
Proceedings of the International Conference on Information and Automation, December 15-18, 2005, Colombo, Sri Lanka. 1

Enabling Massively Multi-Player Online Gaming
Applications on a P2P Architecture
Scott Douglas, Egemen Tanin, Aaron Harwood, and Shanika Karunasekera

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

University of Melbourne, Victoria 3010, Australia
www.cs.mu.oz.au/p2p

Abstract— Recent advances in Peer-to-Peer (P2P) technologies
have enabled the use of P2P architectures for developing complex
applications such as, Massively Multi-Player Online Games
(MMOG). In this paper we address a challenging research
problem related to P2P MMOGs; efficient entity maintenance
and interaction. We have identified two opposing software engi-
neering approaches to address this problem. The first approach
assumes that the entire virtual world and the game logic are
implemented using database techniques, e.g., with a distributed
index over all the peers and the game semantics built into
data query/update functions. The second approach is to separate
the entities into completely independent processes, using agent-
oriented programming techniques. In our work, we propose a
combination of these two approaches; the use of a distributed
spatial index to facilitate the discovery and querying of relevant
entities and an agent-based approach to facilitate real time
interactions between the entities. We show the relevant factors for
dynamic optimization and the use of a new software architecture
with existing game libraries to implement the system.

I. INTRODUCTION

The Peer-to-Peer (P2P) computing paradigm is currently
receiving considerable attention. P2P networks originated as
a means of distributed file sharing (e.g. Napster, Gnutella,
and Kazza). Many recent research advances have enabled
P2P systems to be used for complex applications, beyond
simple file sharing. We focus on one such class of complex
applications, namely Massively Multi-player Online Gaming
(MMOG) applications. A P2P architecture offers several ad-
vantages over the currently used centralized architecture for
MMOGs. The elimination of the need for a central server
and high scalability are two key advantages. In this paper
we address a challenging research problem related to P2P
MMOGs; efficient entity maintenance and interaction.

A MMOG can be modelled as a set of interacting entities
in a 3D space, i.e., a virtual world, with a large population of
players. Players run an application on their PCs that allows
them to interact with the entities and each other, i.e., using
avatar entities. Entities can be static or dynamic. Static entities,
e.g., a picture hanging on a wall, can be cached at all users’
PCs and displayed whenever required. Dynamic entities, e.g.,
a rocket propelled grenade launched by a user, need to be
continually updated on all relevant PCs. Dynamic entities can
be user controlled, changing state as the result of user input,
or as the result of pre-programmed logic into the game. The

rules that govern these interactions and state changes can be
referred to as the game logic. In this paper, we are concerned
with the efficient entity maintenance and interaction in the
context of a P2P network, i.e., when all PCs are peers and
there is no central server or administration to coordinate the
interactions.

In our preliminary prototypes, we have identified two,
opposing design approaches to the problem of efficient en-
tity maintenance and interactions in P2P networks. The first
approach assumes that the entire virtual world and the game
logic are combined into an entity database, distributed over
all the peers. Entity location and state are directly updated on
the distributed database. The changes in the entity locations
are given to the users through a publish/subscribe scheme
or direct querying. The database is responsible for validating
the entity interactions. This approach can provide powerful
query capabilities across the virtual world, e.g., to determine
entities in a given region of the virtual world efficiently. On the
other hand, it is difficult to sustain efficient entity interactions
between strongly related entities in an indirect manner and
updates to this database can become cumbersome. The second
approach is to separate the dynamic entities into independent
processes, akin to the agent-oriented programming techniques.
Interactions are naturally resolved between the related entities,
e.g., when they come in contact with each other. Entities
can migrate from peer to peer. The agent approach provides
for efficient communication and processing between strongly
interacting entities, yet it is difficult to run queries or maintain
global connectivity in this setting as we do not maintain a
global spatial index. Therefore, the solution will not scale well
to large applications.

The agent approach can be quickly adopted for MMOG
developments and this may be preferred due to the ease
in design and implementation of the game. However there
are significant advantages given by the database approach
for a MMOG. In our work, we propose a combination of
these two approaches; the use of a distributed spatial data
management system to facilitate the discovery and querying of
relevant dynamic entities, combined with the agent approach
to facilitate real time interactions.

In this paper we provide a detailed description of our pro-
posed approach. We show how our work can be implemented

7

Proceedings of the International Conference on Information and Automation, December 15-18, 2005, Colombo, Sri Lanka. 2

using a software architecture that we recently developed for
building complex P2P applications. We also show how an
existing game library for high performance graphics rendering,
Crystal Space, can be integrated with a specific game logic
using our approach. We make comparisons to other proposed
systems for MMOG games and state why our system is a
favourable choice. We present a P2P MMOG prototype we
have developed using our approach.

II. RELATED WORK

P2P networks have a number of characteristics that make
them particularly suitable to MMOGs. They can be scalable,
easily deployable, and more robust than client-server systems.
The challenge is to dynamically organize the network in a way
it provides an efficient communication mechanism between
many interested parties. Typically the communication over-
heads are dominated by frequent updates informing players
about opponents’ positions, directions, and other characteris-
tics. Consequently, low update latency and update filtering is
critically important to MMOGs.

An early P2P game is MiMaze [1], which uses all-to-all
communications through IP multicasting for player updates.
This approach does not scale well as it suffers from bottle-
necks. MMOGs often host many thousands of participants
at any time and, therefore, communication must only occur
within subsets of distributed entities, i.e., mutable spatial ob-
jects in the virtual world, while allowing for a global sense of
existence in a larger setting. The performance and scalability
of the game is thus dependent on successfully determining
subsets, often referred to as interest management [2], from a
globe of many participants. Interest management schemes can
be broadly classified as either neighbor based in which peers
maintain a list of nearby entities with which to communicate,
and region based in which updates are performed through
queries on regions.

A. Neighbour based interest management

Kawahara et al. [3] have proposed a neighbor based interest
management algorithm which uses Euclidean distance within
the virtual world as an heuristic to form connections. The
algorithm suffers from network partitions as groups of entities
move apart from each other. The authors state that this can be
overcome by using random introductions via a bootstrap node,
however, this makes the system reliant on a central peer.

The Solipsis protocol [4] addresses network partitions by
ensuring that the position of neighboring entities form a
convex hull around the player, that is, the angle between any
two adjacent neighbours is less than 180 degrees. This scheme
has a communication and computational overhead, since each
entity must check the distance between each disconnected pair
of neighbors and inform them of new connections each time
an entity moves.

B. Region based interest management

Region based methods assign a region of the virtual space
to a coordinating peer. This peer is responsible for propagating

updates to all entities within its area and similarly entities must
send their updates to it.

Knutsson et al. [5] describe a P2P game which uses a region
based approach called SimMud. SimMud assigns each region
an ID which is mapped via a hash function to peers in the
network. By assigning the region coordinator to the root of a
multicast group, players can easily subscribe to region updates.

Bharambe et al. [6], [7] propose the use of the Mercury
routing protocol for updates. A publish-subscribe system is
built from this by applying queries over an extended period of
time. The source of the query then receives updates on objects
within the query range.

C. Our Contribution

Our work can be classified as a region based approach. We
use a distributed data structure [8] over a base P2P protocol
such as Chord [9] or FLOC [10] to find nearby entities
with which we form connections for interactions afterwards.
Hence, we are decoupling the process of querying a region
of the virtual world (along with global entity maintenance)
from interaction management between entities (e.g., a set of
players in a virtual room). Named as the spatial data service
(SDS), the distributed spatial data index that we developed
provides a means to insert, delete, query and modify objects
in a multidimensional space. Entities register an event region,
a region of space which is guaranteed to contain the entity
for some time, with SDS. Entities can query SDS to find
nearby objects with which direct connections can be formed.
This performs effective interest management by minimizing
the number of connections, removes routing delays between
peers for updates since peers connect directly, does not rely
on introduction by neighboring peers to form new connections,
and uses little CPU resources to maintain potential neighbors.
We maintain the global connectivity and query facility between
all the entities without a need for frequent updates on the
index. The interacting entities communicate with each other
frequently while they send summary updates to the SDS about
their positions when needed.

III. ENTITY MAINTENANCE AND

INTERACTIONS

Consider the set of entities, V , as points in the virtual space.
Each point, u ∈ V , is given a position, pu, velocity, vu, and an
event region, eu. Position and velocity are examples of entity
attributes. The event region defines the area of space the entity
is guaranteed to be in within a given time limit and will be
interested in.

Two entities are said to interact when an event from one
entity is received by another entity. In our work we consider
all interactions to be pairwise. For any two entities, u and v,
the number of events that u receives from v (and vice versa)
is proportional to the required accuracy for which changes in
v’s attributes must be perceived by u. E.g., Fig. 1 shows v

changing its position attribute to v′ while u stays fixed. The
number of events that u must receive from v is a function of
attributes like the velocity of v, the distance from u to v, the

8

Proceedings of the International Conference on Information and Automation, December 15-18, 2005, Colombo, Sri Lanka. 3

angle that v’s motion makes with u’s line of sight, etc. Fast
perpendicular motion that is very close to u requires many
events, while slow motion that is at a great distance from u

and/or perhaps obscured by other entities requires few events.
Note that the relationship is not symmetrical.

PSfrag replacements

u

v

v′

Fig. 1. Motion between entities.

The number of required events to be received by u from
v leads to a bitrate requirement, bv,u, when u and v are
distributed over the Internet. In general bu,v is not equal to
bv,u.

Similarly, event transmission times must observe a maxi-
mum allowable delay if they are to be effectively applied. Let
dv,u be the maximum allowed delay for events from v to reach
u and similarly du,v is the maximum allowed delay for events
from u to v; these delay constraints are not necessarily equal.

A. Event regions

An event region, eu, for entity u is defined and is initially
centred at u. The entity can move within this event region
while the centre of the event region stays fixed.

Fig. 2 shows a number of event regions distributed in two
dimensional space and indexed by a MX-CIF quadtree (the
entities are shown at the centre of each event region but are
not stored in the index). This model basically forms the base
for our approach. Overlapping regions are used to establish
the extent of network connections between entities that will
interact and require frequent communication while the spatial
data structure [8] is used for global maintenance, i.e., as a
registry for all the entities.

PSfrag replacements

u
huvu

Fig. 2. Event regions, depicted as solid line rectangles, in a quadtree index,
depicted by dashed lines. Entities are shown as solid points and thick lines
between entities represent possible network connections for communicating
events.

B. Moving entities

Generally, as an entity, say u, moves through the space,
the spatial data index must be updated with the new event

region. Using a buffer zone to obtain hysteresis, updates can
be required only when u moves further than a distance c hu

from the centre of eu, where 0 < c < 1 is a chosen constant.
When an update is required, the new centre for eu becomes the
location of u and this information is entered into the spatial
data index. It follows that for a constant velocity of vu, entity
u can cause a maximum of vu

c hu

spatial data index updates per
time unit.

C. P2P connections

Consider the undirected simple graph G = (V,E), where
(u, v) ∈ E iff eu and ev intersect. Let Iu,v = 1 if the
respective event regions intersect and Iu,v = 0 otherwise.
The graph G does not directly represent connections between
peers. For generality, we consider the set of peers, P , or PCs,
as one peer for each player and a many-to-one assignment
function, Assign : V → P . While it may be assumed that
player controlled entities are always attached to that player’s
peer, this may not be optimal at all times for all entities.
Computer controlled entities that move large distances through
the space may be reassigned to different peers over time.

Two distinct peers s, t ∈ P may be required to make a P2P
connection if for any two entities u and v: Iu,v = 1, and either
(i) Assign(u) = s and Assign(v) = t or (ii) Assign(u) = t

and Assign(v) = s.

D. Bitrate and delay requirements

The bitrate and delay requirements between two peers,
s, t ∈ P , is a function of the entities assigned to s and t

and hence ultimately on the bitrate and delay requirements
between entities. Let

Bs,t =
∑

u,v : Assign(u)=s,Assign(v)=t

bu,v

be the bitrate required from s to t and similarly Bt,s is the
bitrate required in the opposite direction; these bitrates are not
necessarily equal. Let

Ds,t = min
u,v : Assign(u)=s,Assign(v)=t

{du,v}

be the maximum allowed delay from s to t and similarly
Dt,s is the maximum allowed delay from t to s; these delay
constraints are not necessarily equal.

Let Ns be the neighbour set of s. Then the total bitrate
requirements for s is

Bs =
∑

t∈Ns

(Bs,t + Bt,s).

Similarly the maximum allowed delay by s is

Ds = min
t∈Ns

{Ds,t}.

If peer s cannot supply the required bitrate then some
interactions will need to be discarded. If the maximum al-
lowed delay is exceeded then synchronization errors may be
observed.

9

Proceedings of the International Conference on Information and Automation, December 15-18, 2005, Colombo, Sri Lanka. 4

Note that in general the peer s will need to provide more
bitrate than Bs since the spatial data index also requires com-
munications to maintain. The additional bitrate requirements
on peer s due to the spatial data index accesses is essentially
the superposition of update rates over entities assigned to s.
Let us simply write ωs to represent this bitrate requirement.

E. Dynamic optimization of interactions

Find an assignment function, Assign∗ that allows the
largest hu for each u ∈ V , while maintaining for all s that

Bs + ωs ≤ Bmax
s ,

where Bmax
s is the maximum bitrate provided by peer s, and

Ds ≥ Dactual
t,s for all t ∈ Ns,

where Dactual
t,s is the actual network delay from t to s.

Note that the optimization is dynamic because the com-
putation of bitrate and delay requirements assumes that a
given hu has been specified in order to locate entities that
are near enough to interact (and hence generate bitrate/delay
requirements). Our proposed solution lets the optimization to
grow and shrink hu in iterations.

Clearly, the size of Ns is partly determined by hu for entities
assigned to s. A small hu admits less connections than a
large hu. However as hu becomes small then the frequency
of spatial data index updates for s becomes large, given a
constant vs. In the other extreme, if hs is allowed to grow
unboundedly then the number of spatial data index updates
approaches zero. At the same time though, the size of Ns

increases to include all peers in the system (since all entity
event regions will intersect) which places unscalable demands
on the bitrate and delay requirements for s.

The assignment function also partly determines the size of
Ns since if two entities are assigned to s then interactions
between them do not lead to communication. The assignment
function must also satisfy delay requirements. In this case
it ensures that delays incurred between peers do not lead
to delay in excess of what is specified by entity interaction
requirements. In some cases, it may be necessary to migrate a
player’s avatar entity to a different peer in order to satisfy the
delay requirements. In other cases, the requirements cannot
be satisfied and the solution may then lie in using specific
degradation rules given the MMOG semantics.

IV. SOFTWARE ARCHITECTURE

We used the OPeN (Open Peer-to-peer Network) application
development framework [11] developed in our previous work
to build the initial prototype of a P2P MMOG. In this section
we introduce the OPeN architecture framework and some of
the services that are used for building the game prototype.

A. OPeN architecture

The OPeN architecture, is a layered architecture which facil-
itates the development of complex P2P applications. The layers
of the OPeN architecture are shown in Fig. 3. Applications,
which reside in the top layer, the Application layer, can use

the services available in the next layer, the Core Services
layer. The Core Services layer provides a number of reusable
services. P2P protocols and connectivity related functions are
managed by the Connectivity layer. Each layer in the archi-
tecture, through well-defined interfaces, provides functionality
for the higher layers to use. This allows P2P applications to
be developed with the appropriate level of abstraction without
tight coupling to the underlying P2P protocol.

Following are some of the highlights of the OPeN architec-
ture:

• Abstraction, provided by a layered architecture with each
layer providing a higher level of abstraction, completely
hides the network and protocol details from applications.

• Interoperability across protocols, provided by the design
of the connectivity layer, provides a protocol independent
interface to the Core Services layer.

• Delegation, supported through a service-oriented archi-
tecture, allows a service to delegate tasks to other peers
that support the same service.

• Extendibility, provided by a plug-in architecture where
new services and protocols can be plugged.

• QoS Management, supported at each layer of the archi-
tecture.

We have already implemented, using the OPeN architecture,
several protocols, services, and applications to demonstrate
how it meets the architectural objectives stated above [12].
The following sections describe the Spatial Data Service
(SDS), Entity Interaction Service (EIS) and the P2P MMOG
application which are relevant to the work presented in this
paper.

B. P2P MMOG

Figure 4 shows the high level architecture for the P2P
MMOG prototype we have developed, which uses an Entity
Interaction Service (EIS), combined with SDS for efficient en-
tity maintenance and interaction. EIS uses an Entity Interaction
Protocol (EIP) for communication between peers.

SDSSyncronization
Entity
control

Nearby Entity List QOS Manager

Graph
Manager

Message Passing - UDP
Object
Migration

Chord / Floc

EIS

EIP

Massively Multiplayer Online Game

Fig. 4. Game communication architecture.

A distributed P2P virtual world, represents entities in a
virtual game space [13]. Users can participate in the virtual
world by locating themselves in the space, which would then
display the space visible to the user. Users can then interact
with the environment by inserting/deleting entities in the space
and can move through the space. They can also jump to remote

10

Proceedings of the International Conference on Information and Automation, December 15-18, 2005, Colombo, Sri Lanka. 5

Core Services

Applications

Connectivity

Internetworking

Virtual Machine Access ManagementData Management

(e.g., ODBC, SQL) (e.g., BSP, MPI, Globus) (e.g., LDAP, UDDI)

TCP/IP

(Virtual Cluster)(Virtual World)

Multi-player Gaming Transport System Neural Network Grid Buying/Selling

(Virtual Community)

Chord

 Object Migration

P2P Network and Object Management

P2P Routing Protocol

Garbage Collection

PastryTapestryCAN

Object Replication

Global Management

(e.g., join, leave, reorganize)

Messages/Conferences

e.g.,

e.g.,

Quality of Service sub-layer

Reliability Security Performancee.g., Interoperability

Session Management Access Control

(HLA/RTI for simulation/debugging)

Fig. 3. OPeN layered architecture.

locations in space using the SDS querying mechanisms. The
game application uses the services provided by the SDS, to
manipulate the virtual world through insert, delete, and query
operations. SDS manages the entities in the virtual world, and
therefore, the application developer does not have to know
the details of how or where the entities are stored in the
system. Given a region, all the entities (using their individual
event regions) can be retrieved for that region. The interactions
between these entities are facilitated through EIS. We used an
existing library, Crystal Space, for high performance graphics
rendering. Fig. 5 shows the screen shots from the P2P MMOG
prototype.

Fig. 5. A screen shot of a P2P MMOG prototype that is under development
in our labs.

C. Spatial Data Service (SDS)

SDS supports the querying, insertion, and deletion of spatial
data. Our querying capabilities support range queries (also
known as window queries) and nearest neighbour queries on
multi-dimensional data. This is based on our recent research
which supports distributed queries for spatial data in a P2P
network [8]. SDS uses a distributed quadtree index where
nodes of the tree are service objects, called control points,
which are hashed onto a P2P network using a base P2P
protocol (e.g., Chord). SDS can be used in a P2P MMOG
as a global registry for entities.

Our current SDS implementation uses the Chord protocol
but any key based routing protocol can be used. Spatial objects
(in our case, the event regions for the entities in a game) are

inserted into the SDS by routing queries to the appropriate
control points.

D. Entity Interaction Service (EIS)

EIS is responsible for coordinating entity communication,
both initiating connections and the sending and receiving of
update messages. It provides a consistent view of the virtual
world by maintaining a list of nearby up to date entities, which
can be accessed by the application for rendering and other
game specific processing. The graph manager module (Figure
4) in the EIS handles the topology of interaction through
queries to the SDS to determine intersecting event regions.
Essentially, it finds nearby entities with which to interact. The
quality of service (QOS) manager keeps account of bandwidth
usage which can be altered by adjusting the event region as
required. Entity logic such as avatar movement and action is
handled by the application. Changes in entity state are passed
to the entity control module in the EIS, which in turn results
in publication of this change to interested entities through
messages passed by the synchronization module.

Update messages are handed to the EIP which is responsible
for passing them over the Internet with UDP. It is also
responsible for event ordering and time synchronization. The
interoperability of the service layer allows objects to migrated
at any time. As described in section III-E this can be used
to ensure the latency requirements are met. The logic which
decides when and to which peer this takes place is also located
in the protocol.

V. CONCLUSION

In this paper, we propose the combination of a distributed
spatial data management strategy and an agent-oriented pro-
gramming approach to maintain entities and allow for efficient
interactions in a P2P MMOG. We define a dynamic optimiza-
tion problem which takes into account factors such as bitrate
and delay requirements between entities, in this context. We
also show how our existing software architecture for building
complex P2P applications can be applied to implement our
proposed system. We make use of a spatial data service
combined with an interaction management service to build a
P2P MMOG.

11

Proceedings of the International Conference on Information and Automation, December 15-18, 2005, Colombo, Sri Lanka. 6

VI. ACKNOWLEDGEMENT

The authors thank National ICT Australia for funding this
research.

REFERENCES

[1] C. Diot and L. Gautier, “A distributed architecture for multiplayer
interactive applications on the Internet,” IEEE Network, vol. 13, no. 4,
pp. 6–15, 1999.

[2] K. L. Morse, “Interest management in large-scale distributed simula-
tions,” University of California, Irvine, CA, Tech. Rep. ICS-TR-96-27,
1996.

[3] Y. Kawahara, T. Aoyama, and H. Morikawa, “A peer-to-peer mes-
sage exchange scheme for large-scale networked virtual environments.”
Telecommunication Systems, vol. 25, no. 3-4, pp. 353–370, 2004.

[4] J. Keller and G. Simon, “Solipsis: A massively multi-participant virtual
world,” in PDPTA 2003, Las Vegas, NV, June 2003, pp. 262–268.

[5] B. Knutsson, H. Lu., W. Xu, and B. Hopkins, “Peer-to-peer support for
massively multiplayer games,” in IEEE Infocom, Hong Kong, China,
March 2004.

[6] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: supporting
scalable multi-attribute range queries,” in ACM SIGCOMM, Portland,
OR, September 2004, pp. 353–366.

[7] A. R. Bharambe, S. Rao, and S. Seshan, “Mercury: a scalable publish-
subscribe system for Internet games,” in NetGames, Bruanschweig,
Germany, April 2002, pp. 3–9.

[8] A. Harwood and E. Tanin, “Hashing spatial content over peer-to-peer
networks,” in Australian Telecommunications, Networks, and Applica-
tions Conference-ATNAC, Melbourne, Victoria, December 2003.

[9] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for Internet applica-
tions,” in ACM SIGCOMM, San Diego, CA, August 2001, pp. 149–160.

[10] A. Harwood, E. Tanin, and M. T. Truong, “Fast learning of optimal
connections in a peer-to-peer network,” in IEEE ICON, Singapore,
November 2004, pp. 16–19.

[11] A. Harwood, S. Karunasekera, S. Nutanong, E. Tanin, and M. Truong,
“Complex applications over peer-to-peer networks,” in ACM Middleware
(Poster Proceedings), Toronto, Ontario, October 2004.

[12] S. Karunasekera, A. Harwood, E. Tanin, M. Troung, and S. Douglas,
OPeN: An Architecture for Complex Applications over Peer-to-Peer Net-
works, Submitted to Software-Practice and Experience Journal, March
2005.

[13] E. Tanin, A. Harwood, H. Samet, S. Nutanong, and M. T. Truong, “A
serverless 3D world,” in ACM GIS, Washington, DC, 2004, pp. 157–165.

12

