtrajectories. For example, a trajectory with a
length of 400 units contains four subtrajectories.

These two trajectory types represent two common cases.
First, a directional trajectory represents a case where the
directionality is absolute, e.g., a truck driver follows the
shortest path to a destination while keeping track of a pizza
place to get some food. Second, a random trajectory
represents a case where the directionality is weak, e.g., a
tourist visits sightseeing destinations while keeping track of
supermarkets to drop by before going back to her hotel.

8.2 Experimental Results

8.2.1 Effect of l on INE, kSPT, and IkSPT

In the first set of experiments, we show the effect of the
monitoring distance l on the execution time and traversal

cost of the three methods. The value of l is ranged from 0 to
800 units. The l value of 0 corresponds to the query being
used as a snapshot query, i.e., finding an instantaneous
result without continuous monitoring. According to Figs. 12
and 13, INE is the best method when used for a snapshot
query. However, when the monitoring distance l increases,
execution time and traversal cost of INE consistently
increase for directional and random trajectories. This is
because, INE has to reevaluate kMDO results for each
unvisited node encountered by the query point.

For kSPT, on the other hand, both execution time and
traversal cost remain unchanged, because kSPT computes
the kMDO results for all nodes in the network. For IkSPT,
changes in l do not produce a noticeable effect on both cost
measures. This is because while computing the kMDO
results for the initial query location of qqs, IkSPT also
computes results or partial results for its surrounding node.
Hence, the incremental cost of computing subsequent node
is negligible. The experimental results show that INE is the
best method for a snapshot query, while IkSPT is the best
method if continuous kMDO monitoring is required.

8.2.2 Effect of d on INE, kSPT , and IkSPT

In the second set of experiments, we show how the three
methods scale as the distance d from the initial location qqs to
destination qqe increases. The distance d is varied from 800 to
4,000 units. According to Figs. 14 and 15, since kSPT
computes kMDO results for all nodes in the network, the
distance d has no effect on either the execution time or the
traversal cost for both directional and random trajectories.
For INE and IkSPT, on the other hand, the distance d has
positive correlation with their execution time and traversal
cost. These results conform with our discussion in Section 7.
We can also see that IkSPT has a much smaller cost and
scales better than INE as d increases.

1212 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 7, JULY 2012

TABLE 4
Experimental Parameters

5. Objects that do not match the user’s preference can be pruned during
data retrieval (Line 7 of Algorithm 2 and Line 2 of Algorithm 3). Hence, they
are not involved in kMDO labeling of nodes.

Fig. 12. Effect of l (directional trajectories).

Fig. 13. Effect of l (random trajectories).

8.2.3 Effect of k on INE, kSPT , and IkSPT

The third set of experiments presents a study on the effect of
the number k of requested MDOs on the three methods. The
value of k is varied from 2 to 10. According to Fig. 16
(directional) and Fig. 17 (random), the parameter k has no
noticeable effect on the execution time or the traversal cost of
INE. As explained in Section 7, each MDO has to be covered
by the network expansions with respect to qsqs and qeqe. This
requirement creates a high setup cost in order to determine
the first MDO. This setup cost dominates the incremental
cost of determining the subsequent ðk� 1Þ MDOs. As k
increases, kSPT and IkSPT have similar behavior. That is,
both execution time and traversal cost increase as k increase.
This is because, k determines the number of labels for each
node. Since kSPT has to construct the kMDO results for all
nodes in the network and IkSPT halts when requested
nodes are complete, The execution time and traversal cost of
IkSPT are much smaller than those of kSPT.

8.2.4 Effect of � on INE, kSPT , and IkSPT

In the last set of experiments, we vary the parameter � from
100 to 500 nodes per object. According to Figs. 18 and 19, for
kSPT and IkSPT, we see slight increases in the execution
time and traversal cost as � increases. We have found that as

the number of detour objects reduces (as a result of an
increase in the number � of nodes per object), each kSPT
branch (corresponding to a detour object) becomes larger
and results in a greater number of priority queue entries.
Hence, as � increases, we can see slight increases in the
execution time and traversal cost of kSPT and IkSPT for both
directional and random trajectories (Figs. 18 and 19). For
INE, since the minimum search space is determined by the
distance from qsqs to qeqe, there is no correlation between � and
the traversal cost. The execution time of INE, on the other
hand, decreases and � increases. This is because as �

increases the number of objects reduces, which produces
less candidates and precandidates to process in order to
determine the kMDOs. We can also see that IkSPT continues
to outperform the other two methods in both cost measures.

8.3 Summary

We have derived ranges of experimental parameters and

their default values based on a realistic CDQ setting. Since

IkSPT is a localization of kSPT, IkSPT can only perform

better than or similar to kSPT for both cost measures. IkSPT

scales better than INE as the distance d from qsqs to qeqe and the

monitoring distance l increase. Although IkSPT scales

NUTANONG ET AL.: CONTINUOUS DETOUR QUERIES IN SPATIAL NETWORKS 1213

Fig. 14. Effect of d (directional trajectories).

Fig. 15. Effect of d (random trajectories).

Fig. 16. Effect of k (directional trajectories).

Fig. 17. Effect of k (random trajectories).

Fig. 18. Effect of � (directional trajectories).

Fig. 19. Effect of � (random trajectories).

worse than INE as k increases, IkSPT still performs better

than INE for all values of k in the range of [2, 10].

9 CONCLUSIONS

We formulated the CDQ and proposed an efficient method
to process the query. We have compared our proposed
method, IkSPT-CDQ, to two competitive techniques, INE-
CDQ and kSPT-CDQ. INE-CDQ constructs kMDO results
on a node-by-node basis and uses the Dijkstra’s algorithm
[9] to explore detour objects around the current query
location. When the query point encounters a new node, the
kMDO results have to be reevaluated. The other competitive
method, kSPT-CDQ, constructs kMDO results in a data-
centered manner and calculates kMDO results for all nodes
in the network.

Our proposed method, IkSPT-CDQ, incrementally re-
trieves data objects according to their distances to the
destination and computes kMDO results for a subset of
nodes in the network. As a result, IkSPT-CDQ does not
incur access to all objects and network nodes. Since our
method enables construction of kSPTs during runtime, one
can apply preconditions to the object retrieval process in
order to exclude irrelevant objects from IkSPT construction.

Experimental results show that for the default values of
parameters, IkSPT-CDQ is 3.1 times as fast as INE-CDQ
and 2.3 times as fast as kSPT-CDQ. In terms of the
traversal cost, IkSPT-CDQ has an improvement factor of
2.3 times and 2.4 times in comparison to INE-CDQ and
kSPT-CDQ, respectively.

ACKNOWLEDGMENTS

This work was supported in part by the Australian

Research Council’s Discovery funding scheme under Grant

DP0880215, and the US National Science Foundation (NSF)

under Grants IIS-08-12377 and CCF-08-30618.

REFERENCES

[1] P.H. Bloch, N.M. Ridgway, and D.L. Sherrell, “Extending the
Concept of Shopping: An Investigation of Browsing Activity,”
J. Academy of Marketing Science, vol. 17, no. 1, pp. 13-21, 1989.

[2] M. Brown, N. Pope, and K. Voges, “Buying or Browsing?: An
Exploration of Shopping Orientations and Online Purchase
Intention,” European J. Marketing, vol. 37, no. 11, pp. 1666-1684,
2003.

[3] M.A. Cheema, L. Brankovic, X. Lin, W. Zhang, and W. Wang,
“Multi-Guarded Safe Zone: An Effective Technique to Monitor
Moving Circular Range Queries,” Proc. IEEE 26th Int’l Conf. Data
Eng. (ICDE), pp. 189-200, 2010.

[4] Z. Chen, H.T. Shen, X. Zhou, and J.X. Yu, “Monitoring Path
Nearest Neighbor in Road Networks,” Proc. 35th ACM SIGMOD
Int’l Conf. Management of Data, pp. 591-602, 2009.

[5] H.-J. Cho and C.-W. Chung, “An Efficient and Scalable Approach
to CNN Queries in a Road Network,” Proc. 31st Int’l Conf. Very
Large Data Bases (VLDB), pp. 865-876, 2005.

[6] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilako-
poulos, “Closest Pair Queries in Spatial Databases,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp. 189-200, 2000.

[7] U. Demiryurek, F.B. Kashani, and C. Shahabi, “Efficient Contin-
uous Nearest Neighbor Query in Spatial Networks Using
Euclidean Restriction,” Proc. 11th Int’l Symp. Advances in Spatial
and Temporal Databases (SSTD), pp. 25-43, 2009.

[8] K. Deng, X. Zhou, H.T. Shen, S.W. Sadiq, and X. Li, “Instance
Optimal Query Processing in Spatial Networks,” VLDB J., vol. 18,
no. 3, pp. 675-693, 2009.

[9] E.W. Dijkstra, “A Note on Two Problems in Connection with
Graphs,” Numeriche Mathematik, vol. 1, pp. 269-271, 1959.

[10] M.R. Kolahdouzan and C. Shahabi, “Voronoi-Based k Nearest
Neighbor Search for Spatial Network Databases,” Proc. 30th Int’l
Conf. Very Large Data Bases (VLDB), pp. 840-851, 2004.

[11] M.R. Kolahdouzan and C. Shahabi, “Alternative Solutions for
Continuous k Nearest Neighbor Queries in Spatial Network
Databases,” GeoInformatica, vol. 9, no. 4, pp. 321-341, 2005.

[12] L. Kulik and E. Tanin, “Incremental Rank Updates for Moving
Query Points,” Proc. Int’l Conf. Geographic Information Science
(GIScience), pp. 251-268, 2006.

[13] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng,
“On Trip Planning Queries in Spatial Databases,” Proc. Ninth Int’l
Symp. Advances in Spatial and Temporal Databases (SSTD ’05),
pp. 273-290, 2005.

[14] W.W. Moe, “Buying, Searching, or Browsing: Differentiating
between Online Shoppers Using in-Store Navigational Click-
stream,” J. Consumer Psychology, vol. 13, no. 1, pp. 29-39, 2003.

[15] K. Mouratidis, M.L. Yiu, D. Papadias, and N. Mamoulis,
“Continuous Nearest Neighbor Monitoring in Road Networks,”
Proc. 32nd Int’l Conf. Very Large Data Bases (VLDB), pp. 43-54, 2006.

[16] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik, “Analysis and
Evaluation of V�-kNN: An Efficient Algorithm for Moving kNN
Queries,” VLDB J., vol. 19, no. 3, pp. 307-332, 2010.

[17] A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu, Spatial Tessella-
tions: Concepts and Applications of Voronoi Diagrams, second ed.
Wiley, 2000.

[18] A. Okabe, T. Satoh, T. Furuta, A. Suzuki, and K. Okano,
“Generalized Network Voronoi Diagrams: Concepts, Computa-
tional Methods, and Applications,” Int’l J. Geographical Information
Science, vol. 22, no. 9, pp. 965-994, 2008.

[19] D. Papadias, Y. Tao, K. Mouratidis, and C.K. Hui, “Aggregate
Nearest Neighbor Queries in Spatial Databases,” ACM Trans.
Database Systems, vol. 30, no. 2, pp. 529-576, 2005.

[20] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query
Processing in Spatial Network Databases,” Proc. 29th Int’l Conf.
Very Large Data Bases (VLDB), pp. 802-813, 2003.

[21] M. Safar, “Group k-Nearest Neighbors Queries in Spatial Network
Databases,” J. Geographical Systems, vol. 10, no. 4, pp. 407-416,
2008.

[22] H. Samet, J. Sankaranarayanan, and H. Alborzi, “Scalable Net-
work Distance Browsing in Spatial Databases,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp. 43-54, 2008.

[23] M. Sharifzadeh, M.R. Kolahdouzan, and C. Shahabi, “The Optimal
Sequenced Route Query,” VLDB J., vol. 17, no. 4, pp. 765-787, 2008.

[24] M. Sharifzadeh and C. Shahabi, “Processing Optimal Sequenced
Route Queries Using Voronoi Diagrams,” GeoInformatica, vol. 12,
no. 4, pp. 411-433, 2008.

[25] R.W. White and D. Morris, “Investigating the Querying and
Browsing Behavior of Advanced Search Engine Users,” Proc. 30th
Ann. Int’l ACM SIGIR Conf. Research and Development in Information
Retrieval, pp. 255-262, 2007.

[26] M.L. Yiu, N. Mamoulis, and D. Papadias, “Aggregate Nearest
Neighbor Queries in Road Networks,” IEEE Trans. Knowledge Data
Eng., vol. 17, no. 6, pp. 820-833, June 2005.

[27] J.S. Yoo and S. Shekhar, “In-Route Nearest Neighbor Queries,”
GeoInformatica, vol. 9, no. 2, pp. 117-137, 2005.

[28] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D.L. Lee, “Location-
Based Spatial Queries,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data, pp. 443-454, 2003.

Sarana Nutanong received the PhD degree in
computer science from the University of
Melbourne, Australia, in 2010. He is currently
a postdoctoral research associate at the
University of Maryland, College Park, Mary-
land. His research interests include spatial
queries in road networks, spatio-temporal
databases, and computational geometry.

1214 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 7, JULY 2012

Egemen Tanin received the PhD degree in
computer science from the University of
Maryland, College Park, Maryland, where he
also held a postdoctoral research associate
position from 2001 to 2003. He is a senior
lecturer in the Department of Computer
Science and Software Engineering, the Uni-
versity of Melbourne. His areas of research
include spatial data management and data-
base visualization.

Jie Shao received the BE degree in com-
puter science from Southeast University,
Nanjing, China, in 2004 and the PhD degree
in computer science from The University of
Queensland, Brisbane, Australia, in 2009.
Currently, he is working as a research fellow
in the Department of Computer Science and
Software Engineering, The University of
Melbourne, Australia. His research interests
include multimedia information retrieval as

well as spatial databases and their applications.

Rui Zhang received the bachelor’s degree from
Tsinghua University and the PhD degree from
National University of Singapore. He is currently
a senior lecturer in the Department of Computer
Science and Software Engineering at the Uni-
versity of Melbourne, Australia. His research
interest is data and information management in
general, particularly in areas of indexing techni-
ques, moving object management, web ser-
vices, data streams and sequence databases.

Ramamohanarao (Rao) Kotagiri received the
PhD degree from Monash University. He was
awarded the Alexander von Humboldt Fellow-
ship in 1983. He has been at the University
Melbourne since 1980 and was appointed as a
professor in computer science in 1989. He has
held several senior positions including head of
computer science and software engineering,
head of the School of Electrical Engineering
and Computer Science at the University of

Melbourne and research director for the Cooperative Research Centre
for Intelligent Decision Systems. He served on the editorial boards of the
Computer Journal. At present, he is on the editorial boards of Universal
Computer Science, and Data Mining, IEEE Transactions on Knowledge
and Data Engineering and VLDB (Very Large Data Bases) Journal. He
was the program cochair for VLDB, PAKDD, DASFAA, and DOOD
conferences. He is a steering committee member of IEEE ICDM,
PAKDD, and DASFAA. He received a Distinguished Contribution Award
for Data Mining. He is a fellow of the Institute of Engineers Australia, the
Australian Academy Technological Sciences and Engineering, and the
Australian Academy of Science. He was awarded a Distinguished
Contribution Award in 2009 by the Computing Research and Education
Association of Australasia.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

NUTANONG ET AL.: CONTINUOUS DETOUR QUERIES IN SPATIAL NETWORKS 1215

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

