The Geometry of Browsing

Richard Beigel'! and Egemen Tanin?

! Lehigh University, Dept. of EE&CS, 19 Memorial Dr W Ste 2,
Bethlehem, PA 18015-3084, USA
beigel@eecs.lehigh.edu
% University of Maryland, Human-Computer Interaction Laboratory,
College Park, MD 20742-3251, USA
egemen@cs.umd.edu

Abstract. We present a geometric counting problem that arises in brows-
ing and solve it in constant time per query using nonexhaustive tables.
On the other hand, we prove that several closely related problems require
exhaustive tables, no matter how much time we allow per query.

1 Introduction

In this paper we address some algorithmic problems that arise in connection
with browsing a really large collection of datasets. The interface paradigms we
present have been developed and user-tested as part of the visual data min-
ing effort (cf. [14]) at the Human—Computer Interaction Laboratory (HCIL) in
the University of Maryland. The target application is the EOSDIS collection of
datasets in development by the U.S. National Aeronautics and Space Adminis-
tration (NASA).

1.1 What is EOSDIS?

The NASA EOSDIS (Earth Observing System Data and Information System)
project is attempting to provide online access to a rapidly growing archive of
scientific data about the Earth’s land, water, and air. Data is collected from
satellites, ships, aircraft, and ground crews, and stored in designated archive
centers. Scientists, teachers, and the general public are given access to this data
via the Internet.

HCIL is developing user interfaces that use the “dynamic query” paradigm
and the “query preview” paradigm to facilitate the browsing and retrieval of
data from this very large archive. The background for interfaces to EOSDIS is
discussed further on the web at [6].

1.2 What are Dynamic Queries?

Dynamic queries are an interface paradigm that allow the user to interactively
control query parameters and generate a rapidly animated visual display of

2 Beigel and Tanin

database search results [1,2,5,7,8,10-13,15,16]. As users adjust sliders or but-
tons, results are updated nearly continuously on the display. Each adjustment
to a slider and each button click is called a query. The answer to the query is
presented graphically. Experimental results have shown that dynamic queries
are a fast, effective, fun, and easy-to-use tool for novice and expert users to find
trends and spot exceptions [2,16].

Dynamic query user interfaces apply the principles of direct manipulation to
query formulation and provide:

— a visual representation of the query and the results,
— rapid, incremental, and reversible actions,

— selection by pointing (not typing), and

— immediate and continuous display of results.

Some demos of dynamic queries are available from [10, 12].

1.3 What are Query Previews?

In a networked information system, there are three major obstacles facing users
in a querying process: slow network performance, large data volume, and data
complexity. EOSDIS has all of these. The collection is predicted to reach into
the petabytes (10!® bytes). Additionally, EOSDIS datasets have numerous at-
tributes, such as when and where it was collected, and the types of features or
measurements in the dataset. With a forms-based interface, finding a particular
dataset or a group of datasets that match certain characteristics would typically
involve several iterations of querying and waiting for results over the network.
This would not only slow down the process of finding datasets, but would slow
down the network and servers for all users.

Query previews, as developed in [4], take advantage of the fact that in many
cases, perhaps most, users are only interested in a small subset of the entire
collection. For example, a user might only be interested in data for Europe,
instead of the whole world. Narrowing the scope of the collection can greatly
improve the efficiency of browsing and querying. A query previewer gives the
user overviews of the entire collection such as a map showing the distribution of
datasets over the Earth. The total number of datasets is also displayed. Using
a dynamic-query interface, the user can narrow his search to a selected region
of latitude and longitude by adjusting sliders. With another slider, the user
can narrow his search to a certain range of years. With checkboxes, the user
can narrow his search to only those datasets containing selected attributes (for
example, temperature and pressure). As search parameters are adjusted (query),
the distribution of datasets and the total count are updated.

Once the scope of the search is sufficiently narrow, i.e., the number of datasets
matching the dynamic query is manageably small, the user and the system are
ready for more detailed query and exploration. This second query phase, called
“query refinement,” is another dynamic-query interface to a more detailed view
of the datasets selected by the query preview. The details of query refinement
are independent of the query previewer and will not be addressed in this paper.

Geometry of Browsing 3

Practical Requirements. Queries will be answered via a computation that con-
sults a table of summary information about all datasets. Since the query pre-
viewer is a dynamic-query interface, updates should ideally appear to be contin-
uous. Studies suggest that most users will in fact tolerate a delay of at most 0.1
or 0.2 seconds per update [1]. Since even this is much slower than typical world-
wide-web turnaround, it is necessary that the aforementioned table be stored
on the user’s own node. Thus, disk-space limitations and download times both
dictate that the table not be very large; 1 megabyte seems like a good rule of
thumb. To summarize, we need small tables that support fast querying.

2 The Query-Previewing Problem

In the EOSDIS example, each dataset is described by a 4-dimensional record
whose fields indicate the scope of information that the dataset contains: (1) range
of latitude, (2) range of longitude, (3) range of years, and (4) set of attributes.
The user’s query is also a record of this type. An EOSDIS dataset matches the
record if its range of latitudes overlaps with the user’s range of latitudes, and
so on for the other three dimensions. The result of the query is the number of
EOSDIS datasets that match the query.

In order to compute the distribution of datasets over the Earth, the map is
partitioned into squares and one query of the type described above is evaluated
for each square in order to determine the number of datasets with information
about that region of the Earth. Because we will, in fact, give a constant-time
querying algorithm, the partition of the Earth into squares can in practice be
very fine.

2.1 Geometric Interpretation

The first three fields in a record are ranges of numbers, so they can be represented
as intervals. Let us ignore temporarily the fourth field (set of attributes). Then
the record can be represented as a 3-dimensional rectangle, the Cartesian (cross)
product of those three intervals. An EOSDIS record matches the query if the
two corresponding rectangles overlap, i.e, if their intersection is nonempty. Please
forgive us for belaboring an obvious point: rectangle overlap is a logical AND,
i.e., two rectangles overlap if the intervals along the first dimension overlap and
the intervals along the second dimension overlap and the intervals along the
third dimension overlap.

Let us return to the fourth field in our EOSDIS records, the set of attributes.
We will represent each attribute by a number, so the fourth field is a set of
numbers. At the risk of forcing the geometric metaphor, we will call a set of
numbers a generalized interval.

Because the Earth is round, it may also be necessary to consider intervals in
dimension (2) that wrap around from the right edge of the map to the left edge.
These are called wrapped intervals.

4 Beigel and Tanin

2.2 Formal Problem Statements

In general we will consider records with d fields, giving rise to d-dimensional
problems.

Definition 1. — N ={0,1,...}, the set of natural numbers
— N is the set of all d-dimensional lattice points in the 1st quadrant
— An interval is a set {a,a+1,...,b} of consecutive natural numbers.
— A wrapped interval in {1,...,m} is either an interval or the union of two
intervals that contain 1 and m.
— A generalized interval is a subset of N.

— A rectangle in N? is a cross-product I; x --- x I of d intervals Iy, ..., I;.

— A wrapped rectangle in N? is a cross-product I; x --- x I; of d wrapped
intervals I, ..., 1.

— A generalized rectangle in N? is a cross-product Iy x - - - x I of d generalized
intervals I4,..., I4.

— A intersects Bif ANB # 0.
— A is skew to B if there is no hyperplane parallel to the coordinate axes that
intersects both A and B.

In this paper, we will be mainly interested in three problems:

Rectangle Intersection (logical AND).

Data to be preprocessed: A list D of rectangles in N¢
Problem Instance: A single rectangle @ in N¢
Question: How many elements of D intersect Q7

Wrapped Rectangle Intersection (logical AND).

Data to be preprocessed: A list D of wrapped rectanglesin {1,...,m}¢
Problem Instance: A single wrapped rectangle @ in {1,...,m}¢
Question: How many elements of D intersect Q7

Generalized Rectangle Intersection (logical AND).

Data to be preprocessed: A list D of generalized rectangles in N¢
Problem Instance: A single generalized rectangle @ in N?
Question: How many elements of D intersect Q7

Although we do not state it as a formal problem, in practice we are interested
in the mixed case, where some dimensions of the records are intervals, others
are wrapped intervals, and yet others are generalized intervals. Our results for
the homogeneous problems described above are directly applicable to the mixed
case.

The following problem corresponds to queries based on logical OR rather
than logical AND. Because such queries are sometimes useful in browsing, we
consider them as well.

Geometry of Browsing 5

Rectangle Nonskewness (logical OR).

Data to be preprocessed: A list D of rectangles in N¢
Problem Instance: A single rectangle) in N¢
Question: How many elements of D are not skew to Q7

2.3 Complexity Bounds

Throughout, let R denote a fixed rectangle in N? that contains each element of
D. We present algorithms for rectangle intersection and rectangle nonskewness
that use tables whose size depends only on the dimension d and the bounding
rectangle R, and answer queries in time that depends only on d. The prepro-
cessing time depends on D, but the cost for adding a single dataset to the list
depends only on d and R.

Results. Assume that R is an njy X --- X ng rectangle. Let
p = (2ny —1)---(2ng — 1) < 2¢|R).

— Rectangle Intersection can be solved with O(p) preprocessing per element of
D, using tables of size p, in time O(d2?) per query.

— Rectangle Nonskewness can be solved with O(p) preprocessing per element
of D, using tables of size p, in time O(d4¢) per query.

— Generalized Rectangle Intersection requires exhaustive tables
(size 2m12M2 ... 2Nd),

— Wrapped Interval Intersection requires exhaustive tables
(size nl(nl - 1)712(”2 -].) .. -nd(nd -].))

3 Geometric Algorithms

We identify each rectangle in N¢ with the polytope obtained upon replacing each
of its points p with a unit d-cube centered at p. A face of a bounded-polytope
S is interior to S if it is not the “exterior face” and it is not entirely contained
in the boundary of S. Let F}(S) denote the number of k-dimensional faces of S
and let F}(S) denote the number of k-dimensional faces interior to S.

Lemma 2. If S is a bounded, connected d-dimensional polytope then

>)rRS) =1

0<k<d

Proof. By Euler’s theorem (see, for example, [9]),

S (CDFR(S) =1+ (-1

0<k<d

6 Beigel and Tanin

Let B denote the boundary of S. Then B is a connected (d — 1)-dimensional
polytope, so by Euler’s theorem

> (-DR(B) =1+ (-1

0<k<d—1
Therefore
doEVFS) = Y (DF(S) - ()= > (-1)*F(B)
0<k<d 0<k<d 0<k<d—1
=1+ () = () - (1 (1)
— (-1t
= (-1y*
§0 Zogksd (_1)d_kFI:(S) = (_l)d(_l)d =1 o
For each 0-, 1-, ..., or d-dimensional cube ¢, let #(c) denote the number of

rectangles r in the list D such that the interior of r intersects the interior of c.
In particular, the answer to the query @ is #(Q). We have

#HQ= Y (-p*) #(0)

0<k<d c is a k-dimensional unit cube in the interior of)
(1)

Why? Because each rectangle in D that does not intersect) contributes 0 to
the sum, and each rectangle in D that intersects () contributes 1 to the sum.

Let dim(r) denote the dimension of a rectangle. If we stored (—1)?~4im(c) £ (c)
for each unit cube ¢, then we could compute the sum specified in Equation (1)
by summing over each unit cube contained in). Better yet, as noted in [3], if
we store d-dimensional prefix sums, we can evaluate that sum in constant time.
For each unit cube a we store 3, ., (—1)4=4m(®) 4 (b), where the inequality must
hold on every coordinate. Given such a table, the sum specified in Equation (1)
may be obtained with 2¢ — 2 additions and subtractions, by the principle of
inclusion and exclusion. The total storage needed is the number of unit cubes
interior to R whose dimension is d or less, which is exactly p.

For concreteness we present the table construction and the query algorithm
for the case d = 2 (Figure 1). In order to simplify the algorithm, we have used
a table of size 2¢|R|, which is larger than we claimed. This allows us to store Os
along the edges and avoid special cases.

3.1 Rectangle Nonskewness

By the principle of inclusion and exclusion, rectangle nonskewness is reduced to
2¢ — 1 instances of rectangle intersection. Therefore it can be solved with exactly
the same table, in time O(d4?).

Geometry of Browsing

procedure CountRecord(z1, z2,y1,y2)
for i =221 — 1 to 222 — 1 do
for j=2y1 —1to2y>—1do
table[, j] = table[i, j] + (—1)"T!(—1)7+*
end

procedure CountAllRecords
for i =0 to 2n; — 1 do
for j =0to 2n2 — 1 do
table[z, j] =0
for each rectangle (z1,z2,y1,y2) in the list D do
CountRecord(z1, 2, Y1, Yy2)
end

procedure ComputePartialSums
for i =2 to 2n1 —1 do
for j=1to 2n, —1do
table[s, j] = table[: — 1, j] + table[t, 5]
for i=1to 2n1 —1 do
for j =2to 2n2 — 1 do
table[i, j] = table[s, j — 1] + table[s, j]
end

procedure BuildTable
CountAllRecords
ComputePartialSums
end

function IncludeExclude(a, a2, b1,b2)
return table(as,b2) — table(as, b1) — table(a1, b2) + table(a1, b1)
end

function Query(z1,z2,y1,y2)

return IncludeExclude(2z1 — 2,212 — 1,2y1 — 2,2y2 — 1)
end

Fig. 1. Table Construction and Query Algorithm for the case d = 2.

8 Beigel and Tanin

4 Lower Bounds

There are exactly 2™ generalized intervals and exactly n(n—1) wrapped intervals
in {1,...,n}. Therefore, Generalized Rectangle Intersection can be solved by
table lookup with a table of size 2™ ---2"4 and Wrapped Interval Section can
be solved by table lookup with a table of size ni(n1 — 1) ---ng(ng — 1). We will
show that no smaller tables suffice for either problem, no matter how much time
is allowed.

For simplicity we will consider only the case d = 1. In the full version of this
paper we will explain how the general case is a corollary of this one. Henceforth
let n = ny.

4.1 Generalized Rectangle Intersection

Suppose that given some table T we can answer questions of the form “how many
elements of D intersect Q7”, where D is a fixed multiset of generalized intervals
and @ is a generalized interval. Previously, we said that the intersection questions
are really logical-AND questions. Actually, they are ANDs over all dimensions.
But in each single dimension, the question is an OR, i.e., “does at least one
square of the query interval belong to the dataset rectangle?”

Let V denote logical OR, and A denote logical AND. Let #(z1 V --- V xx)
denote the number of generalized rectangles r in D such that 1 € rV---Vzy € 7.
Let #(x1 A --- A xp) denote the number of generalized rectangles r in D such
that 1 € r A--- Az € r. By assumption, we can compute #(z1 V- -V zy) from
T. By the principal of inclusion and exclusion, we have

#(z1 A x2) = #(21) + F#(22) — #(21 V 22).

Thus we can compute #(z1 Azz) from T. By a simple induction, we can compute
#(@1 A ANzy) from T

Let #(x1 A--- Az A "Zpq1 A -+ - A —zp,) denote the number of generalized
rectangles r in D such that z1 € rA---Axp ErAxps1 €r A~ Az ¢ 7. We
have

H#@1 AN ATk A—xpg1) = F(@1 A Axg) — # (@1 A A Tgyr)-

Thus we can compute #(x1 A -+ A &g A Zgpy1) from T. By a simple induc-
tion we can compute #(x1 A -+ A Zp A Ty Ao A nxy,) from T, where
{z1,...,zp} = {1,...,n}. Thus we can determine from T exactly how many
times the generalized rectangle {z1,. ..,z } appears in the multiset D. Since we
can recover 2" independent numbers from T, the size of T' must be at least 2".

Note: a similar argument shows that if we limit the size of generalized inter-
vals to k then we still can’t get by with nonexhaustive tables.

4.2 'Wrapped Rectangle Intersection

Suppose that given some table T' we can answer questions of the form “how many
elements of D intersect @Q?”, where D is a fixed multiset of wrapped intervals

Geometry of Browsing 9

and @ is a wrapped interval. If i < j, let #[¢, j] denote the number of elements of
D contained in the interval [i, j]. Then #[i, j] is equal to the number of elements
of D (that intersect [1,7n]) minus the number of elements of D that intersect
{j+1,...,n,1,...,i— 1}, so we can compute #[i, j] from T.

The number of times that the interval #[i, j] appears in the list D is given
by the formula:

#li, 5] = #li = 1, 5] = #{i, 5 - U+ #[i — 1,5 - 1].

By a similar argument we can determine the number of times each wrapped
interval appears in D. Since we can recover n(n — 1) independent numbers from
T, the size of T must be at least n(n — 1).

Acknowledgments

This work was supported by NASA grant 52895. The research was performed
while the first author was on sabbatical from Yale University, visiting the Human—
Computer Interaction Laboratory at the University of Maryland. He is also par-
tially supported by NSF under grants CCR-9700417 and CCR-9796317. Both
authors are grateful to Catherine Plaisant and Ben Shneiderman for their part
in formulating this problem and to Dave Mount and Dan Spielman for helpful
discussions.

References

1. Ahlberg, C. and Shneiderman, B., Visual Information Seeking: Tight Coupling of
Dynamic Query Filters with Starfield Displays, Proc. ACM SIGCHI (1994) 313—
317

2. Ahlberg, C. and Wistrand, E., IVEE: An Information Visualization and Explo-
ration Environment, Proc. IEEE Info. Vis., (1995) 66-73

3. Bestul, T., Parallel paradigms and practices for spatial data, Ph.D. Thesis, Univ.
Maryland Dept. Comp. Sci., TR-2897, (1992)

4. Doan, K., Plaisant, C., and Shneiderman, B., Query Previews in Networked Infor-
mation Systems, Proc. Forum Adv. Digit. Libr., IEEE Comp. Soc. Press, (1996)
120-129

5. Eick, S., Data Visualization Sliders, Proc. User Interf. Softw. Techn. (1994) 119-
120

6. HCIL, http://www.cs.umd.edu/projects/hcil/Research /1995 /dg-for-eosdis.html

7. Fishkin, K. and Stone, M. C., Enhanced Dynamic Queries via Movable Filters,
Proc. ACM SIGCHI (1995) 415-420

8. Goldstein, J. and Roth, S. F., Using Aggregation and Dynamic Queries for Ex-
ploring Large Data Sets, Proc. ACM SIGCHI (1994) 23-29

9. Harary, F., Graph Theory, Addison-Wesley (1969)

10. HCIL, ftp://ftp.cs.umd.edu/pub/hcil/Demos/DQ/dg-home.zip. Down-loadable
PC demo

11. Ioannidis, Y., Dynamic Information Visualization, ACM SIGMOD Rec., 25 (1996)
16-20

10

12.

13.

14.

15.

16.

Beigel and Tanin

Information Visualization and Exploration Environment (IVEE) Development AB,
http://www.ivee.com/. Online Java demo and down-loadable demos for various
platforms

Shneiderman, B., Dynamic Queries for Visual Information Seeking, IEEE Softw.,
11 (1994) 70-77

Shneiderman, B., Racing to the winning line with visual data mining,
http://www.ivee.com/corporate/columns/race.html

Tanin, E., Beigel, R., and Shneiderman, B., Incremental Data Structures and Al-
gorithms for Dynamic Query Interfaces, ACM SIGMOD Rec., 25 (1996) 21-24
Williamson, C. and Shneiderman, B., The Dynamic HomeFinder: Evaluating Dy-
namic Queries in a Real-Estate Information Exploration System, Proc. ACM SI-
GIR (1992) 339-346

