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Abstract. Efficient data collection in wireless sensor networks (SNs) plays a key
role in power conservation. It has spurred a number of research projects focusing
on effective algorithms that reduce power consumption with effective in-network
aggregation techniques. Up to now, most approaches are based on the assumption
that data collection involves all nodes of a network. There is a large number of
queries that in fact select only a subset of the nodes in a SN. Thus, we concen-
trate on selective queries, i.e., queries that request data from a subset of a SN.
The task of optimal data collection in such queries is an instance of the NP-hard
minimal Steiner tree problem. We argue that selective queries are an important
class of queries that can benefit from algorithms that are tailored for partial node
participation of a SN. We present an algorithm, called Pocket Driven Trajectories
(PDT), that optimizes the data collection paths by approximating the global min-
imal Steiner tree using solely local spatial knowledge. We identify a number of
spatial factors that play an important role for efficient data collection, such as the
distribution of participating nodes over the network, the location and dispersion
of the data clusters, the location of the sink issuing a query, as well as the loca-
tion and size of communication holes. In a series of experiments, we compare
performance of well-known algorithms for aggregate query processing against
the PDT algorithm in partial node participation scenarios. To measure the effi-
ciency of all algorithms, we also compute a near-optimal solution, the globally
approximated minimal Steiner tree. We outline future research directions for se-
lective queries with varying node participation levels, in particular scenarios in
which node participation is the result of changing physical phenomena as well as
reconfigurations of the SN itself.

1 Introduction

Efficient data collection and aggregation algorithms for sensor networks (SNs) exploit
the fact that a sensor node consumes significantly less energy for information processing
than for communication. Aggregating information at the node level such as computing
the sum or the average of sensor readings reduces the need for communication: instead
of transmitting the packets of each individual node separately, a node first aggregates
the incoming packets of the nodes in communication range and then communicates the
aggregated information to the next node in the collection path.
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Major in-network data processing techniques for SNs do not take an explicit position
on the issue whether or not a query predicate selects all the nodes of a SN. Instead,
most techniques implicitly assume that a query requires all nodes to respond. We refer
to the sensor nodes that report their readings to a selective query as participating nodes.
An example of a selective query is “SELECT the humidity readings FROM all sensors
WHERE the temperature is above 40◦ for a DURATION of 2 hours EVERY 5 minutes”.
We call all nodes that fulfill the WHERE clause the participating node set of this query.

Current SN data management models such as Cougar and TinyDB view the SN as
an ever growing relation(s) of tuples that are distributed across the sensor nodes [1,2].
They mimic classical relational database management systems. In classical systems
query predicates limit the number of tuples that form the output relation. The query
predicates in these models also serve to limit the set of sensor nodes that contribute
to the answer of a query. Techniques developed for efficient data collection in SNs, in
particular classical tree-based and multipath-based techniques [3,4], generate a nearly
optimal number of messages for aggregation operations if all nodes need to report to a
query. We show that these major in-network data processing schemes do not continue
this optimal behavior for selective aggregate queries.

Most approaches for data collection, do not explicitly address query selectivity while
computing an efficient data collection path. There are two main directions in SN query
processing for optimizing the data collection process for selective queries: (1) prevent-
ing that a query is sent to nodes that do not fall into the scope of that query and, there-
fore, are not aware of the query and do not need to respond, and (2) minimizing the
number of non-participating nodes in the collection path. An example for the first di-
rection is the concept of semantic routing trees [5] where optimization between queries
is the main focus. In this paper, we address the second direction. The main contribution
of our research is a strategy that minimizes the number of nodes used in processing
a query by discovering constrained regions to grow sub-trees for data collection and
combining these trees in an efficient manner to transmit the final result to the sink. This
strategy contrasts with earlier tree-based approaches, such as TAG, where the tree is
created in a random manner using local greedy parent selection policies [1].

Our algorithm, called Pocket Driven Trajectories (PDT) is based on the insight that
spatial correlation in sensor values coupled with query selectivity results in a set of par-
ticipating nodes formed by one or more geographically clustered sets. We refer to these
geographical clusters as pockets. The PDT algorithm first discovers the set of pock-
ets for a given query and then aligns the aggregation tree to the spatially optimal path
connecting these pockets. This path maximizes the use of participating nodes in the tree
and conversely minimizes the number of non-participating nodes. The PDT algorithm is
best suited to the selective queries that regularly collect data from a relatively consistent
set of nodes over time. The initial set-up cost for the PDT algorithm can be amortized
over the query lifetime.

The task to minimize the number of non-participating nodes in processing a query
can be modeled as a minimal Steiner tree problem; which is known to be NP hard [6].
The number of nodes used in the globally approximated minimal Steiner tree for a
given set of participating nodes can be seen as a near-optimal solution for the mini-
mum number of nodes required for data collection. There are a number of algorithms to
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compute an approximation of the minimal Steiner tree efficiently [7,6,8]. These approx-
imation algorithms, however, require global knowledge of the communication graph.
This knowledge is typically not available in a SN. For a SN we require techniques that
do not rely on global information about the network. The PDT algorithm can be con-
sidered as an approximation to the minimal Steiner tree that is solely based on local
information. Our experiments show that for selective, aggregate queries, PDT does not
only give better performance results than major in-network aggregation schemes but is
also close to a globally approximated minimal Steiner tree.

A chief contribution of our work is the performance comparison of PDT and other
major aggregation algorithms using extensive simulations in a number of node partic-
ipation scenarios. We identify important parameters to capture the spatial properties
of a node participation scenario and use these as a basis for our analysis. We show in
our experiments that selectivity-awareness can reduce the usage of a large number of
non-selected nodes in the data collection path, in particular, if the query selectivity is
high.

Finally, we present future research directions where node participation is affected by
changing physical phenomena as well as the SN configuration.

2 Related Work

Three major techniques for efficient data collection and aggregation are packet merging,
partial aggregation, and suppression. The communication cost in wireless networks is
determined by the number of packets a node has to transmit. Each packet has a fixed size
and the size of a sensor reading, record, is typically much smaller. Packet merging [2]
combines several smaller records into a few larger ones and thus reduces the number of
packets and thereby the communication cost. Partial aggregation computes intermediate
results at the node level such as the sum or the average of sensor readings. Suppression-
based techniques only transmit values if the sensed values have changed from the previ-
ous transmission or differ from the values of neighboring sensor nodes [9]. Orthogonal
techniques minimizing communication are compression techniques [10], topology con-
trol, or approximation of sensor readings.

TinyDB [1] enables in-network aggregate query processing using a generic ag-
gregation service called TAG (Tiny AGgregation) [3]. TAG is one of the pioneering
tree-based in-network aggregation schemes. To gather data within the SN, the sink is
appointed to be the root of a tree and broadcasts its identifier and its level. All nodes that
receive this message without an assigned level, determine their own levels as the level
in the received message incremented by one. The identifier in the message determines
the parent for the nodes receiving the message. In a lossless network in which all nodes
are selected by a query, the resulting collection tree is close to an optimal solution. Ag-
gregation in TAG is implemented by a merging function, an initializer, and an evaluator,
and the aggregation operator is applied at every internal node.

In order to further optimize the data aggregation process, TinyDB introduces the
concept of a semantic routing tree (SRT) [1,5]. Although the concept of selectivity is
not explicitly addressed in TAG [3], SRTs can support selective queries. The basic idea
behind SRTs is to proactively prune the SN in the query dissemination stage by ensuring
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that a selective query is sent only to those nodes that fall under its scope. SRT maintains
meta-information at each internal node of the aggregation tree. More precisely, an SRT
is an index over a fixed attribute A, for example the temperature sensed by the network,
where each parent maintains the range of all values of its children for the attribute A.
When a query is received by a parent, it forwards the query only when at least one
child satisfies the predicate. An SRT optimizes the query forwarding phase of TAG and
greatly reduces the number of broadcasts required to reach the nodes selected by the
query. To avoid a high cost of maintenance, SRTs are designed for constant attributes
such as the temperature or the location [1]. However, the maintenance cost of SRT can
exceed its benefit if it has to be maintained for frequently varying attributes [1]. SRTs
do not focus on the data collection optimization but on the broadcast of the query.

Tree-based aggregation schemes can be extended for changing network condi-
tions [11]: aggregation operators are pushed down in an aggregation tree and adapt
to changing conditions, such as a sub-tree that generates more readings than a sibling.
This approach incrementally improves on existing schemes. In our work, we develop
an aggregation scheme that, after retrieving the initial readings from a SN, specifically
tailors the collection path to the sensor readings and the set of selected nodes in a SN.

Data collection paths are susceptible to link and node failures in a SN [4,12]. If a link
or node fails that is close to the sink, the aggregated information of an entire sub-tree
might be lost. Multi-path aggregation algorithms exploit the benefits of the wireless
broadcast advantage that all nodes in communication range can hear a message and
propagate the aggregates toward the sink using multiple routes. As a consequence data
collection along multiple paths can be more robust for node failures or communication
losses. In return, a multi-path aggregation algorithm has to cope with redundancy and
deviations in data aggregation [13].

In [4] multi-path aggregation algorithms are seen as energy efficient as tree-based
ones because each node only has to transmit a message once, in the same way as in
any tree-based aggregation algorithm. However, a crucial assumption is that the receive
time for each communicating sensor is not increased by multiple readings. Recent stud-
ies on the energy consumption of sensor nodes report that the energy requirement for
the receive mode is only slightly lower compared to the energy cost for the transmission
mode [14], i.e., a sensor node consumes almost the same amount of energy in receiv-
ing data as in transmitting data. In multi-path aggregation, each node expects to receive
data from all nodes in communication range that have a higher level than the listening
node. Therefore, the duration for receiving data can be considerably longer compared to
a tree-based aggregation algorithm, where each node only has to listen to its direct chil-
dren, a set that can be a significantly smaller. In addition, we show that with decreasing
participation levels for a selective query, the energy cost for multi-path schemes can be
quite high than a tree-based scheme or our PDT algorithm.

To overcome the higher energy costs, an approach that locally applies multi-path
aggregation locally but not to the entire network is suggested in [15]. This approach is
a hybrid aggregation scheme that combines the benefits of the two major aggregation
schemes to form a more efficient option than pure multi-path aggregation schemes: a
multi-path-based aggregation scheme is preferred to a simple tree-based aggregation
scheme when the in-network aggregation operator is close to the sink; for deeper levels
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of aggregation tree, the operators work as if they are on a TAG-like aggregation tree as
the loss of a sensor at deeper levels only marginally effects the final result.

A key challenge for multi-path routing schemes is to develop duplicate-insensitive
algorithms for each aggregation operator. A naive approach could include meta infor-
mation in each aggregated message such as the node identifier that participated in the
creation of an aggregate, which could be used by forwarding nodes to suppress dupli-
cation. Although this approach could achieve the same accuracy as a tree-based ag-
gregation algorithm, the limited storage and processing capabilities of sensor nodes,
however, render such a scheme impractical for larger SNs. Thus, all multi-path schemes
integrate much cheaper probabilistic Order and Duplicate Insensitive (ODI) methods of
the sketch theory [4,13]. Therefore, current research in multi-path aggregation focuses
on the development of better ODI algorithms to reduce the approximation error.

Data collection in SNs can be optimized using spatial and temporal suppression-
based techniques [9]. Temporal suppression is the most basic method: the transmission
of a sensor reading from a node is only allowed if its value has changed from last
transmission. Spatial suppression includes methods such as clustered aggregation and
model-based suppression [16]. They aim to reduce redundant transmissions by exploit-
ing the spatial correlation of sensor readings. If the sensor readings of neighboring sen-
sor nodes are the same, the communication of those sensed values can be suppressed.
With CONCH [9], a hybrid spatio-temporal suppression algorithm, is introduced, that
considers the node readings and their differences along the communication edges to
suppress reports from individual nodes. Suppression is an orthogonal data flow opti-
mization method to our approach and can easily integrated into other approaches.

Clustered in-network aggregation is a spatial suppression technique exploiting the
spatial correlation of sensor readings to preserve energy [17,18,19]. Spatial correlation
in sensed data refers to the fact that sensor readings in close proximity are typically
similar. Spatial correlation is a frequent phenomenon for physical phenomena such as
temperature or humidity [20]. If a selective query has to retrieve an aggregate such
as the average temperature in a certain area, then nearby nodes typically have similar
readings and are geographically clustered. Hence, only one node needs to respond to an
aggregate query from a cluster [18,19] as in the Clustered AGgregation (CAG) and the
Geographic Adaptive Fidelity (GAF) approaches. In static clustering [17], the network
is statically partitioned into grid cells. For each grid cell one node is appointed as a
cluster head that acts as a gateway but every node that has to respond to a query still
reports its readings. In each cell, data is routed via a local tree, aggregated at the local
gateway and then communicated to the sink. Methods that rely on approaches such as
clustered in-network aggregation (such as CAG) have the disadvantage that the reported
results can deviate from the real sensor readings. However, static clustering does not
have this issue and is comparable to our work. Unlike our work, static clustering does
not tune the collection paths to the specific network conditions.

In [21], the optimal data collection problem in SNs has been identified as a Steiner
tree problem. The authors propose a data collection scheme based on a global Steiner
tree approximation [8]. The main disadvantage of their approach is the requirement that
each sensor node must have global knowledge in terms of network connectivity and
minimum-hop routes, a knowledge that is costly and difficult to maintain in a SN where
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nodes have very limited capabilities. Each update of the global knowledge about such a
graph at each node leads quickly to unnecessary storage and communication overheads.
The PDT algorithm uses only local information that is easily available to any node in
the network. Furthermore, the PDT collection path is query specific, i.e., no permanent
information has to be kept or maintained.

3 A Location Based Aggregation Algorithm

Queries such as the example query in Section 1 that identify all locations with a tem-
perature higher than 40◦ represent an important type of SN queries. In a fire monitoring
system, this query could be used to collect data about the humidity levels in a large re-
gion in order to identify areas that have a severe fire risk. Queries of this type run for a
period of time and periodically retrieve selected sensor readings from the SN. We refer
to these queries as selective recurrent queries.

Selective queries, in contrast to an exhaustive or a snapshot query, can benefit from
an optimized data collection strategy. In snapshot queries, where the sink cannot pre-
dict the number or the location of participating nodes in advance, it can be ineffective
to spend resources on the discovery of the participating nodes. In exhaustive queries,
where all nodes have to respond to a query, a random tree such as TAG often provides
a near-optimal data collection strategy. However, in selective queries, we show that it
is beneficial to invest resources for identifying nodes that do not need to be part of the
data collection especially if the query involves many sampling periods, or epochs. The
initial cost for an optimized aggregation path can later later be amortized during the
life time of a query. Thus, selective recurrent queries are the primary motivation for the
PDT algorithm.

In general, it is not possible to find a data collection and aggregation strategy that
only employs those nodes that need to participate for a given query. Due to the con-
straints on the transmission range for sensor nodes, a data gathering algorithm usually
has to include some nodes that are not selected by the query in order to reach the sink.
The quality of a data aggregation scheme is determined by the total number of non-
participating nodes used in a query. The smaller the number of non-participating nodes,
the more energy efficient an algorithm will generally be. In the PDT algorithm, we
minimize the number of non-selected nodes in the data collection structure by spatially
restricting the aggregation path to a corridor that connects the pockets in an energy
efficient manner.

The problem of reporting aggregates back to a sink by involving minimum number
of non-participating nodes can be seen as an application of the minimum Steiner tree
problem: given a graph G = (V, E) and a set of terminal nodes T ⊂ V , we seek
a minimum cost spanning tree that includes all terminal nodes [22]. In our case, the
terminal nodes are the participating nodes. The minimum Steiner tree problem is known
to be NP-hard and has been widely discussed in the literature [6].

In order to compare aggregation schemes with the optimal aggregation tree, the min-
imum Steiner tree, we outline a popular global Steiner tree approximation algorithm
developed by Kou, Markowsky, and Berman [7] (henceforth referred to as KMB). The
KMB algorithm allows us to compute a Steiner tree that has been shown to achieve a
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mean efficiency that is not worse than 5% compared to the optimal Steiner tree [6,23].
For a graph G and a set of terminal nodes T , the KMB algorithm first computes a com-
plete distance graph G′ = (V ′, E′) for G such that V ′ = T and the weight of each edge
e′ in E′ is the cost of the minimum cost path between the nodes of e′ in G. Then, the
algorithm computes a minimum spanning tree MST ′ of G′, translates MST ′ to G by
substituting every edge of MST ′ with the corresponding path in G, and finally removes
any possible cycles resulting from the translation.

The KMB algorithm is not directly applicable to SNs because, the algorithm requires
global knowledge of the node connectivity for any node in the graph. Therefore, we de-
velop a localized aggregation scheme, called PDT (pocket driven trajectories), that ap-
proximates the minimal Steiner tree for a selective query. The experiments in Section 4
show that the resulting aggregation tree is comparable to KMB’s global approximation.

3.1 Algorithm Overview

We assume that a SN with n nodes is represented by a connected unit disk graph G =
(V, E), where V is the set of sensor nodes and E the set of communication links. Each
query Q issued by a sink S selects a subset T of V . The PDT algorithm works as follows
(Figure 1):

1. the sink broadcasts the query Q and establishes a tree as in TAG;
2. during the first epoch the sink discovers a set of pockets P = {p1 . . . pk} that

partitions the set T ;
3. the sink computes a complete graph G′ = (V ′, E′), where V ′ = P ∪{S} and each

edge weight is the Euclidean distance in the SN;
4. the sink computes the minimum spanning tree MST ′ of G′;
5. the sink establishes an aggregation tree aligned to MST ′;

One of the key steps in the PDT algorithm is the localized discovery of pockets by the
sink. A pocket is a cluster of nodes selected by a query that are proximal, i.e., within a
certain distance. Due to spatial correlation, pockets are common while sensing physical
phenomena. We refer to the time between the two sampling operations of a query as an
epoch following the terminology used in data aggregation for SNs. In the following, we
describe a novel pocket discovery method, location aggregation, that computes pockets
with minimal overhead.

Figure 1 illustrates possible pockets that are selected by a query issued at a sink.
The sink broadcasts the query and all sensor nodes build a random query tree. In the
first epoch, participating leaf nodes start the aggregation phase by sending the requested
sensor readings to their parent nodes and by piggybacking their location information as
Euclidean coordinates. Parent nodes recursively apply the query and location aggrega-
tion operators and forward the partial aggregates to their parent nodes. The aggregation
operation proceeds as in classical data collection schemes. The key step is the location
aggregation, performed in parallel to data aggregation. The location aggregation oper-
ator merges locations to an enclosing rectangle if the children nodes are proximal leaf
nodes, and forwards the non-proximal nodes as singletons. If a participating node re-
ceives a rectangle, it merges the rectangle with its own position into a larger rectangle,
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Fig. 1. The computation of the PDT for a selective participation scenario

if its position is proximal, and otherwise simply forwards the existing rectangle and sin-
gleton locations with its own location. Since the location information is piggybacked
with the desired data, we expect that the location aggregation incurs a small overhead
in terms of communication costs. Moreover, the successive merging of close pockets
keep the volume of information small.

At the end of first epoch, the sink receives the queried aggregate and after applying
location aggregation operation discovers the pockets (p1 . . . pk) selected by the query.
The sink then computes a complete graph G′ as explained in the overview of the PDT
algorithm (see Figure 1(a), 1(b)). The algorithm then creates a minimum spanning tree
MST ′ for G′ at the sink. MST ′ is a pocket driven trajectory that optimizes aggregation
for the specific pocket layout (Figure 1(c)). The PDT information can be encoded as a
series of locations, each corresponding to either a sink location or the center point of
one of the pocket rectangles. During the next epoch, the sink establishes the PDT by
broadcasting the PDT information to all its direct children. All participating nodes that
receive the PDT information packet join the trajectory by reassigning their parents to
that node from which they receive the PDT information. Non-participating nodes de-
cide to join the trajectory depending upon their distance to the trajectory and only nodes
that join the trajectory forward the information packet. The successive forwarding and
parent switching leads to a new aggregation tree aligned with the PDT (Figure 1(d)).
This new tree is afterwards used for data forwarding and aggregation. The initial TAG
tree is still maintained because in future epochs previously non-participating nodes may
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participate. Future participating nodes might have never heard the PDT information and
thus have to use the original tree for data aggregation.

3.2 Shortcomings and Overheads

A query in a SN can consist of a large number of epochs. Even if the change per epoch
is small, the node participation can change significantly during the lifetime of a query.
The PDT algorithm is ideal if the change per epoch is relatively small so that the pockets
do not change significantly in every step. Under those conditions, the PDT may have
to be realigned a few times during the lifetime of a query. However, currently the PDT
algorithm does not adapt to change within a query. We leave the investigation of more
dynamic scenarios to future work.

The increase in packet size due to the aggregation of location information increases
the communication overhead. The location information consists of aggregated pocket
information and a list of atomic locations. Due to the spatial correlation of physical phe-
nomena, the number of atomic locations is typically small and singletons mostly occur
at the leaf level of the aggregation tree. The singletons are almost completely merged
at the lower levels of the tree into pockets that traverse for the remainder of the tree
in a compact form as rectangles. Our experiments show that the location information
aggregation only slightly increases the communication messages.

The announcement of the PDT is the other overhead of the PDT algorithm. The
number of extra messages generated during PDT information broadcast phase is equal
to the number of nodes that decide to join the PDT. The initial setup cost can be amor-
tized over the query lifetime. However, the initial cost cannot be amortized for snapshot
queries and hence we do not recommend the use of the PDT algorithm for such queries.

4 Experimental Evaluation

4.1 Evaluation Parameters

In this section we compare the performance of the PDT algorithm and other major in-
network aggregation schemes in a variety of SN settings. We first lay out the evaluation
parameters that we use to analyze the impact of spatial characteristics of selective ag-
gregate queries.

Spatial Selectivity Index. The nature and extent of spatial clustering of participating
nodes may depend upon a number of factors, such as the magnitude of spatial corre-
lation, SN configuration, the query predicate, and so forth. We introduce an integrated
measure, called spatial selectivity index, SSI, that describes the extent of spatial cluster-
ing in a SN. SSI is based on two key parameters, node scattering and pocket scattering.

The node scattering, NS, at time t (we will drop the argument t for the sake of
simplicity) describes the distribution of pockets for a query as the ratio of the total
number of pockets P relative to the number of participating nodes N :

NS = P/N
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The pocket scattering, PS, characterizes the degree of dispersion for the pocket lo-
cations. We define the pocket centroid, PC, of a pocket Pi as the sensor node that is
closest to the average location of all nodes belonging to Pi. We then define the global
pocket centroid, GPC, as the node that is closest to the centroid of all pocket centroids
P1, . . . , Pl partitioning the nodes selected by the query:

GPC =
1
l

·
l∑

i=1

PC(Pi)

Let HC(v, v′) denote the minimum number of hops for a path connecting two nodes v
and v′. Then, the pocket scattering PS is defined as the average of hop counts connecting
the global pocket centroid with the pocket centroids of the pockets P1, . . . , Pl:

PS =
1
l

·
l∑

i=1

HC(PC(Pi), GPC)

We use the hop count between two nodes as a distance measure instead of their Eu-
clidean distance. Since deployments of SNs can exhibit holes and barriers, the hop count
provides a realistic approximation of the actual communication cost. It should be noted
that the use of hop count as a distance measure is purely for evaluation purposes. The
PDT algorithm itself does not use the hop count measure due to the practical limitations
in making such information available locally at each node.

The spatial selectivity index SSI is then defined as a measure that describes the im-
pact of node scattering as well as of pocket scattering for a given scenario:

SSI = NS · PS

Lower SSI values characterize scenarios that are well pocketed and have a small pocket
scatter, for example see Figure 3(a) and 3(b) in Section 4.3 that show two network
deployments with different SSI values.

Sink Centroid Distance. We formalize sink position in order to analyze the affect of
sink location on the performance of an aggregation algorithm. The ideal position of a
sink is the GPC. The sink centroid distance, SCD, measures the hop count between the
sink and its ideal position. If S is the position of the sink, the sink centroid distance
SCD is defined as

SCD = HC(S, GPC)

Co-Connectivity of a Deployment. Although a rectangular deployment is common in
simulations, e.g., without any holes that alter connectivity, in this paper, we also con-
sider the impact of irregular deployments on aggregation algorithms. Particularly, we
measure the impact of holes. To simplify our discussion, we only take the total number
of holes and their normalized size into account. If |R| denotes the size of the deploy-
ment area R, then the normalized size of a hole Hi is |Hi|/|R|. The co-connectivity
measure CC is then defined as the sum of the normalized sizes of all holes:

CC =
∑

i

|Hi|/|R|
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4.2 Simulation Setup and Methodology

In addition to PDT, we implement comparable aggregation algorithms discussed in Sec-
tion 2. We implement all algorithms in Network Simulator-2 (NS-2) [24]. To provide a
lower bound, we compute for each experiment an approximation of the optimal aggre-
gation tree using the KMB algorithm. In our simulations, we collect the AVERAGE on
a deployment of 750 nodes, placed randomly in a 75m x 75m grid. Each query collects
data from a SN for 100 epochs. We utilize the NS-2 wireless communication infrastruc-
ture that simulates 914 MHz Lucent Wave LAN DSSS radio interface using the two ray
ground reflection propagation model and IEEE 802.11 MAC layer (Chapters 16 & 18
of the NS-2 Manual [24]). Communication is performed using omni-directional anten-
nas centered at each node, while the communication radius is fixed at 5m. The message
payload is fixed at 72 bytes and we assume that every algorithm has the same payload
for data transfers. Furthermore, we assume a lossless network with synchronized many-
to-one aggregation, i.e., during in-network aggregation each internal node is perfectly
synchronized with its children and after aggregation it always emits just one packet.

We use total data transmission (in MBs) as an indication of energy usage and hence
as the basic metric of performance comparison. The amount of data transmission can be
related to the energy expenditure by a simple function such as ε = σs + δsx, where ε is
the total amount of energy spent in sending a message with x bytes of content, and σs

and δs represent the per-message and per-byte communication costs, respectively [9].
In order to systematically study the impact of varying participation levels and se-

lective participation measures as defined in Section 4.1, we design our experiments
according to the following questions:

– What is the impact of query selectivity and level of spatially correlated node par-
ticipation on the performance of aggregation algorithms?

– What is the impact of the position of pockets and their dispersion in selective par-
ticipation scenarios?

– What is the impact of the location of the sink on the performance of an aggregation
algorithm in low node participation levels?

– What is the impact of (communication) holes on data collection?

4.3 Results

Impact of Query Selectivity. In two experiments, we investigate the impact of the
query selectivity on four different aggregation schemes: PDT, multi-path (MP), static
clustering (SC), and TAG. In the first experiment, Figure 2, we change the selectivity
of an aggregate query and hence the number of nodes that participate in a query by 1%
increments from 2% to 10% of the total nodes in the SN. The participating nodes are
spatially clustered (see the deployment snapshot in Figure 2(a)). Figure 2(b) shows the
mean value of the number of bytes transmitted by each algorithm at each participation
level (the average of five runs is used to find the mean value). Figure 2(c) shows results
from a similar experiment with participation levels ranging in discrete steps from 10%
to 60%.
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(a) A spatial configuration
for partial node partic-
ipation. Larger circles
represent nodes that par-
ticipate in a query. Black
circle represents the sink.

0

0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7 8 9 10
Participation(%)

B
yt

es
 T

ra
n s

m
itt

ed
(M

B
)

TAG PDTMP SC KMBX

(b) Detailed comparison
of data transmissions
for each algorithm in
low participation sce-
narios (the participation
level ranges between
2%–10%)

0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60
Participation(%)

B
yt

es
 T

ra
ns

m
itt

ed
(M

B
)

TAG PDTSC KMBX

(c) The overall trend for each
algorithm in terms of data
transmissions (the partic-
ipation level ranges be-
tween 10%–60%)

Fig. 2. The performance of aggregation techniques for varying levels of partial node participation

Figure 2(b) shows that for low node participation levels, PDT performs better than
other aggregation schemes. For participation levels from 2% to 10% PDT is, on aver-
age, 41% more efficient than TAG and 37% more efficient than SC. In addition, PDT
is just 21% less efficient than the approximated lower bound, where TAG and SC are
72% and 67% less efficient, respectively. This experiment also reveals that the energy
consumption for MP in low participation scenarios is significantly higher than all other
aggregation algorithms. MP requires at least 2.7 and 2.8 times as much data transmis-
sion as TAG and SC, respectively and 3.8 times more than PDT. Similarly, the trend in
Figure 2(c) shows that PDT remains energy efficient even for high participation levels
but its advantage decreases as the participation levels increase. At 10% participation,
PDT requires 30% less data transmissions than TAG and 31% less than SC; however
at the participation level of 60% this lead reduces to 4% and 5% for TAG and SC, re-
spectively. The decrease in efficiency results from the fact that with the increase in node
participation the benefit of spatial correlations diminishes. This effect can also be ob-
served from the fact that at 60% participation level PDT is just 3% less efficient than
the KMB lower bound. For high participation levels, MP is not shown on the figure to
simplify the presentation.

Impact of Varying the Spatial Selectivity Index. This section describes a set of ex-
periments that assess the performance of the PDT algorithm in various spatial layouts,
characterized by different SSI values. A low SSI value represents a low dispersion sce-
nario. We expect a better performance from PDT and other aggregation algorithms for
selective queries with low SSI values. In this experiment, we achieve the effect of in-
creasing SSI values by expanding the dispersion of pockets in the network, while the
total number of pockets, the node participation level, and the sink position remains
constant. Figure 3(a) and 3(b) show the deployment snapshots of two scenarios.

Figure 3(c) confirms the hypothesis that all algorithms perform better for lower SSI
values (standard deviations are also shown in this chart). As the dispersion of the par-
ticipating nodes increases, all algorithms have to spend more energy. For the analyzed
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(a) A partial node participa-
tion scenario with an SSI
of 0.34. Black circle repre-
sents the sink.

(b) A partial node participa-
tion scenario with an SSI of
0.57
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Fig. 3. Various network configurations simulating an increase in the spatial selectivity index by
increasing the pocket dispersion for a 10% node participation level

scenarios, TAG and SC transmit up to 31% and 22% more data for the highest SSI
value. PDT also generates more data and shows an increase of 22% for the highest SSI
value, however it remains 15% energy efficient than both TAG and SC.

Impact of the Location of the Sink. In this experiment we analyze the effect of sink
position on PDT and other aggregation schemes. Figure 4 shows the performance of
each algorithm in a deployment where the same query is issued from different sink
positions. The chart shows that, for the given deployment, different sink positions affect
the overall cost only modestly: between initial and final sink position data transmission
rises by just 7% for both SC and TAG, while it rises to only 4% for PDT. The average
change in cost from one scenario to next is 1%, 2% and 3% for PDT, SC, and TAG
respectively.

The result is not surprising for the SC and PDT algorithms. In PDT the aggregation
tree is mostly determined by the pocket locations while the impact of sink location is
limited to the distance between the sink and the pockets closest to it. Similarly, SC
always uses fixed paths to aggregate data inside each cluster and the impact of sink
location is limited to the final phase where cluster heads have to route the aggregated
data to the sink. The bulk of data transmission in both cases occurs inside pockets (or
clusters) and as a result the impact of the position of sink is reduced. However, it is
important to note that the behavior of TAG fluctuates with the sink location. Among the
simulated scenarios, the second sink position is the best for TAG. At this position, the
sink is located in a way that paths to distant pockets naturally emerge from the closer
pockets, resulting in an increased number of participating nodes acting as intermediate
nodes in the tree. In other scenarios, the misalignment of the root of the tree, sink, with
the clusters increases the cost for TAG.

Spatial Layout and Communication Holes. Real SN deployments cannot stay fully
connected in a regular grid structure although many routing and in-network aggregation
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Fig. 4. A network configuration with different sink positions for a 20% node participation level

algorithms are commonly tested on such basic structures. Due to constrained communi-
cation capabilities, a network might be disconnected at certain places leaving gaps that
we name as communication holes. In the context of in-network aggregation, if a given
network suffer from communication gaps while still remaining connected via alternate
communication routes, it is of interest to understand how the presence of holes effect
the performance of an aggregation algorithm.

To investigate the effect of communication holes we simulate three different SN con-
figurations. The configurations are shown in the deployment snapshots in Figure 5(a)–
Figure 5(c), where the bordered regions represent communication holes. In each of the
deployments, we set up a 10% pocketed participation scenario and Figure 5(d) shows
the performance of each algorithm in these spatial layouts. In TAG, we see that a collec-
tion of communication holes can affect the formation of the aggregation tree in one of
two ways. Firstly, the holes might break the most direct communication paths to pock-
ets and hence the tree has to invariably take a longer route. This effect can be observed
from the high cost of TAG in the first deployment (Figure 5(a)). However, a second
more interesting scenario is where the presence of holes actually reduces the communi-
cation cost by restricting the tree into a set of corridors that naturally spans the pockets.
The cost of TAG is reduced by 35% between the initial and final deployment.

SC is rather unaffected by the presence of holes where the change in its cost between
the initial and final deployments is just 5%. PDT also performs almost unaffected by
the presence of communication holes and shows a 10% reduction in data transmissions.
PDT might suffer in cases where there is a communication gap between two neighbor-
ing pockets in the trajectory.

4.4 Discussion

With extensive experiments, we presented the advantages of the location based
PDT algorithm for in-network aggregation over well-known in-network aggregation
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(a) A network configuration
with deployment co-
connectivity of 0.13 (five
holes relatively close to
the border)

(b) A network configura-
tion with deployment
co-connectivity of 0.24
(six randomly distributed
holes)

(c) A network configuration
with deployment co-
connectivity of 0.40 (one
large hole in the middle
of the network)

0.5

0.7

0.9

1.1

1.3

1.5

0.13 0.24 0.4
Co-connectivity (CC)

B
yt

es
Tr

an
sm

itt
ed

(M
B

) TAG SC PDT KMB

(d) The impact of different co-connectivities
on the aggregation algorithms for a 10%
node participation level

Fig. 5. Various network configurations simulating deployments with different types of communi-
cation holes and a 10% node participation level

algorithms in different SN settings. Our results validate the hypothesis that a variable
node participation scenario affects the performance of existing algorithms. In addition,
the spatial features of the scenario do also have an effect on the performance.

The performance of an algorithm in processing selective queries can be presented as
a function of the number of nodes the data collection paths utilize while collecting data
from the participating nodes. The high cost of the tree-based scheme in highly selective
queries can be explained by the random strategy used in the creation of an aggregation
tree where no query specific optimization is considered during the tree construction
process. We observe that for low node participation levels, the tree can improve its per-
formance when the query sink is aligned with the data pockets in a way that paths to
distant pockets naturally emerge from the pockets that are close to the sink. Similarly,
a tree-based strategy shows considerable improvement in performance if the communi-
cation channels in the network are constrained by holes. However, in realistic settings,
such cases may be rare and may not justify building a random tree for low participation
scenarios. In contrast to such special cases, PDT always identifies constrained regions
to grow a collection path in an efficient manner. Since the data collection is optimized to
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minimize the number of non-participating nodes en-route to data sources, PDT shows
an overall reduction in data transmission even in high node participation scenarios. The
experiments also show that the cost of PDT rises with increasing participation levels
or decreasing spatial correlation levels, however for long running queries with many
epochs, it is at least as good as the other well-known techniques.

As an interesting result, we observe that static clustering shows comparable results
to the tree-based strategy even though it is not configured as dynamically as the tree-
based strategy. Similar to the tree-based strategy, we also observe that static clustering
performs better if the location and size of pockets correlate with that of the statically
configured clusters and hence the data collection mechanism. The static clustering al-
gorithm proposes to define the cluster size parameter depending upon the degree of
spatial correlation in the network [17]. A major challenge in static clustering hence is
determining the correct cluster size for queries with complex, selective, predicates.

In our experiments where the node participation levels are low, data transmission by
the multi-path algorithm has greater costs than all the other schemes. This is an interest-
ing observation since in exhaustive participation scenarios multi-path achieves the same
number of messages per node as a tree [15]. Although the goal of the multi-path algo-
rithm is to achieve accuracy in lossy environments rather than increasing efficiency of
the aggregation strategy, the large cost of multi-path in low node participation scenarios
may require adopting a hybrid method such as [15].

One important feature of the PDT algorithm is that there is a trade-off between the
latency of data collection and the data transfer costs for a given query. In order to min-
imize the number of non-participating nodes in the aggregation process, PDT creates
paths with possibly higher latencies. Since in a sensor network saving energy is the
primary concern, reducing response time may not impact many query types. Thus, the
latency is not analyzed as a separate parameter with our experiments.

5 Selectivity Under Changing Conditions

A central task for SN deployments is the monitoring of naturally occurring phenomena.
Typical examples are the monitoring of wildlife paths in a natural reserve or the study
of cattle movements in a farm. These application domains highlights the need for robust
algorithms for selective query processing in SNs under continuously changing condi-
tions. We analyze two types of change: (1) change of the physical phenomena that is
monitored by the SN, and (2) change of the monitoring-network itself. The movement
monitoring of wildlife in a natural reserve falls into the first category, while sensor
failures are an example for the second category.

Changing physical phenomena pose a challenge for methods that are designed for
processing selective queries. For a given selective query, the set of sensors that need to
respond may be different at every sampling period. In fact, this behavior is expected as
the main purpose of monitoring tasks is to observe and record changes in the physical
phenomena in the first place. Thus, methods that are tailored for processing selective
queries need to be able to cope with changing sets of participating nodes that respond
to a query during the lifetime of that query.
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We are currently adapting and experimenting with the PDT algorithm under realistic
monitoring tasks as they occur with changing natural phenomena. The main insight for
processing selective queries under changing conditions is that different observed states
of the physical phenomena by a SN are in fact temporally as well as spatially corre-
lated. Hence, the sensor readings do not change abruptly and randomly between two
sampling periods but instead change occurs in relation to a source (or a set of sources),
which leads to predictable patterns. A typical example is temperature measurements: the
sensed temperature values are related to the Earth’s revolution around the Sun. Simi-
larly, cattle usually does not move randomly, but acts as a herd and moves within the
constraints of the pasture, preferring certain places during day and night. Thus, we ex-
pect that finding efficient data collection paths under changing participation levels can
be optimized using an approach that is based on PDT and includes predictive models.
For low frequency sampling, the change between two periods could hide its behavior.
However, as users are interested in capturing this behavior, the frequency of observa-
tions will be adjusted accordingly.

We envision two directions in adapting selectivity-aware algorithms such as PDT to
monitor continuously changing physical phenomena: first, a reactive model that would
only alter the data collection paths after a certain amount of change occurs in the sensor
readings; second, a proactive model that predicts the changes and adjusts the collection
path before the actual change occurs. A reactive algorithm might be easier to implement
and cheaper to maintain but will be less responsive to changing physical phenomena. A
proactive version, on the other hand, might be more difficult to maintain and develop,
but may be more adaptive to the changing phenomena. It seems likely that the overall
benefits of both strategies will differ for various application domains.

In addition to the change in the monitored physical phenomena, network parameters
under which a SN operates can also change. We distinguish uncontrolled and controlled
changes. An example for the first category is a production fault of some of the sensors
in the network. This can occur independently from the deployment strategy and the
physical conditions under which the SN operates. We assume that such situations rarely
create a major disruption, and more importantly, do not specifically effect selective
queries significantly. Recovery from such failures could be handled by the lower lay-
ers of the sensor node’s system software. Nevertheless, PDT algorithm can be easily
adapted for SNs where nodes can fail. The data collection paths can be tuned between
sampling periods to bypass failing nodes efficiently.

Energy depletion rates are an example of a controlled change in a SN. Certain sen-
sors may run out of energy faster than the others in a network, because they might be
used more often in data collection paths. This type of change in a network is observable.
Energy-aware algorithms that can adjust to these changes for routing already exist [25].
For selective query processing, techniques such as the PDT algorithm can also be ad-
justed to cope with similar situations. Location aggregation can be performed in tandem
with the aggregation of the energy levels. Thus, data collection paths, per query, can be
tailored for different energy levels of the nodes.

If the change in a SN is the result of a sustained use of certain set of sensor nodes,
another alternative could be considered: redeployment of the sensor nodes. An inter-
esting research direction is emerging with mobile sensor networks [26,27,28] where
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nodes can be redeployed for improving the quality of the data collected as well as for
the efficiency of collection of data in tandem with improving the SN life expectancy.

6 Conclusions

Efficient processing of selective queries in SNs is crucial for effective sustained moni-
toring of physical phenomena. Existing data collection methods in SNs do not take an
explicit position in processing selective queries and thus may not benefit from signifi-
cant possible energy savings. In our work, we have presented the benefits of optimizing
data collection paths and creating methods tailored for selective queries. We introduced
the PDT algorithm, an in-network data collection method for long running selective
queries. In extensive simulations, we showed that PDT is more energy efficient than
other major aggregation techniques under various scenarios. We have also observed
that the PDT algorithm computes a collection path to a well-known approximation of
the global optimum, i.e., the minimal Steiner tree.

The efficient data collection problem in partial node participation scenarios can be
modeled as a minimal Steiner tree problem. The PDT algorithm discovers pockets of
participating nodes using purely local information about the network and approximates
a minimum Steiner tree for data collection from these pockets. We show that this leads
to significant energy savings in different node participation scenarios. In addition, we
define spatial parameters to characterize a specific network deployment.

There are several research directions that we suggest as for future work. For a given
query, the node participation can change over time. For example, a change in the physi-
cal conditions for the sensed environment can lead to changes in node participation. For
a selective query this change can have an impact on multiple fronts, i.e., by increasing or
decreasing the node participation levels, or by changing the distribution of participating
nodes such as the emergence of new pockets or breakdown of old pockets. Therefore,
it is important to introduce robust strategies for data collection to continuously adapt to
these changes. On another front, changing network conditions can force the data col-
lection algorithms to look for better ways of gathering data. Node failures, as a trivial
case, can require algorithms, such as the PDT, to reconsider their choices in data col-
lection paths. If the change in network conditions can be controlled, such as the energy
depletion rates of different sensors, then adaptive selective query processing algorithms
for controlled energy consumption should be considered. One particularly promising
research direction is under scenarios when sensors have the capability of changing their
location. In this case, increasing the quality of the data that is being collected in a par-
tial node participation scenario while decreasing the data collection and node relocation
costs is an interesting research topic.
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