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Abstract

For monitoring moving objects via wireless sensor net-
works, we introduce two aggregate query types: distinct en-
tries to an area and the number of objects in that area.
We present a new technique, Distributed Euler Histograms
(DEHs), to store and query aggregated moving object data.
Aggregate queries occur in a variety of applications rang-
ing from wildlife monitoring to traffic management. We
show that DEHs are significantly more efficient, in terms
of communication and data storage costs, than techniques
based on moving object identifiers and more accurate than
techniques based on simple histograms.

1 Introduction

We develop a novel approach for applications that track
a large number of moving objects using wireless sensor net-
works (WSNs). Since a WSN’s throughput per node de-
creases if the number of sensors increases [10], we envi-
sion applications in which sensors cooperatively store and
process moving object data for later retrieval of aggregate
information. For example, a zoologist may be interested in
the global movement patterns of the wildlife in a park using
a habitat monitoring system based on movement sensors.

Figure 1. 5 moving object paths intersecting
the responsibility regions of 1 and 6 sensors.

We introduce two main aggregate query types for mon-
itoring moving objects: the total number ofdistinct entries
and the total number ofdistinct objects. We illustrate those

queries in a simple scenario (see Figure 1): a sensor (not
visible) is placed in the center of its rectangular responsibil-
ity region and5 distinct objects move in that region along
different paths. There are6 distinct entries to the region of
the sensor because the objectA enters the region twice.

Assume a deployment of6 sensors as in Figure 1 to mon-
itor traffic patterns. One approach to monitor the distinct
entries and the distinct number of objects for the query rect-
angleQ is to use object identifiers, such as radio frequency
identification (RFID) tags, in tandem with aggregation tech-
niques (e.g., [14]). However, this approach requires a large
amount of tracking data to be passed between the sensors.
Alternatively, we could simply store object counts on the
sensors to reduce communication and storage costs. How-
ever, such a histogram-based method cannot accurately an-
swer the two basic queries for more than one sensor, for ex-
ample, objectC in Figure 1 is counted twice inQ. The sum
of individual sensor counts can significantly deviate from
the correct answer for both query types if the number of
sensors is large. Although the sum of the individual counts
is useful, it is thetotal traffic observed inQ, the two basic
aggregation queries require a different approach.

In this paper, we develop the concept ofDistributed Eu-
ler Histograms(DEHs) to answer both query types (as well
as total traffic queries) with a high level of accuracy and
without using IDs. We show that DEHs significantly reduce
storage and communication costs, which leads to consider-
able energy savings for WSNs. Our approach is ideal for
situations where moving objects cannot be easily identi-
fied due to the high costs in RFID tag placement. In ad-
dition, privacy and security concerns might prohibit indi-
vidual identifiers, e.g., in traffic monitoring. As a DEH is a
counting-based technique, we only need simple motion de-
tectors and counters that are readily available. We introduce
DEHs in Section 3 and show their efficiency in experiments
compared to competing approaches in Section 4.

2 Related Work

Aggregate-query processing in WSNs is a major re-
search area [14, 17, 21] that has mostly focused on answer-



ing non-spatial queries such as finding the minimum tem-
perature in a WSN. Spatial data structures for WSNs have
only recently been introduced: an R-tree structure in [4],
a k-d tree based structure in [12], a multi-resolution grid-
based structure in [5], and in [9] a multi-rooted quadtree
that incorporates hashing and maps events observed in a
network onto the network itself. Gao et al [6] propose a
quadtree-based structure to store sensor readings in the net-
work. Although Gao et al use aggregation methods, they do
not address moving objects. Meka and Singh [15] present
a quadtree variant for managing complex moving phenom-
ena, such as toxic plumes, and create summary information,
such as compact individual toxic plume descriptions, but do
not apply aggregate data storage and query processing.

Storage and processing of RFID data has attracted sig-
nificant interest in data management research. Hu et al [11]
highlight the key challenge, the high volume of input data
created by RFID tags, and apply bitmap-based techniques
to store and process RFID information. The system in [8]
uses path-dependent aggregates to process and store mov-
ing object data in a data warehouse. In contrast to our work,
these systems focus on efficientcentraldata processing.

Existing moving object indexing techniques (e.g., [18])
mainly focus on centralized spatial data structures, a trend
also found for systems that process continuous nearest
neighbor and other continuous spatial queries [16, 19, 20].
None of the approaches are designed for a highly distributed
environment such as a WSN. Gedik and Liu [7], however,
introduce a distributed approach for tracking moving ob-
jects and answering continuous queries but focus on effi-
cient retrieval of individual data items rather than aggre-
gate query processing. Spatiotemporal aggregate data stor-
age and processing has been a separate research area (cf.
Lopez et al [13] for a comprehensive survey) but most ap-
proaches concentrate on server-based data management.

2.1 Euler Histograms

Euler Histograms (EHs) [3] are spatial data structures to
efficiently store aggregated spatial data and answer spatial
queries that Simple Histograms (SHs) cannot. An example
EH is given in Figure 2:3 rectangular objects are mapped
onto a regular space partition, a4 × 4 grid, and the corre-
sponding EH is given on the right part of the figure. The
SH consists of a set of16 integers. We increment each cell
value for every rectangle intersecting a grid cell leading for
the SH to a count of17 instead of3. The correct number of
3 rectangles cannot be derived without a separate data set.

An EH consists of three histograms: the counts (of a rect-
angle such asA) mapping onto the faces, edges, and vertices
of each grid cell (as shown on the right part of the Figure 2).

Any query that can be answered using the SH can also
be answered with an EH as it includes theface counts. The
total number of distinct objectsT in a given query region is
determined by the formulaT = F −E +V , whereF is the

Figure 2. Left: a 4×4 grid with 3 rectangles;
right: the resulting EH and a query rectangle.

sum of face counts overlapped by the (object) rectangles,
E is the sum of the edge counts intersecting the rectangles,
andV is the sum of vertices enclosed by the rectangles. In
Figure 2, we obtain for the query regionQ: T = 3, which
is the exact number of distinct objects intersectingQ.

Currently, EHs are only designed for rectangles on grid-
based partitions and centralized architectures. We address
these limitations for aggregate-query processing in WSNs.

3 Distributed Euler Histograms

A DEH is a multi-dimensional data structure that main-
tains histograms at the network nodes. An example DEH is
given in Figure 3: sensors partition the space into disjoint
convex responsibility regions. The sensors (not shown) are
the sites of a Voronoi diagram and their responsibility re-
gions are the Voronoi cells. We assume that each sensor can
detect any object in their region, store simple ID informa-
tion, perform simple counts, and that two sensors in adja-
cent cells are in communication range.

Figure 3. A DEH for two object paths X and Y
showing histogram values greater than 0.

Figure 3 shows two moving object paths,X andY. The
DEH reflects the counts forX andY in each cell. We main-



tain only two histograms instead of three as for EHs. In the
DEH we keep a face count for each cell, which is updated
when a moving object is detected by a sensor, and edge
counts for each intersected edge of any two adjacent cells.
Each edge count is assigned to only one sensor (also if an
object moves along the edge of two neighboring cells). If an
object moves from one cell to another through a vertex, we
increase the count for only one edge.

In the example in Figure 3, five cell counts are equal to2.
In three cases, the same object reenters a previously visited
cell and in two cases two paths intersect the same cells.

Note that if a query rectangle intersects a cell, its face
count is considered relevant to the query. However, a path
crossing such a cell may not intersect the actual query rect-
angle. We assume that the deployment of sensor nodes is
dense enough to neglect this inaccuracy. To inject a query
from a sensor node, we use the tree-based query broadcast
and aggregation techniques proposed in [14].

Figure 3 depicts three rectanglesQ, P , andR, that we
use to explain our approach to distinct entry as well as dis-
tinct object, and total traffic queries. The total traffic query
simply requires a summation (at each sensor node) over the
cell counts, which leads in case forQ to 2. The number of
distinct entries toQ is computed by the formulaT = F−E,
i.e.,2−1 = 1. For distinct object queries, we also apply the
formulaT = F − E, and obtain forQ: 2 − 1 = 1. For the
query rectangleP , the DEH leads to a total traffic of6 and
to 6 − 5 = 1 the distinct entries as well as distinct objects.
ForR the DEH cannot report the number of distinct objects
accurately. The DEH computes the total traffic as4 and cor-
rectly 4 − 2 = 2 distinct entries. However, the DEH also
reports2 distinct objects in contrast to the correct answer of
1 distinct object. Keeping only counts, we cannot maintain
the knowledge that the same object has enteredR twice.

A vertex count cannot solve this problem. Maintaining
ID lists at sensors correctly answers the distinct object query
but comes at an additional cost and has the converse prob-
lem for distinct entry queries as shown in 3.1. More de-
tailed information, e.g., timestamped paths maintained at
each sensor, could provide accurate answers for both query
types but is not a viable alternative due to the high cost.
Section 4 shows that even simple ID lists have significantly
higher data storage and communication costs as a DEH.

3.1 Correctness and Accuracy

In [3] it is shown that a rectangle overlapping a grid-
based space decomposition satisfies the formulaF − E +

V = 1, whereF is the number of grid cells covered by the
rectangle,E is the number of edges it intersects, andV is
the number of enclosed vertices. Thus, we only count the
rectangle once in a given distinct object query.

We show that DEHs provide correct counts for distinct
entry queries if we only keep face and edge counts for mov-
ing object paths. We can view a path as a concatenation of

line segments, and each segment starts in a cell, crosses an
edge, and ends in an adjacent cell. Each line segment can be
treated similarly to rectangles. Note that a vertex intersected
by an object path is assumed to belong to one of its adjacent
edges and line segments cannot span two edges. Hence, the
count forV can be treated as0. Each line segment satisfies
the formulaF − E = 0, except for the end point of the last
line segment, which requires an additional face count. Thus,
the sum of counts correctly leads to1 for this path. In the
case that an object stays in a cell, a DEH correctly computes
one count: the face containing the object path.

We treat the distinct object and distinct entry queries in
the same way. However, if a path exits a query region and
reenters it, the concatenation-based approach for counting
fails for distinct object queries. We observe two end points
for a single path without knowing that they belong to the
same path. However, as the path entered the query region
twice, distinct entry queries are answered accurately. The
dual of this problem, for distinct entry queries, occurs for
ID-based approach. Assume that two neighboring cells are
located at the border of a query rectangle. Then, the two
ID lists of the neighboring cells can be merged to find the
correct number of distinct objects in the rectangle. However,
we do not know if a moving object traveled from one cell
to the other via their edge within the rectangle or if any
object went outside the query rectangle and returned. Thus,
we cannot answer the distinct entry queries accurately.

4 Experiments

4.1 Experimental Setup

We designed an experimentation environment using the
J-Sim simulator [1]. We generate a simulated deployment of
sensors over a rectangular area. The distribution of sensors
is uniformly at random. For a givennumber of objectsthat
travel in that area, we generate their travel patterns usingthe
Network-based Generator of Moving Objects [2]. This gen-
erator creates moving object paths for a given transportation
network, which is for our experiments the Melbourne city
transportation network.

For each moving object, we define the concept of a trip:
given two randomly generated points in Melbourne, the
generator creates the shortest path between them. For each
object we create a set of trips, with one shared connection-
point, to simulate realistic city conditions where some ob-
jects make multiple trips. Thus, thenumber of tripsand the
percentage of multi-trip objectsare a part of our simulation
parameters. For a givenquery rectangle sizeexpressed as a
percentage of the deployment area size, we generate query
rectangles over the deployment area uniformly at random.
These are injected in the network at a randomly selected
point in the network. We run100 queries for each experi-
ment and report an average.



We have implemented three approaches: DEH, an ID-
based System (IDS), for example based on RFID tags, and
SH. All approaches use the same routing and aggregation
methods but differ in terms (a) their aggregation operations
at the node level and (b) the type of the information com-
municated between sensors. IDS has to compare different
ID lists reported from numerous sensors to answer an ag-
gregate query. We compare the answers of all systems with
respect to communication costs, storage costs, and achieved
accuracy. We excluded computation costs as in WSNs the
energy costs for computation are significantly lower than
for communication. It is important to point out that DEHs
require only simple aggregation operations such as summa-
tions, while IDSs require the comparison of large data sets.

We present the results using the two basic query types,
distinct entry and distinct object queries. The results forthe
total traffic query is irrelevant for our discussion as all three
approaches can find the result for this query accurately and
efficiently by simply reporting a single count per sensor.

4.2 Results

4.2.1 Number of Objects

First, we evaluate the impact of the number of objects on
the performance of IDS, DEH, and SH. Our hypothesis is
that communication and storage costs for IDS increases as
the number of objects increases. In contrast, the costs for
DEH and SH are not affected and are lower than for IDS.
For DEH and SH, the accuracy in distinct object queries will
not be as high as for IDS. For IDS and SH, the accuracy in
distinct entry queries will be less than DEH.

No. of No. of Multi-Trip QRS No. of
Objects Trips Objects in % Sensors

1 100-1000 2 10% 10% 1000

2 1000 1-10 10% 10% 1000

3 1000 2 10-100% 10% 1000

4 1000 2 10% 10-100% 1000

Table 1. Experiment settings

As shown in the first row of Table 1, for the first ex-
periment the number of moving objects varies from100 to
1000. 10% of the objects make two trips, while 90% are
single-trip objects. The query rectangle size (QRS) is 10%
of the total deployment area with1000 sensors. Due to the
constraints of our processing power, we had to limit both
the number of objects and the number of sensors to 1000.

In Figure 4, we see a significant increase in the number
of bytes transmitted for IDS (1816 bytes to17963 bytes)
when the number of objects increase (standard deviations
are shown in all charts but may not be visible if they are
small). However, the communication costs for SH and DEH
are unchanged (508 bytes and1016 bytes, respectively) and

are much smaller than for IDS (9615 bytes in average). For
this reason our communication cost charts use a logarithmic
scale. A similar situation occurs for the memory costs (Fig-
ure 5). The number of bytes stored in IDS increases from
6576 to 46680 with an average of 26412, while the mem-
ory cost for SH and DEH remains at 4000 bytes and 15548
bytes, respectively. Note that IDS requires less storage than
DEH if the number of objects is less than300 since every
sensor inside the query region has to keep several counts
for DEH but may not observe any objects for small num-
bers of objects. DEH is more expensive than SH as it has to
maintain a larger number of counts per sensor.

Figure 4. Communication costs

Figure 5. Memory costs

Figure 6. Accuracy for distinct object query

While IDS always achieves 100% accuracy for distinct
object queries (Figure 6), DEH achieves an accuracy level
of 81% to 85%. In contrast, while DEH always has a 100%
accuracy for distinct entry queries (Figure 7), IDS achieves
an accuracy level of 81% to 85%. Thus, the two approaches



are dual in terms of their behavior for the two query types.
SH fails for both of the query types in terms of accuracy
(average at 14% and 17%, respectively).

Figure 7. Accuracy for distinct entry query

4.2.2 Number of Trips

We also measured the impact of the number of trips on the
performance. Our hypothesis is that the accuracy of DEH
and SH in distinct object queries will be less than IDS and
will decrease as the number of trips increases. For IDS and
SH, the accuracy in distinct entry queries will be less than
DEH and will drop as the number of trips increases. The
experiment parameters are shown in row 2 of Table 1.

While IDS always achieves 100% accuracy for distinct
object queries (Figure 8), the accuracy of DEH has an av-
erage at 76% and drops from 85% to 70% as the number
of trips increases. This decrease is due to a larger number
of disconnected entries to the query region from an increas-
ing number of objects (creating similar examples as for the
query rectangleR in Figure 3). Symmetrically, the accuracy
of IDS has an average of 76% and drops from 85% to 70%
for distinct entry queries (Figure 9), while DEH always has
100% accuracy.

Figure 8. Accuracy for distinct object query

4.2.3 Percentage of Multi-Trip Objects

We studied the impact of multi-trip objects (the settings are
shown on the third row in Table 1). The results confirm the
results for increasing numbers of trips: while IDS always
achieves 100% accuracy for distinct object queries, the ac-
curacy achieved by DEH has an average at 77% and drops

Figure 9. Accuracy for distinct entry query

from 82% to 73% as the percentage of multi-trip objects
increases. Similarly for distinct entry queries, the accuracy
achieved by IDS has an average at 77% and drops from 82%
to 73% as the percentage of multi-trip objects increases,
while DEH always achieves an 100% accuracy.

4.2.4 Query Rectangle Size

We also tested the impact of query rectangle size (QRS) on
the performance of the systems. Our hypothesis is that the
communication costs for all systems increases as the QRS
increases. For DEH, the accuracy in distinct object queries
is less than for IDS but will increase as the QRS increases.
Conversely, for IDS the accuracy in distinct entry queries
will not be as high as DEH but will increase as the QRS in-
creases. The settings are given in the fourth row of Table 1.

Figure 10. Communication costs

Figure 11. Accuracy for distinct object query

In Figure 10, we see an increase of communication costs
in all systems as the QRS increases, because larger QRSs



cover more sensor nodes, which require more data to be
transmitted. The cost for IDS increases from 19217 bytes
to 182805 bytes with an average of 116218 bytes, the cost
for DEH from 1012 bytes to 7992 bytes with an average
of 4818 bytes, and the cost for SH from 506 to 3996 bytes
with an average of 2409 bytes. While IDS always achieves
100% accuracy in distinct object queries (Figure 11), the
accuracy achieved by DEH has an average at 88% and rises
from 82% to 100% as the QRS increases. At the 100% level,
there are no reentries to the query rectangle as all objects
can only travel within the WSN. Correspondingly, DEH
always achieves 100% accuracy for distinct entry queries
(Figure 12), while IDS’s accuracy has an average at 88%
and rises from 82% to 100% as the QRS increases.

Figure 12. Accuracy for distinct entry query

5 Conclusions and Future Work

We introduced aggregate-query processing of moving
object data in WSNs and the concept of DEHs as an efficient
method to answer aggregate queries. We presented two ba-
sic query types, distinct entries to a region and the distinct
number of objects in that region. We have shown that DEHs
can decrease the communication costs by an order of mag-
nitude under a large variety of realistic experimental set-
tings compared to approaches based on maintaining mov-
ing object identifiers. We have also observed storage cost
savings of more three times of what an RFID-based system
achieves. Our method shows a high level of accuracy for
the two basic query types, unlike simple histograms where
answers can deviate significantly from the correct ones.

We plan to extend our method to allow for communica-
tion gaps in a WSN. A further extension are tracking sce-
narios where the extent of objects is important, such as the
monitoring of toxic gas releases. In addition, we plan to ad-
dress non-rectangular multi-dimensional range queries.
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