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ABSTRACT
Privacy concerns place a great impediment to publishing and/or
exchanging trajectory data across companies and institutions. This
has urged researchers to address privacy issues prior to trajectory
data release. Currently, privacy preserving solutions distort original
data unnecessarily, hence, degrade data utility and make such data
less useful for third parties. We consider a trajectory as a sequence
of stops and moves, and propose an approach that exploits features
of a trajectory as means for preserving privacy while maintaining
a high level of utility. We introduce the concept of sensitivity for
stops based on the assumption that they are more vulnerable to pri-
vacy threats. We propose an efficient algorithm that either substi-
tutes sensitive stop points of a trajectory with moves from the same
trajectory or introduces a minimal detour if a less sensitive stop can
not be found on the same route. Our experiments shows that our
method balances user privacy and data utility: it protects privacy
through preventing an adversary from making inferences about sen-
sitive stops while maintaining a high level of data similarity to the
original dataset.
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1. INTRODUCTION
Fine-grained human mobility traces are captured at an unprece-
dented level from localisation sensors and GPS-enabled devices.
Various applications create an abundant collection of continuous
timestamped location data, i.e., trajectory data. However, the pre-
cise nature of this data makes individuals subject to various privacy
attacks [4].
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Consequently, location privacy and the means of preserving it have
drawn attention of many researchers [2, 4, 5, 7]. Most studies in
the literature aim to preserve the footprint of a trajectory, and em-
phasise on the importance of protecting its start and end point. Such
approaches focus on the spatial aspect of a trip but not on its seman-
tics. Except for the usual trip from home to work and vice versa, the
start or end points of a trip are usually not discriminative enough
to identify the purpose of a trip. Meanwhile, a trip’s semantic can
be learned more comprehensively from the stops of a trip that are
not the start or end point, i.e., the intermediate stops. For instance,
a visit to a medical centre followed by a stop at a pharmacy may
indicate that it is a health-related trip.

We consider stops more vulnerable to privacy threats as they not
only expose the purpose of a trip but their semantic plays a vital
role in assessing how private a trip is. Protecting stops rather than
the whole trajectory can be beneficial in two ways. First, it may
alleviate the amount of introduced distortion compared to the orig-
inal trajectory data. In addition, this method of protecting trajectory
data is highly effective when an adversary aims to make further pri-
vate inferences instead of identifying or tracking an individual.

Recently, some studies [3, 6, 8, 9] aim to protect specific parts of
a trajectory that are considered to be more sensitive rather than
protecting trajectory as a whole. For instance, Huo et al. [6] as-
sume that most of an adversary’s background knowledge is associ-
ated with an individual’s visited places and hence, preserving such
places protects the trajectory privacy. To hide the whereabouts of
an individual, they coarsened the location of visited places in the
database. However, repeated transitions between coarse and fine
granularities in dataset may help an adversary to infer additional
information from an individual’s path, and hence undermine trajec-
tory privacy. As a result, our approach aims to preserve the unifor-
mity of the dataset in terms of granularity. In addition, in our work
stop points are not considered equally private and their level of sen-
sitivity is determined according to their type, e.g. hospital, station,
restaurant, as well as other parameters.

A key idea of this paper is to utilize the sequences of stops and
moves in a trajectory to protect sensitive stops while ensuring that
data granularity remains uniform. This is achieved by first making a
sensitive stop a part of a non-sensitive move episode and then sub-
stituting it with a less private stop (Figure 1). Given a certain POI
(point of interest) density, our Flip-flop approach efficiently pre-
serves trajectory privacy through exchanging sensitive stops with
less sensitive, and possibly varied, types of POIs. This approach
also manages to maintain utility since it selects the POIs that intro-
duce the least distortion to the data.
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Figure 1: Protecting stops through exchanging trajectory episodes.

2. RELATED WORK
Some studies have focused on stop points along a path as the most
sensitive parts of a trajectory. The authors in [3] propose an obfus-
cation technique for online location-based services. This technique
considers the geographic context of a stop and provides an uncer-
tainty region based on the POI distribution and users’ privacy pro-
file. The work in [9] studies the issue of privacy-aware trajectory
publishing by focusing on sensitive stays along a trip. Its goal is
to publish a c-safe version of the original dataset where the prob-
ability of inferring that a person has visited a sensitive stop along
visiting a sequence of non-sensitive stops is below a safety thresh-
old. Likewise, in [6] the authors employed generalisation methods
so that sensitive places along a user’s trip will be replaced by l-
diverse zones. In other words, the published dataset contains a set
of fine-grained location points along with some cloaked areas, in-
cluding at list l distinct place types, that represent user’s stops. Our
work shares the same assumption of these studies that it regards
stop points of the trajectory as more vulnerable to privacy breaches.

However, publishing a dataset with different levels of location gran-
ularities, where an individual spent a significant time in coarser ar-
eas, may cause privacy concerns itself. The adversary can easily
infer the number of sensitive stops in a trip along with the time
they occurred, which is in fact, a privacy breach itself. The adver-
sary may also find a correlation between place types in consecutive
stops along a trip, in order to make further inferences. For instance,
if a user has stopped in a zone including a hospital, and later has
stopped in another zone containing a pharmacy, the adversary may
relate these places to make further inferences. It is also possible to
refine the obfuscated rectangle if the user takes different paths to
get to the same stop point. Moreover, these studies did not take the
temporal property of a trajectory into account and decided on the
sensitiveness of a place only by considering its position in space.
However, the duration of staying in an intermediate stop may play
an important role in its sensitivity. Our approach addresses the is-
sues highlighted above.

3. PROBLEM SET-UP
In our work, an adversary is any third party with whom the dataset
is shared. The adversary is interested in inferring personal prefer-
ences or habits of individuals through the identification of particu-
lar visited places and/or the frequency of these visits. We assume
the adversary knows that a user’s trajectory data may be distorted.

3.1 Measuring Privacy
The ultimate goal of this work is to exchange an individual’s sen-
sitive stops with less sensitive POIs in a consistent manner. In our
work, every stop is tagged with a place sensitivity rank, rp, where
0 < rp ≤ 1. A higher rp corresponds to a place that a user consid-
ers more sensitive. rp can be determined based on users’ privacy
setting and/or the underlying application.

Other than the place of a stop, temporal properties of a stop are also
of great importance when determining its level of sensitivity. rp is
the minimum sensitivity rank specified by a user and can increase
with the duration of a stop. The longer the user stays at a stop, the
greater is the sensitivity of a place. To the best of our knowledge,
this is the first work that takes the temporal features of a stop into
account when trying to protect its privacy. Using the place sensitiv-
ity rank, rp, the duration of a stop, ds, and the total duration of a
trip, dt , we compute the overall sensitivity of a stop as:

rs = r
dt−ds

dt
p

where rs can take any value between rp and 1. rs = 1 if the entire
trip occurs at a stop point.Following the exchange of the sensitive
stops with less sensitive POIs, we measure the accuracy of our ap-
proach in terms of preserving privacy as its ability to minimise the
sensitivity level of a trip:

Privacy Gain =
∑

k
i=1(rsi − r∗si

)

maxsd
∈ [0,1]

where k is the number of stops in a trajectory, and maxsd is the
maximum sensitivity deviation that occurs when choosing the k
least sensitive POIs on the route. rsi and r∗si

are the sensitivity of
the original stop and the substitute POI respectively.

3.2 Measuring Utility
We determine data utility by comparing the original trajectory with
its exchanged match and measuring how similar they are. We are
not only interested in measuring deviations from the original foot-
print (spatial projection) of trajectories, but we also need to com-
pute temporal displacements caused by our exchange process. As
a result, we adapt a Frećhet-based distance [1], and compute the
distance as if a single pair of speed parameterization is available
instead of looking for the optimal parameterization that minimises
the distance between two trajectories independent of time. Hence,
we compute the distance as the maximum spatial distance between
every temporally coincident pair of points:

Distortion = max
i∈[1,n]

[d(~li−~l∗i )]

where n is the number of points in each trajectory,~li and~l∗i are the
location points of the original trajectory and exchanged trajectory
at time i, and d is the Euclidean distance between two points. Esti-
mating data utility u ∈ [0,1] requires the definition of perfect utility
and worst-case utility concepts. In our work, we assume perfect
utility occurs if the original trajectory remains unchanged (u = 1),
but worst-case utility can be described as a case that given a certain
source, destination, and time budget, deviating from the original
trajectory as much as possible, hence maximising information loss,
i.e., u = 0. We then compare the exchanged trajectory, T ∗, against
the original trajectory, T , to determine utility:

Utility = 1− Distortion(T ,T ∗)

Distortionmax
∈ [0,1]

4. FLIP-FLOP APPROACH
Following a pre-processing phase that mainly deals with finding
stop points and determining their level of sensitivity, this work aims
to protect retrieved sensitive stops through the exchange strategy
depicted in Figure 1. Our exchange strategy aims to preserve the
overall characteristics of the trajectory, namely duration, regional
proximity, and average speed.



4.1 Stop and Move Exchange
As mentioned earlier, the algorithm utilizes POIs when exchang-
ing the sequences of stops and moves of a trajectory. Depending on
the result of searching for POIs, two scenarios may occur, namely
replacement and displacement. The algorithm may find a less sen-
sitive POI on the same route and replace the more sensitive stop
point with it (Figure 2, right). Otherwise, the algorithm needs to
search for a close POI that does not belong to the present route
and to displace the sensitive stop with that POI (Figure 2, left). In
order to limit the POI search space, we used the properties of an
ellipse. Setting any two stop points as the foci of an ellipse, the
algorithm is able to limit the search to those POIs inside the el-
lipse area whose distance from the stops are less than a threshold;
this threshold can be increased until a POI is found, however this
increase should not exceed the overall boundary of an ellipse that
contains all the reachable points from source to destination within
the available time budget. In this case the sensitive stop(s) are re-
garded as non-preservable and the exchange approach fails to pro-
tect them. However, our experimental results show that such case
is highly unlikely in real world scenarios.

The replacement process completely preserves the trajectory foot-
print, and only involves temporal modification. However, displace-
ment may cause local changes to both temporal and spatial proper-
ties. Nonetheless, displacement is performed in a way to keep these
changes as minimally invasive as possible.
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Figure 2: Preserving a sensitive stop through replacement and dis-
placement.

In our work, we also adopt two methods of searching for POIs. Our
benchmark method considers a trajectory as a whole and searches
for less sensitive POIs exhaustively. Our Flip-flop method, on the
other hand, compartments the trajectory into sections, searches for
POIs in each section and does the Flip-flop exchange.

4.1.1 Flip-flop Exchange
The flip-flop approach segments the trajectory into episodes of stops
and moves (Algorithm 1 lines 3-6). It then considers the move
episode between every two consecutive stops and looks for POIs
(Algorithm 1, line 7). If it manages to retrieve a less sensitive POI
on this route, it replaces the first stop with it (Algorithm 1, lines
8-11). Otherwise, it searches in an ellipse area, whose foci are the
two consecutive stop episodes, in order to find a less sensitive POI
within this area. Finally, the algorithm displaces the first stop with
the retrieved POI (Algorithm 1, lines 12-14).

5. EXPERIMENTS
5.1 Experimental Setup
We developed a network-based trajectory simulator to generate GPS
trajectories with various modes of transport and multiple intermedi-
ate stops. The simulator first chooses two random points within an

Algorithm 1: Flip-flop Exchange
Input : Original trajectory dataset, T , list of sensitive stop

points, Ss, set of all POIs, P.
Output: An exchanged trajectory, T ∗, with respect to

sensitive stop points.

1.1 i ← 1;
1.2 T ∗← [];
1.3 while i <= length(Ss) do
1.4 startIndex←Ss[i][ID];
1.5 endIndex ←Ss[i+1][ID];
1.6 Tloc←T [startIndex : endIndex];
1.7 P ← f ilter(routePOI(Tloc,P));
1.8 if length(P)> 0 then
1.9 poi← leastSensitive(P) ;

1.10 T ∗ ←T ∗+ replaceStop(T ∗,Ss[i], poi);
1.11

1.12 else
1.13 f oci1, f oci2←Ss[i],Ss[i+1];
1.14 Tdis← disStop(Tloc, f oci1, f oci2,P,Axisma j)

T ∗←T ∗+Tdis;

1.15 i← i+1;

area (≈ 12km× 12km) in the city of Melbourne and computes the
shortest path between them. It then finds all the POIs on this path
using OpenStreetMap1 data and randomly selects k POIs as the in-
termediate stop points, where 1 ≤ k ≤ 5. Generally, the generated
trajectories may have a single mode of transport, i.e., using a car,
or sometimes up to four transitions between walking and driving.
In summary, the generated dataset consists of a total of 750 dis-
tinct trajectories with an average length of 23 km. Our underlying
network consists of 59680 nodes and 69534 edges.

In order to examine the effect of POI density on Flip-flop’s perfor-
mance, we generate points uniform at random in a given area of
Melbourne. Our observations show that most POIs in Melbourne
are on streets that are classified as territory and secondary roads.
Thus, we mapped the POIs to those roads, rather than distribut-
ing them randomly. For varying ps (average number of POIs per
edge), we have approximately 2170 – 65,000 POIs in the network
(note that some of the randomly generated points cannot be mapped
to any edge). Considering the overall length of the network (2622
km), this POI density creates different urban scenarios, i.e., sparse
areas versus more populated areas. The default environment for our
experiments is set to reflect the worst cases with a low POI density
and high number of long stops. Moreover, we repeat each set of the
experiments 20 times and Section 5.2 provides the average of these
results.

Flip-flop can be tailored to optimize trajectory privacy or data util-
ity: a privacy-aware version (PFF) searches for the least sensitive
POI as the substitute and a utility-aware version (UFF) that selects
a POI that minimizes the distance to the original trajectory when
exchanging each POI. The PFF and UFF’s privacy are evaluated
relative to the exhaustive approach (set as 1), which finds the least
sensitive POIs as substitutes (Section 3.1). In our experiments we
use the exhaustive approach as a baseline to compare the success of
UFF and PFF in preserving privacy, and the result of the exhaustive
approach is not further discussed due to space constraints. The util-

1www.openstreetmap.org



ity is measured with respect to the relation provided in Section 3.2
where we employed the generated trajectories with worst utility to
estimate the maximum distortion.

5.2 Experimental Results
Figure 3 shows the average privacy and utility in the dataset for
varying POI densities. As expected, low POI densities lead to lower
data utility for both variants of Flip-flop because more detours are
required from the original trajectory’s footprint as less non-sensitive
POIs are available along the original trajectory. Figure 3 demon-
strates that with an increase in POI density, UFF becomes more
successful in maintaining data utility (Figure 3, left). However, the
increase in POI density leads to lower privacy levels in UFF since
UFF can find POIs at closer distance but not necessarily POIs with
the least sensitivity.

Generally, PFF distorts the original data more than UFF but achieves
significantly higher privacy levels (Figure 3, right). More specifi-
cally, with an increase in POI density, PFF achieves the best possi-
ble privacy, i.e., similar privacy levels as the exhaustive approach,
although this accuracy comes – as expected – at the cost of a slight
loss in utility. As for PFF, an increase in POI density increases the
utility level as well. This is mainly due to the ability of PFF to find
less sensitive POIs at closer distances to the original sensitive stop.

Figure 3: Effect of POI density on the average privacy-utility.

Figure 4 shows that Flip-flop can cope with any POI density and has
an almost constant computation time (bottom line). Note that the x
axis shows the average number of POIs per kilometer. With lower
densities, this time is mostly spent on the displacement process,
whereas with an increase in POI density, the computation time is
largely spent on the search for POIs along the original route. For
low POI densities the exhaustive algorithm could be potentially
faster than Flip-flop since a global search increases the probabil-
ity of finding a POI on the same route and requires less frequent
displacements. However, such POI densities (less than 1POI/km
of road), are not typical in real world scenarios.

6. CONCLUSION
We propose an algorithm that manages to preserve trajectory pri-
vacy with regard to its semantics. To achieve this, we utilize a tra-
jectory’s stop and move episodes in order to safeguard sensitive
stop points. Our Flip-flop approach not only exchanges sensitive
stops with less sensitive POIs more efficiently, but it also results in
a high data utility. In the future, we aim to further investigate the
effect of POI density on the overall trajectory privacy. We expect
that having the POI density of a trip in advance may provide indi-
viduals with an estimation of how private their trip can be. In other

Figure 4: Effect of POI density on Flip-flop’s performance.

words, if the POI density of a certain trip is known, the reachable
privacy level can be predicted before the trip is disclosed. Similarly,
given an area with certain POI densities, a service provider may de-
termine if the required data utility can be achieved with regard to
individuals’ privacy preferences.
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