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Abstract. The presence of coverage holes can adversely affect the accurate rep-
resentation of natural phenomena being monitored by a Wireless Sensor Network
(WSN). Current WSN research aims at solving the coverage holes problem by
deploying new nodes to maximize the coverage. In this work, we take a funda-
mentally different approach and argue that it is not always possible to maintain
exhaustive coverage in large scale WSNs and hence coverage strategies based
solely on the deployment of new nodes may fail. We suggest spatial interpolation
as an alternative to node deployment and present Distributed Kriging (DISK),
a localized method to interpolate a spatial phenomenon inside a coverage hole
using available nodal data. We test the accuracy and cost of our scheme with
extensive simulations and show that it is significantly more efficient than global
interpolations.
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1 Introduction

Monitoring physical phenomenon is an important application domain for wireless sen-
sor networks (WSNs). The WSN data acquisition techniques accomplish a monitor-
ing task by sampling data at different network locations over time. Currently, these
techniques advocate the use of data suppression as a means of achieving energy effi-
ciency [1]. The case for data suppression is based on the assumption that there is always
an abundance of samples in a WSN and hence reporting accuracy is not compromised
even if the data from a large part of the network is suppressed. However, experience
with WSNs [2] and insights into future applications [3, 4] reveal that situations may
arise where the assumption of an abundance of samples does not hold. Such situations
arise when node failures or the sparsity of a WSN trigger gaps or coverage holes in the
reported data. We argue that for an accurate representation of a physical phenomenon
in such scenarios augmenting the reported data as well as its suppression is a priority.
In this paper, we investigate such situations and propose novel interpolation methods to
augment the reported data in the presence of gaps.

Existence of coverage holes is an important reality for WSNs and has been stud-
ied extensively [2]. Current research has predominantly focused on the identification
of holes in order to alert and restore the lost coverage of a WSN [5]. However, the re-
placement and restoration of nodes may not be sensible in hostile environments or not



possible due to prohibitive costs. Therefore, our assertion is that coverage issues require
data acquisition regimes that cope with missing data through other means than simply
replacing or deploying more nodes. Thus, we need methods to interpolate the missing
readings based on the available data and application specific expert knowledge.

Physical phenomenon are characterized by their spatial correlation, i.e., the fact that
proximal locations have similar values and vary together. Spatial interpolation tech-
niques can thus be used to estimate a phenomena in coverage holes. The challenge,
however, is that typical interpolation techniques are not readily applicable to WSNs
due to their reliance on global knowledge of the network [6]. Due to a WSNs’ dynamic
nature and large scale, such global information is prohibitively expensive to collect and
maintain.

The key challenge that we address in this work is to perform accurate spatial inter-
polation for coverage holes with minimal power requirements. To maximize the use of
available information we propose to first build a correlation model of the phenomenon
under observation and then perform interpolation using this model. We first present
the QS (Quad Suppress) algorithm, a distributed in-network aggregation algorithm for
correlation modeling of a phenomenon. We then present the DISK (DIStributed Krig-
ing) algorithm which utilizes the correlation model to perform interpolation in a fully
distributed manner. With extensive simulations we show that QS and DISK are signifi-
cantly more energy efficient than their global counterparts.

2 The Quad Suppress (QS) Algorithm

The first step towards localized spatial interpolation is to find an appropriate variogram
model that best describes the spatial correlation in a dataset. The experimental vari-
ogram (EV) is a measure of spatial continuity in a spatial process defined as average
squared difference between data values at a certain distance, called lag, h [7]. Assume
a random variable Z represents a Gaussian spatial process and Z(x) represent its real-
izations at location x then its EV can be given as:

2γ(h) =
1

N(h)

∑
N(h)

[Z(x)− Z(x + h)]2 . (1)

where, N(h) is the number of data pairs at distance h. A variogram model is a curve
fitted on the observed EV values.

Equation 1 shows that for a certain lag h, EV construction requires the difference
of the value of each node from all nodes in its EV neighborhood, i.e., present within
a distance of h units from itself. Thus, a simple global approach for EV construction
could be to propagate all samples to a base station. However, to reduce communication
costs we propose the QS algorithm, an alternative based on in-network aggregation.
In-network aggregation algorithms organize the network in a tree like fashion such that
each internal node aggregates all data coming from its child nodes and communicate
only the partial aggregate to its parent. However, for EV construction there is an added
constraint; an internal node can aggregate a child node, say K, only if it can ensure that
it is also a parent of all nodes in K’s EV neighborhood. The QS algorithm adopts a
quadtree-like tree creation method to fulfill this constraint.



The QS aggregation tree is built as follows. The base station partitions the space
and chooses a cell-head for each quadrant. These cell-heads recursively partition their
cells choosing new sub-cell heads. The process continues until a predetermined grid
resolution is reached. A random aggregation tree is then built inside each of the un-
partitioned cells rooted at the corresponding cell-head. Data aggregation is performed at
each internal node of this tree. The benefit of creating the aggregation tree in a quadtree-
like manner is that a cell-head can locally determine whether or not it covers the EV
region of a child node. It can then accordingly aggregate or forward the node’s value.

Figure 1 shows the considerable difference in energy expenditure of the QS algo-
rithm and a random tree based global data collection using 2500 samples from Digital
Elevation Model (DEM) dataset [8] covering a 500 m2 area of the state of Colorado, US.
The significant difference in the performance of the two algorithms can be explained
by their data forwarding behavior. The global data collection scheme creates the aggre-
gation tree randomly, thus an internal node cannot determine whether or not it covers
the EV neighborhood of its child nodes. Consequently, all internal nodes propagate
their data to the base station in unaggregated form. On the other hand, the QS algo-
rithm reduces the communication costs significantly by performing the aggregation in
the network as soon as it realizes that a node’s EV neighborhood is covered.
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Fig. 1. Comparison of energy expenditure in QS and random tree algorithms for EV construction.

3 Distributed Kriging (DISK) Algorithm

Once a variogram model is established for a given phenomenon, it can then be used
for spatial interpolation using Kriging. Kriging is a well known geostatistical method
used to estimate unknown values of a physical process using existing knowledge about
the process and a model of its spatial variation, i.e., the variogram [7]. Assume that
the values Z(x1), Z(x2), . . . , Z(xN ) represent realizations of a spatial process Z at
locations x1, x2, . . . , xN , then the Kriging interpolator of Z at a point x0 is given by [9]:

Ẑ(x0) =
N∑

i=1

λiZ(xi) . (2)



where λi are the weights fulfilling the unbiasedness condition, i.e.,
∑N

i=1 λi = 1 and
the expected error is E[Ẑ(x0)− Z(x0)] = 0 [7]. It can be shown that optimal weights
λi for the Kriging interpolator can be computed from the following system of linear
equations (SLE)

Λ = A−1b . (3)

where Λ is a vector comprising of Kriging weights λi and a Lagrange multiplier (added
for computational reasons), A is the covariance matrix of sample locations x1, x2, . . . , xN

and b is a vector whose elements represent the covariance between x0 and each xi ∈
{x1, x2, . . . , xN}. All covariances are based on an appropriate variogram model defined
for the spatial process in question. We first use the QS algorithm to build a variogram
model for the entire WSN and distribute this model in the network. In this way all
nodes can autonomously compute their correlation with any other node in the network
as required during the Kriging process.

In the following subsection we explain our interpolation approach, the DISK algo-
rithm, which in essence is a distributed and localized form of the Kriging interpolation.

3.1 Iterative Formulation of Kriging System of Linear Equations

The basic building block of the DISK algorithm is an iterative approach towards the
Gaussian elimination method. In terms of the Kriging SLE, the Gaussian elimination
method can be interpreted as the process of finding a sequence of elementary row op-
erations, or linear maps, that transforms matrix A to its reduced row-echelon form. The
basic idea of our iterative elimination approach is presented in Figure 2. If the nodes
performing a Kriging operation are assumed to be aligned along a chain, each node k
adds a new variable, i.e., its Kriging weight (λk), and its corresponding linear combi-
nation (

∑k
i=1 λicki = bk) to the Kriging SLE. In matrix terms, each node in the chain

adds a new row and column to the matrix A required to be inverted while not chang-
ing the original entries. We can then order the elimination process on the basis of the
following recursive formulation of matrix A:

ckk ….. ck4 ck3 ck2 ck1    bk --- Row k 
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Fig. 2. Iteratively building Kriging SLE



Ak =
[

1 KT

K Ak−1

]
K =

 ck(k−1)

. . .
ck1

 A2 =
[

c22 c21

c12 c11

]
(4)

where k ≥ 2 .
Now for Ak, we define Φ(Tk) : Ak → AΦ

k as a group of all linear maps enumerated
by the following recursive definition:

Φ(Tk−1) . (5)
Rk ← Rk + (−k1i ×Rk−i) ∀i ∈ {1, 2 . . . k − 1} . (6)

Rk ← Rk ×
1

a11
. (7)

Rk−i ← Rk−i + (−ki1 ×Rk) ∀i ∈ {1, 2 . . . k − 1} . (8)

where k ≥ 2. Ri represents the ith row of Ak and a11, ki1, k1i, i = 1, 2 . . . k − 1
represent elements of matrices Ak and its corresponding K and KT constituent vectors,
respectively. Φ(Tk−1) represents all linear maps defined for matrix Ak−1, while Φ(T1)
comprises one row operation defined as: Rk ← Rk × 1

a11
.

An immediate consequence of above formulation can be specified as the following
Lemma:

Lemma 1. If Ak−1 = I , the identity matrix, and Ak defined in terms of Equation 4,
then AΦ

k = I .

Theorem 1. Let Ak be an invertible matrix and Φ(Tk) : Ak → AΦ
k = I be the group

of linear maps corresponding to Ak. The solution of SLE λ = A−1
k b can be obtained

by a recursive application of linear maps from TK on b.

The above formulation allows us to find the linear maps required to solve the Krig-
ing SLE in an iterative manner. Consider the example in Figure 2. The first intermediate
node (2) in the chain initiates the iterative process by computing the required transfor-
mations for A2 and transmit the composite linear map, T2, to the node above it (node
3). Node 3 computes the row and column entries for A3 and according to the definition
above, first applies the received linear map, T2 on A3 followed by linear maps that re-
duce all new row entries to 0, reduce the pivot element to 1 and reduce all new column
entries to zero, i.e., applying Equations 6, 7 and 8 in that order. Node 3 then forwards
the composite linear map T3 to the next node in chain. The iterative application of the
same procedure at each intermediate node in the chain results in a final composite linear
map, Tk at root node of the chain. Tk can then be applied on vector b to compute the
solution of the Kriging SLE resulting in the required Kriging weighting vector: Λ.

4 Experimental Study

We performed extensive simulations with the goal to evaluate the scalability of the
DISK algorithm. Our simulations are based on two large datasets; a Digital Elevation



Model (DEM) dataset from the state of Colorado, US [8] and simulated traffic data for
the city of Melbourne, Australia. Along with DISK, we also simulate a Global Kriging
algorithm (GK) that assumes the full knowledge of node and coverage hole locations
at the base station and performs its interpolation by propagating the required data to
the base station. In the DEM dataset experiments, we estimate the altitude at various
points while in the traffic dataset experiments, we estimate the number of cars at various
locations. We measure the cost of a technique as the overall node energy used in data
transmission. The accuracy is based on cross-validation of interpolation with the known
values and is computed as the root mean square error (RMSE).

We define the Kriging neighborhood as the set of nodes located within a predefined
distance to a point being interpolated. We measure the relationship between the network
area and the Kriging neighborhood as a ratio between their sizes (in terms of number of
nodes), referred to as the network to neighborhood area ratio (NNR).
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Fig. 3. DISK and GK approaches for various network sizes

The effect of network size. In this experiment we analyze the scalability of DISK and
GK with increasing network size. In each step, we expand the deployment area and the
Kriging neighborhood such that the NNR stays constant at 5%. It can be observed from
Figure 3 that DISK scales well with increasing network size while GK increases in cost
rapidly. For the network of 1000 nodes, DISK uses about 60% of energy used by GK
while for the 5000 nodes network its energy usage reduces to about 48% of GK.

Figure 4 shows a comparison of the accuracy of DISK and GK algorithms. Although
both techniques interpolate using the same Kriging neighborhood, the difference in ac-
curacy can be attributed to the variogram model used in each case. DISK uses the local-
ized variogram model built through the QS algorithm while GK creates the variogram
model centrally after collecting all data. In the case of highly correlated DEM data the
localized variogram model enables DISK to achieve slightly better accuracy than GK.
In this case, lower estimation accuracy of GK can be attributed to the use of global
information which adds noise to its estimation. On the other hand, DISK suffers in the
traffic dataset due to low levels of spatial correlation in this data.
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Fig. 4. Accuracy of Disk and GK. Root mean square error (RMSE) is computed in terms of meters
and number of cars for DEM and traffic data respectively.

The effect of the Kriging neighborhood size. In this experiment we increase the NNR
by increasing the Kriging neighborhood area while the network size is kept fixed at
5000 nodes. Figure 5 presents the result of these experiments for DEM data. Increasing
the neighborhood area results in an increase in the number of nodes in the neighbor-
hood. Consequently, the communication cost of GK increases as there is more data to
propagate to the base station. Similarly, the communication cost of DISK also rises due
to the involvement of more nodes in the Kriging process. However, we observe that
for accurate Kriging the NNR should not be increased beyond a certain value as further
samples add noise to the estimation and lower the accuracy. For DEM data, the most ac-
curate estimation results are obtained for 4% NNR where the cost of DISK is only about
40% of GK. A similar behavior with respect to energy expenditure was observed in our
experiments with the traffic dataset (not shown here for the brevity of presentation).
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Fig. 5. Effect of size of the Kriging neighborhood

5 Related Work

The problem of phenomenon estimation in WSNs for a region of interest not fully cov-
ered by a WSN is explored in [10]. The major limitations of [10] in comparison to



DISK is its global nature. This method assumes complete knowledge of the network at
the base station and pumps all of the data from sampled nodes to the sink. The Dis-
tributed Regression method [6] for global kernel regression closely compares to DISK.
This method is based on the notion that a number of regional correlation structures can
be identified inside a given deployment. It is thus suggested that message passing for a
global regression task can be optimized by distributing the global computation among
the constituent regions. Although we propose the idea of distributed interpolation on a
regional basis as well, the concept of a region in our method is fundamentally different
from [6]. For DISK, the interest in a region is not based upon its correlation pattern
but its vicinity to a coverage hole. Moreover, the iterative Gaussian elimination step in
DISK makes the computation more localized than the distributed regression method.

6 Conclusions and Future Work

Coverage holes are a reality for WSNs and it is often important to estimate the in-
formation within a coverage hole. Kriging is a well-established interpolation method
that particularly suits this problem as spatial correlations in measurements is common
in WSNs. The challenge, however, is to perform Kriging with minimal communica-
tion and computation and with high accuracy in a WSN. We address this challenge
by proposing QS and DISK algorithms that enable distributed and localized variogram
modeling and Kriging. In extensive simulations we show that our methods are signifi-
cantly more energy efficient than global interpolations. In future, we plan to investigate
the applications of DISK to form energy efficient node redeployment strategies where
the movement of nodes can be guided by phenomenon estimation in a region of interest.
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