
CAESAR: Middleware for Complex Service-Oriented
Peer-to-Peer Applications

Lipo Chan
University of Melbourne
Victoria 3010, Australia

lipoc@csse.unimelb.edu.au

Shanika Karunasekera
University of Melbourne
Victoria 3010, Australia

shanika@csse.unimelb.edu.au

Aaron Harwood
University of Melbourne
Victoria 3010, Australia

aharwood@csse.unimelb.edu.au

Egemen Tanin
University of Melbourne
Victoria 3010, Australia

egemen@csse.unimelb.edu.au

ABSTRACT

Recent research advances in Peer-to-Peer (P2P) computing
have enabled the P2P paradigm to be used for developing
complex applications beyond file sharing and data storage.
These applications have drawn significant benefits, specifi-
cally scalability and low cost, from the P2P paradigm. How-
ever, the current approach for designing P2P applications
introduce issues that prevent the development of high qual-
ity complex P2P applications. These issues, namely tight
coupling to P2P protocols, limited logic sharing between
peers and complicated recovery processes, motivate us to
introduce a service-oriented architecture for P2P applica-
tions. We have developed a middleware called CAESAR

to support the development of service-oriented P2P applica-
tions applying the principles of abstraction, dynamic bind-
ing, loose coupling and information hiding. In this paper, we
discuss the design principles and the components of CAE-
SAR middleware, as well as our experiences in using CAE-
SAR to develop several service-oriented P2P applications.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures

General Terms

Design

Keywords

Peer-to-peer, service-oriented, middleware

1. INTRODUCTION
Peer-to-Peer (P2P) networks and applications are cur-

rently receiving considerable attention. P2P networks are
distributed, decentralized and scalable systems comprising

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4SOC ’07, November 26, 2007 Newport Beach, CA, USA
Copyright 2007 ACM 978-1-59593-928-9/07/11 ...$5.00.

of a very large number of computers working together. The
P2P approach eliminates the dependency on one or more
central resources, thus offers great potential for developing
scalable distributed applications at low cost. Some examples
of these widely used applications are telephony services us-
ing Voice Over IP, such as Skype, and Massively Multiplayer
Online Games.

Current use of P2P technology has not provided for rich
experiences due to the limitations of design approach used
for P2P applications. One of the main limitations is the
tight coupling of the application to the underlying P2P pro-
tocol. This makes the task of developing P2P applications a
tedious activity requiring detailed knowledge about the un-
derlying P2P protocol (much like knowing the details about
TCP protocol in order to use sockets). In addition, such
tight coupling also constrains an application from choos-
ing different protocols at runtime to meet various require-
ments, specifically the quality of service needed by the users.
Besides tight coupling, existing P2P applications are usu-
ally limited to sharing data storage. These applications
have minimal ability to delegate processing to other peers
in the network, thus not able to realize the full extent of
the computing power provided by the underlying P2P net-
work. Furthermore, complicated development process aris-
ing from integrating with complex P2P protocols hinders
current P2P applications from giving due consideration to
important software quality attributes such as reliability, se-
curity, interoperability and performance.

The limitations in the development of P2P applications
create a challenge for the wide acceptance of P2P paradigm
when developing complex applications. Nevertheless, as we
present in this paper, using a service-oriented approach, the
P2P paradigm is a fitting solution for the development of
practical complex applications. In this paper, we present a
middleware called CAESAR that provides support for devel-
oping complex P2P applications through a service-oriented
approach. We adopt a component-based framework in our
design, which promotes reuse and extensibility. CAESAR
offers the following benefits:

• Simplifying complex P2P application development via
abstraction;

• Sharing logic within the P2P network through a service-
oriented approach;

• Enhancing peer functionality with dynamic binding ;

• Developing robust P2P applications with appropriate
network information hiding ;

CAESAR is developed with Key Based Routing (KBR)
P2P protocols in mind. Therefore, throughout this paper,
the P2P context refers to the KBR-based approach. The
remaining structure of this paper is: Section 2 describes our
design principles, Section 3 introduces the CAESAR mid-
dleware, Section 4 lays out the implementation details, Sec-
tion 5 presents applications developed using the CAESAR
middleware, Section 6 discusses related works, and Section 7
concludes the paper.

2. DESIGN PRINCIPLES
There are significant software engineering issues confronting

P2P application developers that are not properly addressed
by current specialized P2P applications (i.e. file sharing),
and for which existing distributed systems solutions are in-
adequate. In this section, we outline the design goals of
CAESAR, which provides a basis for building complex P2P
applications using a service-oriented approach.

2.1 Simplifying Application Development
The most challenging part of developing P2P applications

is the need to understand underlying P2P protocols. Al-
though these protocols are developed with various schemes,
the underlying goal remains the same - to provide consistent
and efficient lookup of data within a P2P network. These
protocols use a variety of data structures and complex al-
gorithms to achieve the underlying goal. In some cases,
additional non-functional requirements, such as reliability
and anonymity, are also supported by the protocols. Conse-
quently, the complexity of the protocols increases and they
become even harder to comprehend and to develop.

Application developers should be given the option of build-
ing their P2P applications without the stress of learning the
complex P2P protocols. As such, we argue that a solution in
simplifying the development of P2P applications is abstrac-
tion. The details of the protocols or the network should
be abstracted into meaningful and easy to understand in-
terfaces. This form of abstraction also resolves the issue of
tight coupling, and leads to desirable quality goals, such as
interoperability and extensibility.

2.2 Sharing Logic within P2P Networks
Current of use of P2P networks, specifically self-organizing

networks, is still fairly limited, which means most applica-
tions are only utilizing the network for data storage. This
limited capability is acceptable for simple applications, such
as file sharing, but fast becoming inadequate when develop-
ing complex applications. Complex applications can be com-
putationally intensive, thus requiring more than just sharing
of storage, but logic as well.

To achieve this goal, we propose the use of a service-
oriented approach for peers to make selective interactions.
The Service-Oriented Architecture (SOA) [6] makes a good
candidate with a paradigm that relies on the composition of
services to provide functionalities for software development.
We adopt a modified SOA approach, where peers offering
the same types of services are able to form a community
amongst themselves within the P2P network. Subsequently,
these peers are able to increase their efficiencies by delegat-
ing processing to other peers within the same community

that have similar capability. We term this community of
peers as service overlay.

2.3 Enhancing Peer Functionality
In the current development process, application develop-

ers have to design their applications with specialized strate-
gies to meet the requirements, and in most cases, it entails
selecting a particular P2P protocol to be used. Due to the
unavailability of common interfaces, the decision to use a
particular protocol can result in the application being tightly
coupled to the protocol. However, we know that applications
evolve over time, with the need to support more function-
alities to resolve different problem areas. Accordingly, an
application may wish to use a different protocol that bet-
ter serves its requirements. In such cases, tight coupling to
a particular protocol can result in an enormous amount of
rework.

Our proposal of using services in the previous section
means the requirements of applications are met through ser-
vices. Services can have different quality attributes, and typ-
ically a service builds these quality attributes using various
control strategies working together with different P2P proto-
cols. Our dynamic binding solution, which is made possible
due to the protocol abstraction, allows services to dynami-
cally bind themselves to different protocols, thus developing
services with different quality attributes. Over time, as more
protocols and services become available, the functionality
supported by the peer will also increase. Dynamic binding
is achieved using well-defined interfaces that promote loose
coupling.

2.4 Developing Robust P2P Applications
One of the main advantages of the P2P paradigm is the

self-organizing behaviour provided by P2P protocols. In the
event of one or more peers leaving the network, the proto-
cols ensure that routing is minimally impacted. Neverthe-
less, application developers still have to explicitly manage
the consistency and the integrity of application-level data
through appropriate replication and migration mechanisms.
These mechanisms are usually non-trivial, thus imposing
extra burden on application developers. Although several
P2P protocols offer variations of these mechanisms, they are
closely tied to the protocols, which is not ideal.

To relieve the application developers from these compli-
cated tasks, we propose a form of network information hiding
using an embedded network management approach. Network
management processes, such as migration and replication,
are automatically managed on behalf of the applications.

3. CAESAR MIDDLEWARE OVERVIEW
Fig. 1 shows the components of the CAESAR middle-

ware. The middleware consists of five core and two non-
core components. The core components are Protocol Fa-
cade (PF), Service Facade (SF), Network and Object Man-
agement (NOM), Application Director (AD) and Internet
Simulation & Emulation (ISE), and the non-core compo-
nents are Service Plugin and Protocol Plugin. These compo-
nents interact with each other via a low coupling approach
to achieve the design principles as presented in Section 2.

CAESAR supports three abstraction levels of develop-
ment, namely application, service and protocol. We intro-
duce three access components, i.e. AD, SF and PF. The
AD hides all the complex P2P information, and is meant

−
Service
Facade

Service

Plugin

Protocol

Plugin

Protocol

Facade

Simulation &

Emulation

Application

Director

Object

Management

Internet

TCP/IP

Applications

Network &

Direct reference

Function call

Figure 1: Components of CAESAR

to be used by the application developers to access functions
offered by the CAESAR middleware. Similarly, the SF pro-
vides access to the middleware for service developers. The
SF uses a plugin-based approach to allow service developers
to add plugins to the CAESAR middleware. The PF has
similar function as the SF, but is meant for protocol devel-
opers. The PF encapsulates complex network details (i.e.
TCP/UDP), thus reducing the need for protocol developers
to get down to such elaborate matters. These three com-
ponents essentially support the right level of abstraction to
facilitate independent application, service or protocol devel-
opment, thus achieving our first design principle.

The second design principle, logic delegation, is achieved
through a service-oriented approach as previously described.
The NOM component provides the functionality to manage
the service-oriented overlays, which are transparent to ap-
plications, services and protocols. The NOM works with
the SF and the PF to allow service plugins to dynamically
bind themselves to different P2P protocols available in the
middleware. The service plugins are then able to make use
of the various characteristics of the P2P protocols to set
up different service overlays. A service overlay, as pointed
out earlier, is basically a subset of the peers in the network
that have a particular service plugin, and able to offer a ser-
vice with the same quality attributes. This is in essence a
sub-network within a large P2P community network. A ser-
vice plugin can be part of multiple service overlays, if it has
the ability to offer services with different quality attributes.
The NOM manages the association of the service plugins to
these service overlays via namespaces. Subsequent interac-
tions amongst peers in the network are only done through
service overlays, which allow delegation of tasks that are be-
yond the typical data storage capability. The NOM is essen-
tially a powerful connector that allows many services with
different quality attributes to be produced, which enhance
the functionality of a peer.

To assist the service plugins in providing more reliable ser-

vices, CAESAR supports a separation of data from service
plugins using the NOM. The separation allows the service
plugins to be stateless, and enables the NOM to silently per-
form important functions, such as garbage collection, repli-
cation or migration, in order to ensure network maintain-
ability and possible recovery in the face of failure. The data
structure used in the separation is called ServiceObject (SO).
Each SO has its own unique identifier, and contains data in-
formation or processing states associated with a service plu-
gin. The NOM manages all the SOs, and each service plugin
can have multiple SOs, depending on its own operations.

The final core component of CAESAR is the ISE testbed.
The ISE facilitates simulations by allowing applications to
execute in a simulation mode, much like a real-time network.
This allows a large number of peers to be simulated using
substantially less hardware resources than that it would take
in a non-simulation environment.

In the remaining part of this section, we describe the de-
tails of all components and its API functions, except the ISE
component, which is omitted due to space limitations.

3.1 Application Director
The AD is a thin control layer that instantiates all the core

components of the framework via the initialize functions of
the components. The API functions supported by AD are
shown as follows:

:̥ getService(serviceName, reqs)
returns a reference to the service plugin with serviceName and
the given requirements, reqs.

:̥ stopService(serviceName)
stops the operation of the service plugin associated with servi-

ceName.

:̥ startUp(simFlag)
starts up the peer.

:̥ shutDown()
shuts down the peer.

getService has correlation with get in the SF, while stopSer-
vice is related to stop in the SF. An application can start
up a peer by invoking startUp. The parameter simF lag al-
lows the application developer to decide whether to start the
application in a simulation mode or in a deployment mode.
startUp initializes all the core components, and passes func-
tion objects between the components via the individual ini-
tialize function. All parameters marked with (*) in the
initialize functions are function objects, with equivalent
functions being defined in one of the core components. Fi-
nally, when an application developer wishes to stop his/her
application, shutDown invokes all the finish functions in
the core components.

3.2 Service Facade
The SF provides access to the service plugins through a

set of simple API functions as outlined in the following list:

:̥ get(serviceName, reqs)
returns a reference to the service plugin with serviceName and
the given requirements, reqs.

:̥ stop(serviceName)
stops the operation of the service plugin with serviceName.

:̥ handleMsg(serviceName, message)
handles message intended for the service plugin with service-

Name.

:̥ createObj(serviceName, soId)
requests a service plugin with serviceName to create a new
SO with identifier soId.

:̥ initialize(∗regService, ∗send, ∗terminate, ∗getObj, ∗delObj)
initializes the SF with function objects from other core compo-
nents.

:̥ finish()
stops all operations.

The SF provides access to service plugins via get. On invoca-
tion, a reference to the specified service plugin is returned,
and application developers can subsequently use the func-
tions provided by the service plugin. The parameter reqs

indicates a selection of the requirements offered by the ser-
vice plugin with serviceName. An application uses the reqs

to get the different levels of service provided by a service plu-
gin. Interactions via service overlays involve messages, and
these messages are passed to the service plugins through
handleMsg. When an application no longer requires the
use of a service plugin, stop is called, where tasks such as
garbage collection can occur. As previously mentioned, ser-
vice plugins keep their processing state and data in the NOM
via SOs. createObj allows the NOM to request each service
plugin to create their specific SOs to be stored. createObj

is further explained in Section 3.6.

3.3 Service Plugin
The Service Plugin is not a core component of CAESAR,

but used in conjunction with the SF. Each service plugin
has to conform to the API functions described as follows:

:̥ start(∗send, ∗getObj, ∗delObj, ∗get)
starts offering services.

:̥ stop(∗terminate)
stops offering services.

:̥ handleMsg(message)
handles a message.

:̥ createObj(soId)
creates a new SO with identifier soId.

:̥ name()
returns the name of the service plugin.

The SF initializes a service plugin via start, and terminates
a service plugin via stop. The parameters in these func-
tions are passed by the SF. handleMsg is called by the SF
when a message intended for a service plugin arrives at the
peer. createObj is called by the SF to allow the individual
service plugin to create SOs that contain specific plugin in-
formation, such as processing states and data. createObj is
invoked by the equivalent function in the SF. Finally, name

allows the SF to access the name of a service plugin. Ad-
ditionally, each service plugin can support any number of
service specific functions that can be offered to the applica-
tions. Each service plugin can also access another service
plugin via get from the SF. By allowing direct interaction
between service plugins and applications, CAESAR provides
the right amount of control with high degree of flexibility.

3.4 Protocol Facade
In general, P2P protocols provide a peer with three cru-

cial functionalities; to search and join a P2P network, to
gracefully leave a P2P network, and to interact with other
peers via message routing. The PF manages a collection of
P2P protocol plugins, and provides access to these plugins
via a set of common interfaces, described as follows:

:̥ join(protocolName, namespace)
requests a protocol plugin with protocolName to join the spec-
ified P2P service overlay with the given namespace.

:̥ leave(namespace)
leaves the specified P2P service overlay with the given names-

pace.

:̥ route(namespace, id, message)
routes message to a peer that is responsible for identifier id
within the service overlay with the given namespace.

:̥ filter(namespace, soId)
migration function that determines whether a SO associated
with soId is to be migrated to another peer.

:̥ transport(address, message, tcp/udp)
an actual network connection, where message being sent to
another peer with the given address using tcp/udp.

:̥ receive(namespace, message)
receives message intended for the peer over the namespace.

:̥ initialize(∗regProtocol, ∗accept, simFlag)
initializes the PF with function objects from other core com-
ponents.

:̥ finish()
stops all operations.

CAESAR allows a peer to join multiple service overlays that
could be running on different P2P protocols. For each of the
overlays to join, the peer initializes an instance of the associ-
ated P2P protocol via join, where it connects using a unique
namespace. After connecting to this overlay, the peer inter-
acts with other peers in the overlay by passing message via
route and transport. route uses a unique combination of the
namespace and an identifier to allow the associated proto-
col plugin to determine the destination peer, and transport

performs the actual network connection. The peer receives
a message through receive and passes it to the NOM. The
interaction via messages continues until the peer decides to
leave the overlay by invoking leave. This graceful exit main-
tains the consistency of the overlay by allowing action such
as data migration to other peers in the overlay. Data mi-
gration is supported via filter, which is further described in
Section 3.6.

3.5 Protocol Plugin
The Protocol Plugin is also not a direct component of

CAESAR, and used in conjunction with the PF. Each pro-
tocol developer can offer his/her P2P protocol by building a
plugin that conforms to the API functions described in the
following list:

:̥ join(namespace, host)
joins the specified service overlay with the given namespace
via a known host.

:̥ leave(namespace)
leaves the specified service overlay with the given namespace.

:̥ route(namespace, id, message, ∗transport)
routes message to a peer that is responsible for identifier id
within the service overlay with namespace.

:̥ filter(namespace, soId)
migration function that determines whether a SO associated
with soId is to be migrated to another peer.

:̥ name()
returns the name of the protocol plugin.

The PF instantiates an instance of a protocol plugin for
every service overlay (note that the service overlay concept
is transparent and does not affect the implementation of a
protocol plugin). The PF calls join to connect the peer to a
service overlay, invokes leave to leave a service overlay, and
uses route to send a message over a service overlay. When
a message belonging to a namespace arrives at the peer,

−

Data return

1.4 service object

1.3 service

object

Application

Service
Plugin

AD

SF

NOM

PF

2.5 upcall to

application
1.5 invoke service

function

1.6 send

1.1 getService

2.4 handleMsg

Function object Function call

2.3 handleMsg

1.7 send

1.2 get

1.8 route

1.9 route
2.0 transport

To network/ISE

2.1 receive
2.2 accept

Protocol

Plugin

Figure 2: Collaboration between core components of CAESAR

the PF checks for peer responsibility by calling filter of the
protocol plugin instance managing the namespace. Finally,
each protocol plugin is required to return its name via name.

3.6 Network and Object Management
The NOM provides various functions to support dynamic

binding, data storage, data migration and data replication,
as well as garbage collection. The NOM receives directives
from the service plugins via the SF, and works with the PF
to serve the directives. These directives contain information,
such as the name of a protocol, replication and access control
strategies, that guide the NOM in invoking the appropriate
procedures. The following list presents the API functions of
the NOM:

:̥ send(serviceName, reqs, message)
sends message to another peer running service plugin with ser-

viceName.

:̥ accept(namespace, message)
accepts and passes message to a particular service plugin.

:̥ terminate(serviceName)
terminates the operation of a service plugin with serviceName.

:̥ getObj(serviceName, soId)
returns the SO with soId associated with service plugin with
serviceName.

:̥ delObj(serviceName, soId)
deletes the SO with soId associated with service plugin servi-

ceName.

:̥ regProtocol(protocolNames)
registers the names of the available protocol plugins.

:̥ regService(< serviceNames, reqs >)
registers the names of the available service plugins and their
associative requirements.

:̥ initialize(∗join, ∗leave, ∗route, ∗filter, ∗createObj,
∗handleMsg)
initializes the NOM with function objects from other core com-
ponents.

:̥ finish()
stops all operations.

At startup, a peer registers all the service and protocol
plugins currently available in the framework via regProto-
col and regService. After startup, send is called by the SF
when a service plugin wishes to send a message to a corre-
sponding peer in the same service overlay. The parameter
serviceName is a unique name that identifies a particular
service plugin. The NOM uses the serviceName and the ad-
ditional requirements reqs to form a namespace. When a
message arrives from another peer, the PF calls accept, and
the NOM passes the message to the intended service plu-
gin (the NOM is able to map the message back to a service
plugin based on the namespace). If a service plugin requires

access to a SO, and the SO is not found when calling getObj,
the NOM probes the corresponding service plugin by call-
ing createObj (obtained during initialization from the SF).
The service plugin then creates a new instance of a SO with
the given soId, and returns the SO to the NOM. The SO
is stored by the NOM, and a reference is returned to the
earlier call of getObj. Finally, when a peer wishes to stop
the operation of a service plugin, terminate is called, where
tasks such as garbage collection can occur.

Migration processes are triggered when a peer joins or
leaves a network. The NOM of a joining peer sends a spe-
cial message to its neighbouring or successor peers. Upon re-
ceiving this message, the NOMs of the neighbouring or suc-
cessor peers invoke an internal migrate function (not shown
in API), and check for the SOs to be migrated via filter
(defined in Section 3.4) given to the NOM at initialization.
Similarly, a leaving peer invokes its own migrate function to
pass all relevant SOs to its neighbouring or successor peers.
Note that a SO is only ever migrated to another peer within
the same service overlay. Migration is an important process
in the P2P networks, as peers come and go fairly frequently,
and efficiency is crucial to ensure consistency. In contrast,
replication processes are triggered by the requirement of the
service offered by a service plugin. Replication assists service
plugins in providing reliable and consistent services. Based
on the specified requirements (via get in Section 3.2), the
NOM uses an internal replication function (also not shown
in API) to check for the most recently changed SO and ap-
plies a naming scheme to create a replica or replicas. The
number of replicas is determined by the requirements.

4. MIDDLEWARE IMPLEMENTATION
We have implemented a prototype of CAESAR using the

C++ language. This middleware library contains the core
components described in Section 3. The current library sup-
ports the addition of plugins through manifest files, which
contain information such as plugin name, plugin type (ser-
vice or protocol), description of the plugin and additional
quality attributes or requirements to be offered to applica-
tions (these can be pre-defined control or replication strate-
gies). The library also provides a few core service and default
protocol plugins. These core service plugins, namely Global
Management, Data Management, Virtual Machine and Ac-
cess Management, either cover a large variety of complex
applications or are essential to include for most applications.
The default protocol plugins, namely Chord [7] and FLOC
[4], allow immediate use for application development. More
details of the C++ library and the available plugins can be
found in [1].

To give better understanding of how the core components
interact to serve an application, we illustrate the typical
use of the library using a collaboration diagram, shown in
Fig. 2. The sequence of calls show when a peer applica-
tion requests for a reference to a service plugin, and subse-
quently invokes a function (specific function associated with
the service plugin) through the reference, which results in a
message being sent to another peer application within the
same service overlay. The diagram also depicts the functions
invoked when a message associated with a service overlay
arrives at a peer, which ultimately reaches the application.
Note that CAESAR middleware gives control to the service
plugins to handle the upcalls to the applications.

5. APPLICATIONS
CAESAR has been used to develop several complex P2P

applications. One of the complex and exciting applications is
the P2P-based Massively Multiplayer Online Games (MMOG)
[3], which is currently being commercialized. This P2P
MMOG application is a set of interacting entities in a virtual
world with a large population of players. The P2P MMOG
prototype uses two services namely Entity Interaction Ser-
vice (EIS), Spatial Data Service (SDS) and one protocol,
Entity Interaction Protocol (EIP). These components have
been developed as independent service and protocol plugins
to CAESAR. Fig. 3 shows a screenshot of the P2P MMOG.

Figure 3: A screen shot of P2P MMOG

CAESAR has also been used to develop several other com-
plex service-oriented P2P applications: P2P Event Finder
that facilitates look up service for events occuring in a city,
MPICH-OPeN [5] that provides a platform for running Mes-
sage Passing Interface (MPI) programs over P2P networks,
and Intrusion Detection Service [8] that provides collabora-
tive approach to detect network intrusions.

6. RELATED WORK
JXTA (www.jxta.org) is a P2P application development

framework that supports an overlay using JXTA protocol.
JXTA does not provide an abstraction for a general DHT-
based protocol to be used in place of JXTA protocols, thus
limiting the flexibility of application in using various proto-
cols. In general, the design goals of JXTA, namely inter-
operability, platform independence and ubiquity are quite
different from the design goals of CAESAR.

CAESAR is both different and complementary to a re-
search effort known as OpenDHT (www.opendht.org), which
offers a DHT-based routing overlay to applications via a
public service deployment (using Bamboo as the underlying
DHT protocol). The work of Dabek et. al. [2] is directed

towards generalizing and refining the interfaces between ap-
plications and protocols. This work is intended to support
routing algorithms and is not designed to have general API
functions for development of complex P2P applications. In
summary, current development infrastructure does not pro-
vide an adequate level of abstraction and information hiding
that is essential for successful development of complex ap-
plications over large scale and dynamic networks; hence the
motivation for our work.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented the CAESAR middleware that

addresses the challenges of complex P2P application de-
velopment. Our low coupling component-based framework
uses abstraction to simplify application development by de-
coupling P2P protocols from the applications, and service-
oriented approach to allow delegation of processing to other
peers in the same service overlay within a P2P network.
Using a plugin-based approach, the middleware allows new
service and protocol plugins to be easily added, to enhance
the functionality of a peer.

In conclusion, our solution is a viable and much needed
development support for building complex P2P applications,
which we have demonstrated through a few complex appli-
cation prototypes. Our future agenda includes developing
additional plugins, and to investigate a more sophisticated
service discovery approach for the framework.

8. ACKNOWLEDGMENTS
Funded in part by the Australian Research Council, grant

number DP0451936 and National ICT Australia.

9. REFERENCES
[1] Prototype of CAESAR.

http://p2p.cs.mu.oz.au/software/.

[2] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and
I. Stoica. Towards a Common API for Structured
Peer-to-Peer Overlays. In 2nd Int. Workshop IPTPS,
2003.

[3] S. Douglas, E. Tanin, A. Harwood, and
S. Karunasekera. Enabling Massively Multi-Player
Online Gaming Applications on a P2P Architecture. In
Int. Conference on Information and Automation, 2005.

[4] A. Harwood, E. Tanin, and M. Truong. Fast Learning
of Optimal Connections in a Peer-to-Peer Network. In
IEEE Int. Conference on Networks, November 2004.

[5] L. Ni and A. Harwood. MPICH-OPeN on the
PlanetLab Infrastructure. In Demonstration, Pacific
Rim Applications and Grid Middleware Assembly, 2006.

[6] M. Papazoglou and D. Georgakopoulos.
Service-Oriented Computing. In Commun. ACM, Oct.
2003.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. In SIGCOMM, 2001.

[8] C. Zhou, S. Karunasekera, and C. Leckie. A
Peer-to-Peer Collaborative Intrusion Detection System.
In ICON, 2005.

