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Abstract— With recent advances in mobile computing tech-
nologies, mobile devices can now render 3D objects realistically.
Many users of these devices such as tourists, mixed-reality
gamers, and rescue officers, need real-time retrieval of 3D
objects over a wireless network. Due to bandwidth and latency
restrictions in mobile settings, efficient continuous retrieval of
3D objects remains a challenge. In this paper, we describe a
motion-aware approach to this problem. We first introduce multi-
resolution storage and retrieval methods for 3D data, which
restrict access to only the necessary content based on the client’s
motion pattern. We then propose a motion-aware buffer manage-
ment technique as well as an efficient index using multi-resolution
representations of objects. Our experiments demonstrate the
effectiveness of our solution to continuous retrieval of complex
spatial data in mobile settings.

I. INTRODUCTION

Recent advances in mobile computing have delivered com-
petitive rendering capabilities, which have enabled a new
realism of visualizing 3D representation of objects on small
computing devices such as cell phones or head-mounted dis-
plays. For example, in LifeClipper [1], a head-mounted display
is used to offer virtually enhanced travel experiences for
tourists visiting foreign locations. Virtual 3D objects are added
to the view according to the current position and viewing
direction of the user. While the current status of this particular
project requires the tourist to carry a portable storage device
for providing the data, we envision that users should only
need to wear a head-mounted display. In our scenarios, clients
can obtain the data on the fly through a wireless connection.
For example, a tourist can use a mobile device, such as a
smartphone, to see the 3D interior details of restaurants along
a street without physically entering them. An electrician with
augmented-reality glasses can see 3D layouts of wiring and
pipes inside a wall before a repair. A rescue officer can see
the structure of a building even if the building is on fire and
filled with smoke. In many of these application scenarios, real-
time retrieval of up-to-date data is also beneficial.

The data access issues in all of these applications fit into a
common client-server model. This model consists of a mobile
client, a server, a large set of 3D objects located on the server,
and a wireless link between the client and the server. The
server stores information about the 3D objects. The client has
a view attached to it. At any time, according to the client’s
location and view direction, the client retrieves all the objects

within the range of its view from the server through the
wireless link, and then renders the objects in the display. As the
client moves, new objects will continuously be retrieved. The
process can be viewed as a continuous window query on 3D
object databases. To guarantee a realistic visual experience,
the results in the query window have to be retrieved at a
high rate. Typically, the link between the client and the server
will be through a wireless network such as a mobile phone
network, which has a high latency and low bandwidth for our
purposes [2]. Thus, the wireless link to the server forms the
main bottleneck for our application domain.

The data retrieval yields the highest delay when the client
changes its view rapidly. This is because (i) in the same
amount of time, there are more objects that is swept by the
client when the view moves at a high speed, leading to more
objects to be retrieved per time unit from the server, (ii) for
a moving client, the usable bandwidth of a connection in a
network such as mobile phone networks drop to a fraction of
the bandwidth that is available for clients at rest [2].

In this paper, we provide a systematic solution to this data
retrieval problem. Our solution is based on the key insight
that when the client’s view is moving at a high speed, the
client is only interested in and capable of absorbing high
level information from the environment viewed. Even if we
visualize the objects in full details when the client is in
fast motion, the user will not be able to see most of the
details presented. Therefore, we choose to represent objects
in multiple resolutions and retrieve only the data necessary
to visualize the objects at the required resolutions based on
the speed of the movement of the client’s view. Specifically,
we use wavelet representations of 3D objects. Wavelets are
ideal for our needs because of the following two advantages:
(i) we can easily represent an object in different resolutions
using different wavelet coefficients; (ii) for an increased object
resolution, we only need to retrieve the difference between the
two resolutions, which incurs only incremental costs.

We take a motion-aware approach to solve the problem of
efficiently processing the continuous window query on 3D
object databases. Our contributions are:

• Motion-aware data retrieval: (i) representing 3D objects
in multiple resolutions through wavelet decomposition,
(ii) retrieval of data necessary for a certain resolution,



determined by the speed of the change in the view frame,
(iii) incremental retrieval of the difference when increasing
the resolution.

• Motion-aware buffer management: A pre-fetching and
caching strategy based on the view’s movement.

• An efficient index for 3D objects in multiple resolutions
represented by wavelets.

II. RELATED WORK

Research on query processing for mobile computing is
becoming increasingly important with the proliferation of
location-aware mobile devices. This paper deals with contin-
uous window query from mobile clients on static 3D object
databases. It is important to note that our work is different from
existing technologies such as Google Earth [3] that retrieves
2D images instead of 3D objects. Also, the main focus of
this paper is to optimize the query processing for mobile
wireless devices, which is not the case for Google Earth or
online games. In this section, first, we briefly discuss current
techniques for continuous query processing. Then, we review
the concept of multi-resolution modeling of 3D objects that
we exploit to cope with resource constraints of mobile devices.
Next, we discuss different buffer management techniques that
aim at reducing high latency for mobile wireless clients. Fi-
nally, we review existing spatial access methods for retrieving
data in multiple resolutions.

Continuous Queries: Recent research focuses on con-
tinuous range and nearest neighbor queries over static and
moving objects (e.g., [4], [5], [6], [7]). Besides, some re-
search is specifically designed for mobile clients and proposes
techniques for reducing communication overheads and extra
processing in the server for large number of queries posed
as clients change their positions [8], [9]. These techniques
commonly focus on point data sets since only the locations
of objects are relevant for these systems. Again, Lazaridis et
al [10] focused on continuous queries for rendering objects in
virtual tour-like applications and thus can be extended for non-
point objects. However, none of the existing research utilizes
the motion of clients for efficient data retrieval.

Multi-resolution Modeling: Triangular mesh based surface
representation of 3D objects is common in computer graphics
and geometric modeling [11]. These mesh representations
are frequently large data sets limiting the transmission of
complex 3D data to clients over low-bandwidth networks. In
many applications the details of objects may not be necessary
for the visualization on clients. To represent an object with
various levels of details, a wide variety of models are available
for mesh simplification, i.e., multi-resolution modeling. Two
widely used approaches for multi-resolution modeling are:
(i) progressive meshes [12], and (ii) wavelets [13]. Tradi-
tionally, graphics applications use progressive mesh based
simplification due to the fact that this approach offers reduced
costs for rendering of 3D objects. However, the wireless
link forms the main bottleneck for mobile clients. It is also
known that wavelet-based approaches offer a more compact

coding for progressive transmission of data and thus require
less bandwidth for wireless transmissions. In a wavelet-based
approach, a given mesh is simplified to a base mesh, together
with a sequence of missing details of the original mesh. These
missing details are called wavelet coefficients. We use wavelet-
based approach for representing and storing 3D objects data
in multiple resolutions.

Buffer Management: To reduce the impact of high latency
low-bandwidth wireless links, different pre-fetching schemes
for mobile clients have been proposed [14], [15]. Since a
mobile client has a limited buffer and all the data that
are pre-fetched may not be used by the client, non-uniform
one-dimensional motion patterns is used by [15] to define
regions that are likely to be visited subsequently. Alternative
techniques (e.g., [14]) assume linear movement of objects that
use the speed and the direction of the client to define the
region to be pre-fetched. These techniques for pre-fetching
does not perform well when the movement patterns are non-
trivial which is commonly the case for many mobile clients.
In this paper, we propose sophisticated state estimation-based
techniques to determine the regions that are likely to be visited
where the buffer manager then fetches/caches complex 3D data
based on these estimations.

Spatial Access Methods for Multi-resolution Data: Sev-
eral R-tree [16] based access methods have been proposed
to speed up the retrieval of progressive mesh based multi-
resolution terrain data [17], [18], [19], [20]. However, none of
these methods are suitable for wavelet-based multi-resolution
representations that we are using in this paper. We propose a
wavelet-based index for multi-resolution representations that
we use for accessing 3D spatial data on mobile settings.

III. WAVELET REPRESENTATION OF 3D OBJECTS

In this section, we give a brief reminder on wavelet-based
multi-resolution representations of 3D objects [13]. 3D objects
can be approximated by their surfaces using triangular meshes.
Let M j be a triangular mesh representation of the surface of
a 3D object at resolution j. An object can be represented
in different levels of resolution by a sequence of meshes
M0,M1,...,MJ , where, M0 is the base mesh and MJ is the
final mesh. For example, Figure 1(a) shows a triangular mesh
M0 (1, 2, 3) which is a coarse approximation for the surface
of the given circle.

To obtain a higher resolution approximation of the given
surface, the triangle (1, 2, 3) is first divided into four sub-faces
by introducing new vertices (4′, 5′, 6′) at edge midpoints as
shown in Figure 1(b). The new set of vertices are now de-
formed to make the mesh to fit the surface to be approximated.
For example, the vertex 4′ is shifted to a new position on the
surface and is renamed as 4. The new, finer resolution mesh
M1, is shown in Figure 1(c). Since the mesh in Figure 1(b)
is obtained from the mesh in Figure 1(a) by using a regular
subdivision, level 1 mesh M1 can be obtained by adding the
required displacement of three midpoint vertices 4′, 5′, and
6′. In this case, the missing details of the mesh M0 from the
mesh M1 can be shown as the displacement of the vertices
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Fig. 1. (a) A coarse approximation (level 0) of a circle by a triangle, mesh
M0, (b) Mesh obtained by a splitting of M0, (c) M1 a level 1 approximation
of the circle.
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Fig. 2. (a) A level 1 approximation of the circle by a mesh, (b) Regular
sub-division of the mesh at level 1, (c) M2 as a level 2 approximation of the
circle.

4, 5, and 6 from the vertices 4′, 5′, and 6′, respectively. Thus,
the wavelet coefficients that represent the difference between
M0 and M1 are d0

4, d
0
5, and d0

6. For example, d0
4 is obtained

by v1
4− v0

1+v0
2

2 = v1
4−v1

4′ . Similarly, Figure 2 shows the steps
for obtaining a level 2 mesh M2 that is a better approximation
of the surface than level 1 mesh M1. Each face of the mesh
in Figure 2(a) is divided into four faces by introducing edge
midpoints as shown Figure 2(b). Then, the new set of vertices
are shifted towards the original surface to obtain M2.

The wavelet decomposition of a mesh MJ produces a
base mesh M0 and the sets, {W0,W1, ..., WJ−1}, of wavelet
coefficients. Each Wi contains a set of wavelet coefficients at
level i which represent the missing details between mesh M i

and M i+1. Wavelet coefficients describing a 3D object can
be used as a selection criteria whether they are necessary or
not at a given point of time for a client. A set of coefficients
is selected according to the client’s region of interest (query
window), and the geometrical influences (how much effect
a certain coefficient has on the visualization) of coefficients.
The geometric influence of a coefficient may be determined
by the speed of navigation, the resolution level of the screen,
or the terminal’s processing power of the client. Again, the
geometric influence of a coefficient is proportional to the value
of the coefficient obtained from the wavelet decomposition
process. The larger the value of the coefficient, the greater
the significance it has on representing the overall structure
of the object. Since the smaller magnitude coefficients have
less role to play in the overall structure of the object, the
bandwidth utilization can be improved by discarding lower
valued coefficients. Also, in a selective transmission scenario,

coefficients are retrieved that are only necessary to modify the
currently available version of objects in the client. Thus, at a
given point in time, only a subset of coefficients are needed
to be retrieved by the client.

There are many other methods for decomposing the surface
of 3D objects; in this section we only show a simple process.
However, our techniques described in subsequent sections can
also work with many other wavelet-based representation of 3D
objects.

IV. MOTION-AWARE CONTINUOUS DATA RETRIEVAL

In this section we introduce a motion-aware data retrieval
scheme. In our approach a client uses a function to map
the speed of the view to a resolution of 3D objects that are
necessary for the visualization at a given point of time. The
client can tune this function depending upon its environment
e.g., display size, available bandwidth. Since 3D objects are
decomposed and represented in multiple resolutions using
wavelets, the client maps the speed to wavelet coefficients for
the objects with required resolutions.

In our proposed system, a mesh representing a 3D object is
decomposed into a set of wavelet coefficients. Each wavelet
coefficient representing a vertex of the mesh has an associated
value 0 ≤ w ≤ 1.0. The larger the value of a coefficient,
the greater the significance it has on the visualization of the
object. Let the speed of the moving client be s, and the view
(window) of the client be R. The client needs to retrieve all
the coefficients necessary for the visualization of objects that
fall inside the query window R. For example, when the speed
is very low (s ≈ 0) the client needs to see the objects inside
R with full resolution (or full level of details). In this case
all the coefficients whose values range from 0.0 to 1.0, and
satisfy R need to be retrieved. Similarly, when the speed is
higher, say s = 0.5, the client needs to retrieve less details for
objects inside R. In this later case the client may only retrieve
wavelet coefficients whose values range from 0.5 to 1.0, since
these coefficients are sufficient for the visualization of objects
for this client moving at speed s = 0.5. It can be observed
from the above discussion that to retrieve objects with required
resolutions from the server, the client needs to set the following
parameters: a query window, a range determining the candidate
wavelet coefficients for visualization with required resolutions.

Our algorithm incrementally retrieves spatial data from a
data server. As the client moves, it sends queries to the server
with different timestamps. The client only retrieves the data
that is not already retrieved by the previous query. Figure 3
shows two rectangles (A, B,C, D) and (A′, B′, C ′, D′) for
the two query frames Qt−1 and Qt at times t − 1 and t,
respectively. Assume that the client has already obtained all
the data for the objects at Qt−1. The client needs all the
vertices for an object that fall inside the query frame and also
all the neighboring vertices that connect to this set of visible
vertices. This is required to properly render the objects inside
a query frame. For example, for the query frame Qt−1, the
client retrieves the vertices {1, 6} that fall inside the query
frame and the neighboring vertices {3, 4, 5} that connect to 1
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Fig. 3. Continuous data retrieval

and/or 6. Thus, at timestamp t, the client only needs to retrieve
information for the region Qt−Qt−1 = (E, B′, C ′, D′, G,C).
After receiving the region (E, B′, C ′, D′, G, C) from the
client, the server divides the region along the x-axis into two
rectangles (G,C, F, D′) and (E, B′, C ′, F ) and executes these
sub-queries separately.

After retrieving the results for all the sub-queries, the server
filters the results to avoid transmitting the data that is already
available at the client. In this example, the server filters out
those vertices who connect to the vertices that fall inside the
previous query rectangle (A,B, C,D). Therefore, the server
filters out the vertices {3, 4, 5} and only sends the vertex 2 to
the client as the final result for the query frame Qt.

Algorithm 1: ContinuousDataRetrieval

Ot ← Qt ∩Qt−1;1.1

Nt ← Qt −Qt−1;1.2

rt ← MapSpeedToResolution(st);1.3

if (Ot 6= ∅) then1.4

if (rt > rt−1) then1.5

Rt ← Retrieve({(Ot, rt−1, rt), (Nt, 0, rt)});1.6

else1.7

Rt ← Retrieve({(Nt, 0, rt)});1.8

else1.9

Rt ← Retrieve({(Qt, 0, rt)}) ;1.10

Algorithm 1 shows the steps of data retrieval. Let Qt and
Qt−1 be the query frames at time t and t − 1, respectively.
First, the algorithm finds the overlapping region Ot between
Qt and Qt−1. The region Nt of Qt, which is not overlapping
with Qt−1, is also determined. Then, the function MapSpeed-
ToResolution converts the speed at time t, st, to the resolution
at time t, rt. This function is application depended and using a
set of quality of service parameters should be adjusted by the
vendor. The function Retrieve is used to retrieve objects from
the server. It takes a set of parameters, where each element
of this set consists of a group of parameters, i.e., a region,
a lower limit, and a upper limit for the resolutions of that
region. If the required resolution rt is greater than rt−1 (the
resolution of the previous query frame), then the client needs
to retrieve additional object details for the region Ot, which
are necessary to convert the objects within Ot from resolution

rt−1 to resolution rt. Also, objects for the non-overlapping
region Nt are to be retrieved with resolution rt. If rt ≤ rt−1,
then objects for the region Ot are already available at the
client with required resolution; so only objects for the non-
overlapping region Nt are retrieved with resolution rt. Finally,
if there is no overlap between Qt and Qt−1, then all the objects
that falls inside Qt are retrieved with resolution rt.

Using the above multi-resolution continuous data retrieval
scheme, the data transmission costs can be significantly re-
duced by selecting objects with appropriate resolutions ac-
cording to the speed of a client. However, the client can still
incur a high-latency while retrieving data because it has to
communicate with the server for each of the query frames.
To overcome this problem, we propose a buffer management
scheme at the client that reduces latency.

V. MOTION-AWARE BUFFER MANAGEMENT

Our buffer management scheme uses a state estimation
based motion-prediction scheme to determine the probability
distribution of the data to be accessed. We also continue to
exploit the multi-resolution nature of the system.

A. Cost Model

We propose a cost model for a multi-dimensional non-
uniform motion of a client. Our approach follows a simi-
lar model [15] that was designed for one-dimensional non-
uniform motion. The cost model for the buffer management
scheme has two major parts: (i) latency and (ii) data transfer
costs.

Lets assume that the client pose a continuous window query
to the server. Also assume that the data space is divided into
grid-like blocks. When the client visits a new region (i.e., not
found in the local buffer), it retrieves a number of blocks from
the server and puts it in the local buffer. Thus, the client does
not need to contact with the server as long as it remains in the
buffered region. The latency in our system can be reduced by
lowering the cache misses (i.e., when the data is not found in
the local buffer) to a small value. Also, the client has a limited
buffer and some of the pre-fetched data may not be actually
accessed by the client. Thus, the buffer management scheme
for a client should also avoid the retrieval of redundant data
to minimize the wasted bandwidth.

Let Tq be the total duration of a continuous query, M be the
average number of local cache misses during the total duration
of that query, and N(j) be the number of blocks needed to be
retrieved at jth local miss. Let Cc and Ct be the connection
establishment and the data transfer costs, respectively, for a
unit block of data with size B from the server to the client.
Then the total data transfer costs for a continuous query from
a mobile client can be determined as follows:

C =
M∑

j=0

(Cc + Ct ×B ×N(j)) (1)

The data transfer costs will be less for smaller values of M .



In [15], a pre-fetching model is described for a one-
dimensional setting, where a client can move to the left with
probability pl or to the right with probability pr. Assuming
the client can buffer a− 1 blocks, where a− 1 > 1, then, the
client should buffer (n−1) blocks on the left and (a−n−1)
on the right so that the average residence time Ta,n that the
client spends in the pre-fetched blocks is maximized. Since
M = Tq/Ta,n, the average cache misses M will be minimal
when the average residence time is maximized. For this, a
position nopt in the space that maximizes Ta,n can be obtained
according to [15] as follows:

nopt =
log(

(
pl
pr

)a−1

a.log pl
pr

)

log pl

pr

(2)

Since the movement of a client cannot be restricted to one
dimensional space, we extend the above model and partition
the plane around the client into equally sized sectors. Each
sector represents one of the k possible directions of the client
(see Figure 4(b), where k = 4). Let pi be the probability
that the client will move in direction i. The client needs to
determine the optimal assignment of the available buffer such
that the client’s average time spent inside the buffered regions
is maximized. Let ni be the number of blocks that need to be
assigned in direction i, and n(i,i′) be the summation of all the
blocks that need to be assigned for the directions from i to
i′. Thus, we have n(1,k) = a− 1. Then the buffer assignment
process for different directions can be described as follows.

First, we partition all the direction probabilities into two
groups such that pl =

∑b k
2 c

1 (pi), and pr =
∑k
b k

2 c+1(pi). Then
we compute n(1,b k

2 c) using equation (2). Hence, n(b k
2 c+1,k) =

n(1,k)−n(1,b k
2 c). Similarly, we can calculate n(1,b k

4 c) by using

the equation (2), where pl =
∑b k

4 c
1 (pi), pr =

∑b k
2 c
b k

4 c+1
(pi)

and a−1 = n(1,b k
2 c). This partitioning process continues until

there is a single direction in each partition. After computing
n(1,2), equation (2) is used to calculate n1, where pl = p1

and pr = p2. Then, we have n2 = n(1,2) − n1. Similarly,
the values n3, n4, ..., nk can be calculated for other directions
that maximize the average residence time Ta,n. Therefore, we
have n1, n2, ..., nk portions of the total buffer assigned for the
directions with probabilities p1, p2, ..., pk, respectively.

Using the above process, we find a set of values
n1, n2, ..., nk for a particular ordering of k directions. There
can be k! possible orderings of the directions and different
orderings of directions may result in different values for
n1, n2, ..., nk. Among all possible orderings, we select the
result with the maximum average residence time. However,
our results show that this step can be omitted as the ordering
only slightly affects the average residence time.

Similarly, we can extend the model described in [15] and
calculate the number of blocks N(j) to be retrieved at jth
local cache miss for k directions.

Based on the above formulation, we can now decide what
portion of a given buffer should be allocated for which

direction. For this, we need to first determine the probabilities
of the client to visit neighboring regions.

B. Motion Prediction

We use the Kalman filter [21] to predict future positions
of a client from its recent locations and compute the future
error covariances to determine the confidence level of those
predictions. Based on the covariances and predictions, we
calculate the probabilities of the client to visit neighboring
regions.

The state st of a moving client at time t is defined by using
the positions of this client from the h most recent timestamps,
i.e., st = [p(t), p(t−1), ..., p(t−h)]T , where p(t) is a position
vector. Thus, the prediction of a future state at time t + 1 is
st+1 = Ast, where A is the transition matrix, called a one-
step predictor. A can also be used for multi-step predictions.
For example, a state at time t + i can be calculated as st+i =
Aist. The transition matrix A can be calculated by using the
recursive least-squares estimation method [22] as well as other
methods [23] from recent states.

After predicting the future state, we estimate the expected
confidence of a predicted state by calculating the error covari-
ances of that state. If ŝt is the predicted state and st be the
true state, the error of the prediction is et = st− ŝt. Similarly,
the prediction error for the state t + i is et+i = Ai(st − ŝt).
From this, the covariance matrix Pt, which is a measure
for the uncertainty of the predicted state ŝt, can be defined
as Pt = E[ete

T
t ]. Then, we estimate the probability of the

predicted state ŝt conditioned on all prior estimates. Hence,
the probability of a state can be estimated using a normal
probability distribution [21].

P (st) ∼ N(E(st), Pt) = N(ŝt, Pt) (3)

The predicted value ŝt is the mean for the probability
distribution and the variance for this prediction is obtained
from the singular values of Pt.

Since the probability function is continuous, each point in
the data space can have a distinct probability value. Rather
than calculating the probability of each possible point location,
which is a very costly operation, we divide the total space
into grid cells and then calculate the probabilities for different
blocks that can be visited by a client.

Figure 4(a) shows the current position l and query frame Qt

at time t of a client. Lets assume that the next query frame
Qt+1 can be predicted at l1, l2, and l3, with probabilities
0.5, 0.3, and 0.2, respectively. Similarly, we can calculate the
probabilities of blocks to be visited by Qt+2 at time t + 2.
By iterating this process, the surrounding blocks are assigned
different probabilities. Figure 4(b) shows the probabilities of
different neighboring blocks to be visited by the client. Based
on these probabilities, we can approximate the probabilities
of a client moving in different directions. Figure 4(b) shows
the partitions of blocks into four directions as shown by
the dotted partition lines. A block that intersects a partition
line is assigned to one of the two partitions that owns the
maximum region of that block. If a block is equally owned by
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Fig. 4. (a) Motion prediction for the next timestamp and (b) probabilities of
visiting different cells.

two partitions, we resolve the dispute by assigning alternative
blocks in different partitions. For example, blocks (5,5), (6,6),
(7,7), and (8,8) intersect the partition line between direction 1
and 2. In this case if the blocks (5,5) and (7,7) are assigned
for the direction 1, then the blocks (6,6) and (8,8) are assigned
for the direction 2; or vice versa. Finally, the probability of the
client going in a specific direction can be obtained by summing
up all the probabilities of cell blocks for that direction and then
normalizing the sum by dividing it with the total sum of the
probabilities.

After obtaining the probabilities in different directions, we
apply the method described in Section V-A to determine what
portion of the available buffer is assigned for each direction.

The summary of the process of buffer management is: (i)
estimate the client’s path and probabilities of surrounding cell
blocks to be visited, (ii) select the list of blocks to be put into
the buffer from each of the directions, (iii) retrieve objects
from the server for the predicted blocks which are currently
not in the client’s buffer.

Our buffer management scheme also utilizes the motion of
clients to adapt a multi-resolution strategy. The idea is that a
client moving at higher speeds buffers more objects with lower
resolutions than that of a slowly moving client. The process is
similar to our motion-aware continuous data retrieval strategy
and thus is not given in detail for the brevity of the current
presentation.

VI. INDEXING WAVELETS OF 3D OBJECTS

In this section we propose a novel technique for indexing the
wavelets of 3D objects. We have utilized one of the important
properties of wavelets known as support regions that ensure
optimal data retrieval for a window query. We will first propose
a straight forward approach for indexing the wavelets. Then
we give the formal definition of support regions of wavelets
and discuss some properties of support regions. Finally, we
propose our technique to efficiently index the wavelets that
can reduce the I/O costs significantly.

An R-tree [16] can be used to index the positions of
wavelet coefficients and the associated values resulted from the
decomposition process described in Section III. The position of
a wavelet coefficient is represented by a point vertex (x, y, z)

in a three-dimensional space and the value of the wavelet
coefficient is a numerical value w. A 4D-R-tree can index a
wavelet coefficient, where the first three dimensions represent
the position and the fourth dimension stands for the value.

Lets assume that a window query Q(R, wmax, wmin) with
the region of interest R, where wmax and wmin are the
upper and lower bounds of the coefficient values (w) for
the required level of objects’ details within the region of
interest, respectively, is submitted from a client. For this, all
the coefficients (vertices) that fall inside the query rectangle
are retrieved first. However, these coefficients are not sufficient
for the required visualization inside the query rectangle, be-
cause the coefficients that are associated with the neighboring
vertices of these already retrieved coefficients also contribute
to the visualization for the region of interest R. Therefore,
after retrieving initial sets of coefficients, we compute a
bounding region that encloses all the neighboring vertices and
re-execute the query for the extended region. The problem
with this access method is as follows. This access method is
not optimized for the retrieval costs because it cannot avoid
multiple retrievals of wavelet coefficients and hence incurs
high I/O costs. Moreover, additional information, neighboring
vertices, are also needed to be stored for each of the vertices.
To overcome these limitations and to facilitate optimal data
retrieval, we plan to utilize the support regions of wavelets.

A. Support Regions of Wavelets

The support region of a wavelet represents a region of the
object to which the wavelet contributes during reconstruction
of the 3D surface. For example, the wavelet coefficient associ-
ated with the vertex v4 in Figure 1(c) has the value v4−v4′ and
the support region as the polygon (1, 4, 2, 5, 6). If wj

i is an ith
wavelet coefficient of level j mesh M j , then the support region
rj
i of this wavelet coefficient is the region of M j to which the

wavelet coefficient contributes during the reconstruction of the
next level finer resolution mesh M j+1 from M j .

It is important to note the following property for sup-
port regions. Let W1 = {w1, w2, ..., wn} be a set of n
wavelet coefficients that covers the region R1 and let W2 =
{w1, w2, ..., wm} be another set of m wavelet coefficients that
covers the region R2, where m ≤ n. Here, W2 ⊆ W1 and
R2 ⊆ R1. If a new wavelet coefficient wk, k ≥ n, is added
to both W1 and W2, and the regions affected in R1 and R2

by the support region of wk are R
′
1 and R

′
2, respectively, then

R
′
2 is also a subset of R

′
1 that is R

′
2 ⊆ R

′
1. This observation

is trivial from the following set of simpler observations. Let
each wavelet coefficient wi represent a region ri. Then R1 =
∪n

i=1ri and R2 = ∪m
i=1ri. When wk is added to the set W1,

the affected region is R
′
1 = R1∩ rk. Similarly, R

′
2 = R2∩ rk.

Since R2 ⊆ R1, then R
′
2 ⊆ R

′
1.

For example, Figure 5(a) shows the support regions
r1, r2, r3 for the wavelet coefficients w1, w2, w3, respectively,
and the region affected by the support region r4 of w4 is shown
as a filled rectangle, while Figure 5(b) shows the support
regions r1, r2 of wavelets w1, w2, respectively, and the portion
of original region affected by the support region of w4 is
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Fig. 5. Regions affected by the support region r4 of a wavelet

shown as filled polygons. This property of a support region of
a wavelet helps us design an efficient index that facilitates the
efficient retrieval of data for a given query frame.

B. An Efficient Index

We use a 4D R-tree to index wavelet-based representations
of 3D objects. We utilize coefficient values and support regions
of wavelets for indexing the data. The first three dimensions
represent the three axes x, y, z that are used to index the
Minimum Bounding Box (MBB) of the support region of each
wavelet, and the fourth dimension represents the normalized
value of the wavelet coefficients w. Hence, each wavelet
coefficient represents a region in the x, y, z, w plane. The
minimum bounding rectangles (MBRs) for the support regions
of wavelets representing the vertices 4, 5, and 6 are shown
as [A1, A2, A3, A4], [A1, A2, A5, A6], and [A1, A2, A5, A6],
respectively, in Figure 6(a). Similarly, MBRs of level two
wavelets are shown in Figure 6(b), where [A7, A8, A9, A10]
is the MBR for the support region of vertex 7. These ex-
amples show that the bounding rectangles can enclose two-
dimensional support regions. For 3D objects, the support
region of each wavelet coefficient is enclosed with a MBB.

Figure 7 shows an example for representing wavelet coeffi-
cients in a node of a 3D R-tree for 2D objects. In this example,
x and y dimensions are used to represent MBRs of wavelets,
and w corresponds to the coefficient value for the wavelet.
Figure 7 shows MBRs with dotted boundary lines for three
different w values 0.0, 0.3, and 0.7.

For a window query Q(R, wmax, wmin), when a client
needs to retrieve objects with the finest resolution, then it sets
wmax = 1.0 and wmin = 0.0. It means that it retrieves all the
wavelet coefficients irrespective of their values, whose MBRs
intersect with the query rectangle R. On the other hand, if
a client needs to retrieve objects with the lowest resolution
it sets wmax = 1.0 and wmin = 1.0. In this case, it only
retrieves the wavelet coefficients having value 1.0 required for
the lowest resolution representation of objects.

In addition, the client can set any appropriate values for
wmax and wmin to support progressive retrieval of objects.
Lets assume a scenario where a client has all the coefficients
having values greater than 0.7 for a given query rectangle R.
If the client needs objects with the finest resolution for the
query, it just needs to send a query Q(R, 0.7, 0.0) as shown
with a box in Figure 7.
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In general, let Q(R,wmax, wmin) be the query with the
region of interest R, where, wmax and wmin are the upper
and lower bounds of wavelet coefficients for the required
resolutions, respectively, and 0.0 ≤ wmin ≤ wmax ≤ 1.0.
Then, our motion-aware access method gives the minimum
number of wavelet coefficients necessary for the query Q.
Let R1 = {r1, r2, ..., rn} be the set of support regions of
n wavelet coefficients retrieved using our motion-aware index
for the query Q. The set contains all the support regions that
fall inside or intersect with Q. Assume that another method
gives a set of support regions R2 = {r1, r2, ..., rn} − {rk} of
n− 1 wavelet coefficients for the query Q. Here, 1 ≤ k ≤ n,
and hence, R2 ⊂ R1. In this case, the wavelet coefficient
wk associated with the support region rk is absent. Therefore,
objects inside the region R ∩ rk lack some details that would
otherwise be contributed by the wavelet coefficient wk. Hence,
any method that retrieves less data than that of our method
gives is not sufficient.

VII. EXPERIMENTAL STUDY

We present our experimental results in this section. Since
we have a suit of components to optimize the processing
of continuous window queries on 3D object databases, we
first evaluate each of the components independently. Then we
combine all components and compare the system performance
of our motion-aware schemes with naive schemes.

A. Experimental Setup

We have set-up our experiments based on a realistic
augmented-reality city tour. We have created tours augmented
with 3D objects (e.g., representing old buildings in cities) that
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Fig. 8. Effect of speed on data retrieval

are distributed uniformly throughout the data space. We vary
the data set sizes as 20MB, 40MB, 60MB, and 80MB by
placing 100, 200, 300, and 400 objects in the data space. The
default data set size in our experiments is 60MB. Also, we
have collected and approximated the head movements of 10
tourists in two different settings: (i) tram tours, (ii) pedestrian
tours. As a client moves from a given starting point towards
a destination, it connects to the server through wireless links
to retrieve the 3D objects. In the experiments, the bandwidth
and the latency of the wireless links are 256Kbps and 200ms,
respectively. We also vary the length and the width of the
query frame by taking 5%, 10%, 15%, and 20% of the length
and the width of the total data space, where 10% is the default
for our experiments.

We assume that the speed of the client reveals the detail
of information that the client is willing to consume; thus,
in our experiments the speed is expected to be inversely
proportional to the value of the wavelet coefficients retrieved.
All coefficient values are normalized to the range [0.0,1.0].
When the speed is at a normalized maximum (i.e., 1.0), only
the coefficients which have the highest geometric influence
need to be retrieved. Since all the vertices in the coarsest
version of an object have coefficient values 1.0, these vertices
are retrieved for the fastest clients. If the speed is very slow
(i.e., close to 0.0), all the coefficients between 0.0-1.0 are
retrieved, leading to all the objects being retrieved with the
highest resolution.

B. Evaluation of Motion-aware Continuous Retrieval

In the first set of experiments, we show the effect of the
speed of the clients on continuous data retrieval. We expect
that the costs of data retrieval can be reduced significantly by
selecting objects with appropriate resolutions according to the
speed of clients. We measure the amount of data retrieved by
clients traveling similar distances at varying speeds. Figure 8
shows the average amount of data retrieved by clients on
trams and on foot at different speeds (normalized to 0.001-
1.0). Since, the size of the objects with the highest resolution
is higher than that of the objects with the lowest resolution, we
expect that the data size required for clients moving with the
highest speed should be significantly less than that of clients
that move slowly (Figure 8). In Figure 9(a), we measure the
average amount of data retrieved for tram tours by varying
the length and the width of the query frame 5%, 10%, 15%,
and 20% of the length and the width of the total data space.
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Fig. 9. Effect of query size and data set size on data retrieval

In Figure 9(b), we vary the data set size as 20MB, 40MB,
60MB, and 80MB and measure the average amount of data
retrieved for tram tours at varying speeds. These figures show
that the amount of retrieved data decreases significantly with
the increase of speed for different query and data set sizes. We
see that for large query frames and data sizes, absolute benefits
of our multi-resolution technique are more pronounced.

C. Evaluation of Motion-aware Buffer Management

In the second set of experiments, we compare our motion-
aware buffer management technique with a naive approach
where all the surrounding regions of a query frame are buffered
with equal probabilities. We compare the cache hit rate (which
is a measure of reduction in latency), and the data utilization
(which is a measure of data transfer overheads due to pre-
fetching) of the motion-aware buffer management scheme to
the naive buffer management scheme.

Effect of Buffer Size: The more buffer space a client has,
the more data it can put into the buffer. However, to fill a large
buffer, a client pre-fetches more data by predicting positions
of the query frame far into the future. Hence, there is a chance
that redundant data may be pre-fetched with very long term
motion predictions. In this experiment, we vary the buffer size
from 16KB to 128KB (Figure 10). The speed of the clients
may also slightly vary at different parts of a tour for this
experiment as the data uses a seed travel pattern collected
from movements of real-world clients.

Figure 10(a) shows that the cache hit rate increases with
the increasing buffer size because a larger buffer can hold
more data. For a 16K buffer, the cache hit rate for tram tours
and pedestrian tours are 75% and 72% for our motion-aware
technique, whereas, for a 128K buffer, 91.5% (tram) and 88%
(walk). (Tram tours give superior cache hit rates because these
tours can be predicted more accurately than the pedestrian
tours.) We also observe that the cache hit rate for the motion-
aware approach is always better than the naive approach, i.e.,
on average 32% and 15% better for tram tours and pedestrian
tours, respectively.

An efficient buffer management scheme should avoid pre-
fetching data that will not be used by the client. From this
point of view, the used portion of the total pre-fetched data
is one of the major metrics for a good buffer management
scheme. Figure 10(b) compares the data utilization of the
motion-aware scheme and the naive scheme for both tram
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Fig. 11. Effect of speed

and pedestrian tours. The data utilization in our motion-aware
scheme is 51% for trams and 50% for walking with a 16K
buffer. The utilization drops to 38% (tram) and 35% (walk)
for a 128K buffer. Hence, with the increase in buffer size the
data utilization decreases as the client cannot make accurate
predictions far into the future. The data utilization in the naive
buffer management scheme is 14% (tram) and 23% (walk) for
a 16K buffer, whereas, the utilization is 7% (tram) and 9%
(walk) for a 128K buffer. Hence, the data utilization in our
approach is always better than the naive approach (on average
3.5 times and 1.7 times for tram tours and pedestrian tours,
respectively).

Effect of Varying Speed: Our buffer management scheme
also uses a multi-resolution representation of objects. Fig-
ure 11 shows that, the cache hit rate increases from 64% to
91% (tram) and 61% to 89% (walk) with the increase of speed
as more data can be buffered with lower resolutions. However,
due to long distance predictions, we see that the data utilization
is less at higher speeds than that of lower speeds. Our motion-
aware approach achieves higher (on average 33% for tram
tours and 10% for pedestrian tours) cache hit rates. We also
have a higher data utilization (35%-51%) in comparison with
that of the naive approach (7%-23%).

D. Evaluation of Motion-aware Indexing

In the third set of experiments, we evaluate our advanced
indexing and access strategy that is built on wavelet-based
multi-resolution objects (in comparison to the simpler index
proposed in Section VI). We implement a 3D (x − y − w)
R∗-tree [24], where the page size and the node capacity are
set to 4K and 20, respectively.

Effect of Varying Speed: First, we observe the effect
of speed while retrieving multi-resolution objects from our
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Fig. 13. Effect of query and data set sizes

index. Figure 12 shows that when the speed is high, i.e., in
the range of 0.9-1.0, we require approximately 8-11 times less
I/O costs than the costs for clients moving at the lower speeds
(i.e., 0.001). This is because most of the wavelet coefficients
have very small values and have almost insignificant geometric
influence on the geometry of objects, i.e., leading to these
coefficients not being retrieved for higher speeds. Our index
structure avoids the retrieval of any extra data than required,
whereas the simplistic approach requires a larger amount
of retrievals. Figure 12 shows that our motion-aware access
method incurs much less (21%-52%) I/O costs than the naive
approach.

Effect of Query and Data Set Sizes: In this experiment,
we vary the query size and keep the data set size at 60MB and
the speed at 0.5 for each of the tours. Figure 13(a) shows that
the data retrieval costs increase with the size of the query. Also,
our motion-aware access strategy incurs on average 36% less
I/O costs than the naive approach. The improvement is more
prominent for larger query size which is up to 49%.

We also show the scalability of our index and access strategy
by varying the data set size from 20M to 80M, Figure 13(b).
In this case query size is fixed at 10% and the speed is 0.5.
The results show that as the data size increases, the cost
difference is more pronounced between our approach and the
naive method. The improvement is 59% for the largest data
set size of 80MB.

E. Overall System Performance

Finally, we compare the overall performance improvement
of our motion-aware system with a naive non-multi-resolution
technique. To obtain a naive system, we always retrieve objects
with the highest resolution and we use an R∗-tree [24] to
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Fig. 14. Query response time (uniform)

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.8 0.6 0.4 0.2 0.001

R
e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
)

Speed

Motion-aware schemes
Naive schemes

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.8 0.6 0.4 0.2 0.001

R
e

s
p

o
n

s
e

 T
im

e
 (

S
e

c
)

Speed

Motion-aware schemes
Naive schemes

(a) Tram (b) Walk

Fig. 15. Query response time (Zipf)

index objects without using multiple resolutions. We also use
a simple Least Recently Used (LRU) scheme for caching. In
these experiments, each client travels for the same duration of
time at varying speeds. Hence, when a client is traveling at a
higher speed, it covers a larger area in the city than that of a
slowly moving client. We measure the average response time
for queries (with size 5%) from the clients moving at different
speeds. Experimental results in Figure 14 and Figure 15 show
that, for both uniform and Zipfian data sets, the query response
time for both tram and pedestrian tours in our motion-aware
approach is on average 23 times less costly than that of the
naive approach at high speeds (i.e., 1.0). The improvement is
on average 3.5 times when the speed of the client is low (i.e.,
0.001). Thus, these results reveal that the performance of the
naive system degrades with the increase of speed, because a
large number of objects need to be retrieved in a short period of
time. However, the motion-aware approach can cope with the
speed by retrieving lower resolution objects. The tram tours
show a slightly lower response time than that of pedestrian
tours because tram tours can be predicted more accurately.

VIII. CONCLUSION

In this paper, we introduce a motion-aware approach for
continuous retrieval of 3D objects for mobile clients where
regions of interests change continuously with the motion of
the clients. First, we show that the speed of the clients can
be used to reduce the data transfer costs significantly by
facilitating incremental data retrieval in multiple resolutions.
Then, to reduce the high latency in a wireless link for a large
number of queries from a client, we propose a motion-aware
multi-resolution buffer management scheme that pre-fetches
and caches data based on a probability model derived from
the motion of the clients. Also, we introduce an efficient index

using wavelet-based multi-resolution data that can significantly
reduce the I/O costs by giving the minimum amount of
possible data to a query. Our experimental evaluations show
that the system that adopts motion-aware continuous data
retrieval schemes observe significantly less query response
time than that of a system that does not consider the motion
of clients.
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