Network Virtualisation for Transparent Testing and
Experimentation of Distributed Applications

Chris Edwards, Aaron Harwood, and Egemen Tanin
NICTA Victoria Laboratory
Department of Computer Science and Software Engineering
University of Melbourne, Victoria 3010, AUSTRALIA
{caedwa, ahar wood, egenen} @s. nu. QZ. AU

Abstract— Popular network simulation tools, such asns-2 are application loading behavior, our virtualisation techregis
useful for undertaking experiments with emerging networking applied transparently to existing, unmodified application
technologies. As networked applications become distributed at Testing and more specifically, debugging complex dis-

scales comparable to the Internet, such as peer-to-peer applica tributed licati . idel ted o b hallemai
tions, testing and experimentation becomes increasingly difficult 'PUt€d applications 1s wicely accepted 1o be a challeggin

and important. With this paper, we are introducing an elaborate task [1]. Reasons include difficulties in gaining accesshi t
extension to existing simulation capabilities by allowing realistic required number of machines across a wide-area, capturing
highly distributed application prototypes to be attached to a trace data from experiments, and interpreting this datastkem
simulator for transparent testing and experimentation. We enable appropriate changes in the system. It is desirable to betable

developers to focus on building their applications rather than
detailing simulation scripts. Testing can then be performed in go step-by-step through the messages that are passed hetwee

a natural setting. PDNS is a parallel and distributed version of components of the distributed system. Simulations progde
the commonly used ns-2 simulation package. We describe our means to solve these problems, however they introduce their
extensions to the PDNS simulator which allow real application own prob|ems_ One such prob|em is how to run an app”ca-
prototypes to be run across a simulated network. We describe i iy conjunction with a simulator, since the simulator is

our use of virtualisation as a means for sending an application’s I If tained ith it imol oiati
network traffic through the simulator. Our implementation allows ~ USu@lly & Sefi-containead program with its own implemeoia

for large scale simulations with thousands of real peers and Of protocols and scripting procedures. This implementatio
hundereds of thousands of simulated nodes in a network, thus cannot then be used directly in a real application due to

we can test real peer-to-peer software at large scales. the existence of some unintended assumptions. For highly
distributed applications, such as peer-to-peer apptingfithis
|. INTRODUCTION is an important problem. In this paper, we address this issue

As networked applications become decentralised and higily €xtending a popular simulator to accommodate real appli-
distributed, it becomes more important to predict poténtigations transparently. _
failure or success of these applications before a largestenl - iNally, network simulations are also computation and com-
ployment. Even small glitches can lead to large scale progle Munication expensive. From a computation point of view,
and increased costs. Furthermore, it is desirable to tésalac Memory requirements will typically grow quadratically (@
system software code rather than basing predictions ofveehigast linearithmically) with network size and/or packerts-
ior on idealised models and parts of algorithms built usinrglssmns. Communication requirements are a consequence of
scripts. Large testbeds such as PlanetLab (http://wwnepla the need _for_ causality and the use of a globally acce_ssed '_[ime
lab.org) provide a good basis for such testing at mediumascalbased priority queue of events. Parallel network simutatio

Beyond this, and when greater control of test environmef@n be used to increase the scale of simulations. After inves
variables is required, network simulations are still a godipating various simulation packages, includi@f NETS[2]
choice. In this paper, we discuss the role of virtualisafion &1 OPNET[3], we have based our work dADNS[4]. The

testing real system software code on a simulated network ApNS simulation is a parallel/distributed version of ns5p |
large scales. The authors of PDNS have run simulations with as many as

The use of virtualisation techniques is increasing acrof80.000 nodes in a S|.mulated ne-two.rk [4] that can address
many application domains. Uses of virtualisation rangenfrotn€ Scales that are desired by applications such as peerero-

system partitioning, checkpointing, usermode networleyite 2PPlications.
tems, to program supervision. We use the technique to Virth- oyr contribution
alise a program’s networking, redirecting network 1O resjse

across a simulated network. With minimal assumptions %r?ln this paper, we describe an implementation and use

virtualisation for testing, experimenting, and debumpi
This work was funded in part by the Victorian Partnership Aatvanced comple_x distributed appllcatlons _II’_I con!unctlon with PDN_S
Computing - VPAC, under project EPPN ME111.2004. In particular, we provide a modified simulator, along with

software is to port a networking framework to a simulatoreOn

X - example is the porting [11] of the Click Modular Router [12]
to ns-2. This framework is built on a software architectwe f
building routers which can then run in the Linux and FreeBSD
kernels. While an efficient technique for such code, it is
limited to modules for a particular framework and architeet
This makes comparisons with existing protocols difficult in
simulations. It also places restrictions on the softwaresida

of the simulation.

Simulated Network

) [I. VIRTUALISATION TECHNIQUE
Our virtualisation relies on the ability provided by opéngt
Fig. 1. How applications communicate with each other throtnghsimulator systems to preload a library (Figure 2). This feature allows
a library to provide functions which would otherwise be
i o i L i _provided by standard system libraries. It is done without
a library which is linked into applications at runtime. Thigye ynowledge of the application, however since it relies on
library redirects appropriate network traffic to the simet gy namic linking, it will not work if the application has been
network, transpare'ntly to 'Fhe apphca}lch (Figure 1). statically linked against the functions to be replaced. The
By running _multlple copies of appllcatlons,_each connecte vantage of simply replacing user-space functions, i tha
to different simulated hosts, we can expe_rlment with thqﬁe approach is relatively portable, compared with tragpin
performance on a large network. Such experiments are part'gystem calls. It can also be done without special privileges

larly useful fqr peer—to—peer protocols and appllqaucwbere and is suitable for use on generic clusters.
network traffic is not directed to and from a single, central

server. Traffic patterns of this kind require simulationsaofie
numbers of hosts and nodes in order to be realistic, as there Application
are many potential bottlenecks. i

Virtualisation

B. Related work

Other approaches have been taken for the simulation of library
networks, running real applications. Techniques rangenfro i
routers performing the simulation [6], to capturing traffiom
virtualised operating systems [7]. However these techesqu libc

are not appropriate for the scale of simulations we would
like to perform, or the computer power available to manyig. 2. Shows how the virtualisation library interacts witie simulator and
enterprises. application

A similar approach to ours has been used in the past,
to redirect sockets via a SOCKS [8] proxy [9]. However In contrast to techniques such as [13], where a modified
our work differs in scale. We wish to simulate hundreds ifouter is used to simulate packets travelling through a simu
not thousands of application processes, each with numerdaied network, ours can be run as a standard user on either a
sockets. It is important therefore to multiplex all sockietsn ~ single machine or a cluster. It does not require specialsacce
an application into a single socket connecting to the sitoula to any machines or any specific hardware.
If we used the SOCKS model, the simulator would have as
many real socket connections as it does simulated sockéts.
This would be likely to test operating system limits that the Rather than trapping the system calls directly, our library
simulator runs on, i.e., particularly on shared clustermra®s simply replaces the standard C library functions used for
used for experimentation. networking. Alternatives exist, such as using tper ace

In [7] and [10], User Mode Linux (UML) was used as ardebugging facility [14], [15], often used by debuggers.
environment for each simulated host. This involves running Our method of trapping a program’s networking calls uses
a special Linux kernel which runs entirely in the user spatke LD_PRELQAD facility provided by most POSIX operating
of another. A virtual network device can then be used to sesgstems, such as Linux. It works by loading our library which
Ethernet frames to and from the simulation. This approash haill provide the application with the appropriate symbols,
the advantage of using a real TCP/IP stack, the overheadrather than the C library versions. Thus when an application
UML is considerable, as hardware is not accessed directly imakes a call to a function such a®cket , the function in
the kernel. In addition, each simulated host requires ita oweur library is called. A list of the functions we provide isvgn
operating system kernel and file system. in Table I, along with a brief description of the more invalve

An alternative approach to running simulations of redunctions.

Socket trapping

From an application’s point of a view, a socket is rep-
resented by a file descriptor, which is simply an integer.
Our virtualisation library must provide the same interfate
do this, it needs to ensure that real file descriptors do not
clash with file descriptors given to virtualised sockets. We
considered two approaches for this. The first was to map file
descriptors seen by the application into the file descritised

Creates a dummy socket locally, to keep the file py the kernel. The second approach was to create a real socket
for each virtualised socket, so that the kernel’s file desors
matched up with those seen by the application. In this second
Instructs the simulator to create a connection, either method, the only information we need to maintain is whether
a particular file descriptor is a virtualised socket or nobteN
Sends the bind request to the simulator, which checksthat the socket created for virtualised sockets is actuwdiyer

its own table of sockets for the host. This is needed ysed, its sole purpose is to reserve a file descriptor for our

When a virtualised function is called, it first checks to see
Creates a new socket locally, and sends this file jf the file descriptor is virtualised. If it is not, the origihcall

is immediately initiated. Otherwise, the function intesawith
the simulator.

All state is kept in the simulator, so these functions simply
pass a message to the simulator and wait until they receive a
Sends a block of data to the simulator, and waits for reply, giving them the return arer r no values, and any other
data needed. It is necessary to refer to the simulator'e stat
because sockets can be shared between processes (cdmsider t
case where a web-server forks off multiple processes tolaand
requests). There may also be multiple applications runomg
the same simulated host, so the allocation of TCP/UDP ports
becomes an issue.

B. Handling auxiliary services

In order to create a realistic environment for applicatjons
thread when the select reply arrives. This way the We must virtualise other functions as well as those for net-
call can be awaken by the simulator or another file working. We virtualise the functions related to time, sush a
getti meof day andsl eep.

By virtualising time related functions, the application is
unaware that the simulation time may not be the same as real
time, and everything appears to happen in simulation time.

TABLE |

VIRTUALISED FUNCTIONS PROVIDED BY OUR VIRTUALISATION LIBRARY

Function Comments

socket
descriptors in-sync with the kernel, then sends a
message to the simulator informing it of the new
socket.

connect
blocking or causing a timeout if the connection
cannot be made.

bi nd
because multiple applications may be running on the
same simulated host, so the library cannot check if own use.
the bind will succeed by itself.

accept
descriptor value to the simulator (so it can store this
value itself), then waits for the simulator to either
return with a new socket, or fail.

listen Tells the simulator to begin listening on the socket.

read Requests the next block of data from the simulator,
and waits until it is received.

wite
an acknowledgement.

cl ose Tells the simulator the socket has been closed.

recv As above forr ead

recvfrom Similar tor ead

recvnsg Similar tor ead

send As above forwrite

sendt o Similar towri te

sendnsg Similar towrite

sel ect Sorts the fd sets into virtualised sockets and local file
descriptors. Sends a select message to the simulato
for the virtualised sockets, then calls select on the
remaining file descriptors, as well as a newly created
pipe. The pipe is written to by the message receiving
descriptor. The simulator will send a reply if the
timeout value is reached, waking the call. This way
the timeout works in simulated time.

psel ect Currently the same as select

pol | Transforms the call into a select call and runs as
above.

fentl Passes options through to the simulator.

get peer nane

get socknane
get sockopt
set sockopt

The only exception to this is the amount of CPU time the

ﬁSKtS the simulator for the IP address of the remote gpplication receives. Currently we simply ensure the samul
ost.

Returns the IP address of the simulated host. tion runs slow enough that appl!catlons, which are.assumed
Retrieves options which have been successfully set.t0 generally be 10-bound, receive enough CPU time. The
Passes some options through to the simulator, otherssimulation of network elements can be slowed if application

are handled locally, and some are ignored. are not receiving enough CPU time. How to automatically

adjust the rate of the simulation is an area for further work.

ioctl Passes some options through to the simulator.
si gaction Needed to simulat&l GPI PE for sockets.

si gpr ocrmask Needed to allow the library access $ GPl PE.
si gpendi ng Needed to allow the library access $ GPI PE.

si gsuspend
si gnal

Needed to allow the library access $ GPI PE. C. PDNS interface
Needed to simulat&l GPI PE for sockets.

sl eep

get ti meof day

: _ Our virtualisation implementation interfaces with a modi-
Tells the simulator to reply after the required elapsed |. . .
time. This causes the sleep to occur in simulated fied version of the PDNS simulator. However, the protocol
time. _ _ ~used for communication between the library and simulator is
Queries the simulator for the current simulated time. ganeric enough for the implementation to be possible inrothe

simulators. Indeed, using federation of a simulation [16],
would be possible to create a simulation running on more
than one simulation package concurrently. This could b&ulise
where a specialised simulation exists for a particular type
of network. For example, by having a specialised wireless

set nonitor [new W apper Daenon 22334]
$nonitor start-thread

TABLE I

INITIALISATION PARAMETERS SENT FROM THE LIBRARY TO THE Fig. 3. A code fragment demonstrating how the connection fregndhread

of the simulator is initialised.
SIMULATOR

Parameter Comments

IP Address The IP address of the host the application will run . L
on within the simulation. To avoid hitting operating system limits on file descriptors

Start Time ~ The simulated time in seconds at which the applica- it would be useful to avoid creating a dummy socket for every
denii tion should Ibegi,n run,ging-,f_) la socket the application creates. However, as mentioned, thi
eniter éga?gé‘%r;gc::slqcljaenIbznig;\rt’iﬁsé% gnac: 20‘223 %t;,ot?]e V_V0uld require a complex mapping between_rea_l and virtudlise
simulator. This means the simulator knows when the ~ file descriptors, and may break some applications.
application it just created has connected. As mentioned earlier, performance could be increased by
using a faster method for communication between the wrapper

library and the simulator.

network simulation package running in conjunction with a
generic network simulator such as PDNS.
Initial development of the virtualisation library was per- Our work adds additional functionality to the PDNS sim-
formed with a simple daemon acting in the place of a simul#lator, adding facilities for external applications to patata
tor. Rather than performing a realistic simulation of a reetuy through the simulated network. PDNS was chosen because it
it handed data between nodes immediately. This daemon d¢aRased on the widely used ns-2 simulator, which many in the
be used to validate the virtualisation library without thigled ~ field are already familiar with. Creating simulations usogy
complexity of a simulator. virtualisation technigue is in most cases easier than befs
Communication between the library and simulator occufge researcher simply needs to create a network topology, ad
over a TCP socket. While not having the speed of shar@fy extra network traffic, and create instances of apptiati
memory or other communication methods, it does have the 4@-attach to nodes. Specifically, they do not need to implémen
vantage of making distribution of applications across niveeh protocols in the simulator, which can be cumbersome due to
straightforward. To avoid hitting socket limits in the sittor the different socket programming model used.
process, a_lll virtualised sockets in a process are muImnlexA. Connection handler
across a single socket between the library and simulatornwWhe
a process forks, the new process closes the old socket andNe simulator acts as the central daemon to which applica-
opens its own to the simulator. Both data and control messa$@ns connect. This allows for flexibility in running appdic
pass across the same socket. tions by various means, one of which is through methods in
Upon application startup, the virtualisation library desa the simulator. If the users wish to use our virtualisatidmeyt
a connection to the simulator, and sends an initialisatiGhust create and initialise an instance of Wexpper Daermon
message, informing the simulator of some parameters, @SS We provide. Itis up to the users to specify the TCP port i
shown in Table Il. Having this information passed by th@hould listen on. The code fragment in Figure 3 demonstrates
library on startup allows applications to be started extiyn ItS USe.
from the simulator. This is useful for running a handful of When a new connection is received and accepted, the
applications on a desktop machine to observe or interatt whimulator finds the node which has the IP address requested
the simulation. An alternative would be to have all applmas DY the application. An agent is then created corresponding t
started by the simulator, but this removes such flexibility. the application, which will handle all the sockets it create
Once the library has sent its initialisation message to td&ere can be more than one such agent for a given node, each
simulator, it waits for a reply, which signals that it shoul@orresponding to a different application. When an applcati
begin running the application. This is implemented by hg\,ir{orks, it will create a new connection to the simulator. Tause
the library initialisation constructor wait for the replghe ©f the same application will share the same connection. This
application, or indeed other libraries it needs, cannotetee architecture is shown in Figure 4.

1. SIMULATOR ENHANCEMENTS

until the virtualisation library’s initialisation is conigte. The flexibility introduced by allowing connections from
o S any external process introduces a complication in knowing
D. Virtualisation Limitations when to begin. Because the simulator does not know about

Our current implementation is not completely transpareatl applications which should be connected to it, it does not
to applications. We have not yet implemented tteg k and know when the simulation is ready to run. To work around this,
exec function calls. These two functions interact with thehe W apper Daenon class has a methoshi t - f or which
loader and dynamic linker, and would require a little morblocks until a given number of applications have succelgsful
work than others. They would also require work to alloveonnected. A call to this method then simply needs to be
sharing of file descriptors between processes, which owarlib placed in the simulation script, before the command to begin
cannot currently handle. the simulation. Note that having this method does not preciu

A. Cluster specifications

The cluster used for simulations is made up of 97 nodes,
each with dual Xeon 2.8 GHz CPUs and between 1 and 2 GB
WrapperAgent ‘ ‘ WrapperAgent‘ ‘ WrapperAgent of RAM.

HostTable

pp pp 1 pp l p
I Wrapper I Wrapper I Wrapper I Wrapper I Wrapper

B. PDNS scripts

After selecting PDNS as the simulator to build upon,
Simulator some experiments were run with simple PDNS scripts. We
were able to achieve 391,314 packet hops per second, while
simulating over 415,000 nodes and 400,000 traffic streams.

Fig. 4. Extra classes added to the PDNS simulator This simulation was performed with 10 nodes in the cluster,

each using 2 CPUs. 890MB of memory was used across all
10 machines. The simulation run was the 417,200 node script

applications from coming and going during the simulatidn. bt [17].

is simply up to the writer of the simulation script to know The major bottleneck we faced was memory usage. The
how many applications should be connected at the start of thistributed nature of PDNS means this can be largely over-

Incoming
Sockets

simulation. come by distributing across more cluster nodes. We used the
autopart [18] tool to partition our simulations across astdu
B. Scheduler This tool takes an ns-2 script, which must adhere to a special

format, and outputs a given number of scripts, each of which

Our modifications to PDNS include a wrapper arouné) : . .
. L) . run on a separate machine. It is also capable of producin
the existingRTl scheduler used for distributed simulations P P D g

" “multiple scripts for machines with more than one CPU.
Because of the additional thread created to accept coonscti P P
we require the scheduler to be thread-safe. In addition, @ Telnet and server
handle 10 on existing connections, we must ask the TCL \ypile providing a relatively trivial interfacet el net ac-

interpreter to check this on our behalf. tually tests numerous features of the virtualisation fjarahe
We made the wrapper scheduler thread-safe by requiring &Ilncipal problem we faced was the client's usesafl ect

calls to the underlying scheduler to acquire a single lodie T 1, myltiplex input and output from both the socket connettio
only time two threads will both access the scheduler is whernyaq the terminal.

new connection is being handled, which requires a startteven simple daemon is used in our solution which accepts con-
to. be placed in the event queue. Our implementation hand|&s-tions before outputting data sequences of varying hsngt
this safely. ~ interspersed with calls tel eep. This verifies that changes in

In handling 10, we have used theédHandl er class. This time are controlled by the simulation. When the simulatios wa
class is used by the existing network emulation code, butiin interactively, the sleep calls were not noticeable, daw
normally requires the real-time scheduler to be used. Apgfe simulator's time had indeed progressed by the correct
from keeping the simulation clock in time with the wall clock gmount.
the real-time scheduler also makes periodic checks for 10.The daemon also outputs to its own terminal any data
Because we do not wish to restrict our simulations to reglceived on its end of the socket. Using this tool we were able

time, we simply make these 10 checks in our own schedulgg verify that keystrokes from the client end were receivgd b
Our simulations can run at faster than real-time because @ telnet client and sent to the remote daemon.

virtualisation library fools the application into thinigntime

is moving at the rate of the simulation. D. Peer-to-peer
The primary reason for developing the virtualisation tool
C. Additional Methods is to test peer-to-peer software. The peer-to-peer softwer

H%ed is multithreaded and each peer creates many conrgection

In addition to the classes added as mentioned earlier,
tg other peers.

Node class in TCL has been extended. It now contains hand Hith licati he virtualisati
start-w ap- app- at method, which loads an application To handle multithreaded app |qat|ons, the wrtuglsatlen'
using the virtualisation library and connects it to the ndsig brary must be thread-safe, meaning that calls to its funstio

calling this method, the user does not need to know about frgm mu_ltiple thr_eads a_t the same time are handled safely.
library preloading. For the library this requires protecting its data structuaed

managing access to its socket connection to the simulator.
Our library protects its data structures and write access

to the simulation connection using standard mutual exatusi
We have implemented the techniques described and maaleks. Messages are received from the simulator by a separat

our implementation available &t t p: // p2p. cs. mu. oz. thread created by the library for its own use. This threagsim

au/ sof t war e/ vpdns. reads messages off the socket and places them in a queue.

IV. EXPERIMENTS AND EXAMPLES

It then checks whether a thread is waiting for the messaggi] M. Neufeld, A. Jain, and D. Grunwald, “Nsclick: bridgjnnetwork

and wakes it up if so. Other schemes were tried, including Simulation and deployment,” iIMSWiM '02: Proceedings of the Sth
ACM international workshop on Modeling analysis and sirtiola of

havmg the first threat_j which Wa'FS for a mesgage regq from wireless and mobile systemsNew York, NY: ACM Press, 2002, pp.

the socket. Complications may arise, because if an apjglicat 74-81. _ _

callssel ect it must also be woken by events on other filél2] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaaek, “The
. . . click modular router,”ACM Trans. Comput. Systvol. 18, no. 3, pp.

descriptors. Table | has a more detailed explanation of how 553" 597 2000.

this waiting occurs in practice. [13] A.Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. KosticChase, and

Experiments with simple peer-to-peer applications are run P Becker, “Scalability and accuracy in a large-scale netvesnulator,”
P pie p P PP SIGOPS Oper. Syst. Revol. 36, no. Sl, pp. 271-284, 2002.

These show that the virtualisation and the simulator caityeasi4; z. Liang, V. Venkatakrishnan, and R. Sekar, “Isolategzam ex-

work together for highly distributed application testinge ecution: an application transparent approach for exegutintrusted
are now in the process of running large scale simulations of a Prog"ams: inComputer Security Applications Conferen@903, pp.

complex peer-to-peer application that we are developing. [15] k. Jain and R. Sekar, “User-level infrastructure fostm call inter-
position: A platform for intrusion detection and confinemeirt 1SOC
V. CONCLUSION Network and Distributed Systems Symposigf00.
[16] G. F. Riley, M. H. Ammar, R. M. Fujimoto, A. Park, K. Perumalend
This paper describes the implementation of a network DP- Xu. “A federated approach to distributed network simaiafi ACM
. pap . . L P . L . Trans. Model. Comput. Simubkol. 14, no. 2, pp. 116-148, 2004.
simulator using virtualisation to test highly distributedpli- [17] p. xu, “autopart website,” 2005. [Online]. Availablehttp:/iwww.cc.
cations. We have made modifications to a well known network gatech.edu/grads/x/Donghua.Xu/autopart/

simulator, PDNS, allowing an external library to connecitfo [18] D. Xu and M. Ammar, “Benchmap: benchmark-based, hardwark an

. . U . model-aware partitioning for parallel and distributed natevsimula-
directing an application’s network traffic through the sletar. tion,” in Modeling, Analysis, and Simulation of Computer and Telecom

The virtualisation library allows a wide variety of exiggin munications Systems, MASCQPB04, pp. 455-463.
applications to be run unmodified while using the simulator.
This then removes the need to create a separate protocol
or application scripting for simulation purposes. It hagrbe
engineered to allow it to scale to large numbers of appbeati
processes, including distribution across a cluster.

Such simulations are an important tool for testing and de-
bugging complex highly distributed networking applicato
One such example is peer-to-peer applications, which &ea of
utilised with thousands of peers across a variety of differe
networks and connection types.

REFERENCES

[1] M. S. Meier, K. L. Miller, D. P. Pazel, J. R. Rao, and J. R.sRall,
“Experiences with building distributed debuggers,”$®PDT '96: Pro-
ceedings of the SIGMETRICS symposium on parallel and bigé&d
tools New York, NY: ACM Press, 1996, pp. 70-79.

[2] G. F. Riley, “The Georgia Tech network simulator,” MoMeTools '03:
Proceedings of the ACM SIGCOMM workshop on models, methudis a
tools for reproducible network researchNew York, NY: ACM Press,
2003, pp. 5-12.

[3] X. Chang, “Network simulations with OPNET,” ilVSC '99: Proceed-
ings of the 31st conference on Winter simulatiodew York, NY: ACM
Press, 1999, pp. 307-314.

[4] G. Riley, “PDNS,” 2005. [Online]. Available: http://ww.cc.gatech.edu/
computing/compass/pdns/

[5] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, Aelhty,
P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu, “Advances
in network simulation,"Computer vol. 33, no. 5, pp. 59-67, 2000.

[6] K. Yocum, E. Eade, J. Degesys, D. Becker, J. Chase, and Adata
“Toward scaling network emulation using topology partitiayn” in
Modeling, Analysis and Simulation of Computer Telecompatitns
Systems, MASCOT 3003, pp. 242-245.

[7] D. Mahrenholz and S. Ivanov, “Real-time network emulatwith ns-2,”
in Distributed Simulation and Real-Time Applications, DS-RJ04, pp.
29-36.

[8] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jene
“Socks protocol version 5, 1996. [Online]. Available: frtYarchive.
socks.permeo.com/rfc/rfc1928.txt

[9] “Tsocks,” 2005. [Online]. Available: http://tsockesrceforge.net/

[10] U. Hatnik and S. Altmann, “Using ModelSim, Matlab/SimWirand
NS for simulation of distributed systems,” iRarallel Computing in
Electrical Engineering2004, pp. 114-119.

