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Abstract. The query for retrieving the rank of all neighbors of a moving object
at any given time, a continuous rank query, is an important case of continuous
nearest neighbor (CNN) queries. An application for ranking queries is given by
an ambulance driver who needs to keep track of the closest hospitals at all times.
We present a set of incremental algorithms that facilitate efficient rank updates for
some or all neighbors of a moving query point. The proposed algorithms allow
us not only to maintain the exact rank of all n neighbors at any given time but
also to track the rank of a subset of all neighbors. We show that updates for these
continuous rank queries can be performed in linear time for arbitrary polygonal
curves in two dimensions and in logarithmic time for movements along a fixed
direction. Instead of using Voronoi diagrams, our algorithms are based on small
subsets of all bisectors between neighbors. We prove that it is sufficient to keep
track of only n − 1 bisectors for all n neighbors. The algorithms for maintaining
the rank only require minimal incremental updates on the bisector sets.

1 Introduction

Nearest neighbor (NN) queries are a well investigated research topic. With the ubiqui-
tous availability of location information for mobile devices, continuous nearest neigh-
bor (CNN) queries have become a major research focus. An important variant of CNNs
are continuous ranking queries that retrieve the rank of k neighbors of a moving ob-
ject. Continuous ranking queries have a wide application potential. For example, an
ambulance driver may wish to continuously keep track of some of the hospitals in a city
ranked by their distance using a mobile device. Alternatively, the driver of a car might
want to track a set of gas stations or hotels with respect to their distance. In this paper,
we propose a class of algorithms that facilitate efficient rank updates for a moving query
point in order to continuously query the rank of the neighbors.

Algorithms retrieving the neighbors of a query point in the order of their distance
relative to the query point are called ranking algorithms, because they rank spatial ob-
jects of a given database for that query point [6]. If only a subset of objects has to be
retrieved from a database, the queries are called kNN queries, where k is the number of
retrieved objects. The number of objects k can be less than or equal to the total num-
ber n of objects in the database. If the order of the neighbors is irrelevant, the query is
called an order insensitive kNN query [7]. In this paper, we study order sensitive kNN
queries, i.e., queries that retrieve objects in the order of their distance.

A number of algorithms have been developed to efficiently find the nearest neighbors
for a static query point. One way to derive an algorithm for a CNN query is to use a
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classical NN query algorithm: for each predetermined time or location update interval,
a new NN query for a moving query point can be executed using one of the classical
NN query algorithms. However, a repeated execution of the classical algorithms will not
take advantage of the steps and the results of previously run NN queries. In addition,
many of the objects of a previously run NN query may not have changed their status.
Continuous requerying also might miss some of the rank updates if the frequency of
update queries is set too low for a given application domain.

In this paper, we present a set of incremental algorithms that track the rank of the
neighbors of a moving query point continuously. The positions of the neighbors are
assumed to be fixed. We show that updates for such continuous rank queries can be per-
formed in linear time for any arbitrary polygonal curve without any prior knowledge of
the curve itself. For polygonal curves that largely consist of straight line segments with
a limited number of turns, a modified algorithm is presented that achieves logarithmic
complexity for movements along the straight line segments.

Our algorithms use a small subset of all bisectors between neighbors of the moving
query point, and only need to maintain a list of n−1 bisectors for all n neighbors at any
given time. We show that the bisector list is sufficient for a moving query point in order
to (i) detect when rank updates are needed and (ii) which ranks need to be updated once
the need arises. We finally show the connection of our work with higher-order Voronoi
diagrams [1,11].

We believe that incremental algorithms for continuous queries will gain signifi-
cant importance with the increasing use of wireless and mobile systems as wireless
applications are typically constrained by limited communication and computation re-
sources. The remainder of the paper is organized as follows: Current approaches for
CNN queries are presented in Section 2. In Section 3, we demonstrate the algorithm for
continuous rank updates in the one-dimensional case in order to motivate the underly-
ing ideas of our approach. Section 4 presents the algorithm for ranking all neighbors
of a moving query point in the two-dimensional case. In Section 5, we modify our al-
gorithm for continuous rank updates to capture travel patterns that contain only a few
directional changes. Section 6 develops algorithms for two variants of continuous rank
updates: how to maintain a single rank and how to maintain multiple ranks by possibly
different agents. Section 7 concludes our work and outlines future work.

2 Related Work

NN queries for static query points have been investigated by many researchers
[4,5,6,13]. Different types of branch-and-bound algorithms have been studied on a
number of spatial data structures, in particular R-trees and quadtrees [15,16,17]. Rous-
sopoulos et al. [13] propose a depth-first branch-and-bound algorithm on R-trees, while
Hjaltason and Samet [5] take a best-first approach. These algorithms are designed to
efficiently find static nearest neighbors for a static query point in various applications.

For efficient indexing and querying of moving objects Saltenis et al. [14] introduce
the Time-Parameterized R-tree (TPR-tree). TPR-trees are based on the assumption that
the trajectory information is available and the location of each moving object can be
represented as a linear function of time. Benetis et al. [2] build on the TPR-tree and
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propose algorithms for NN and reverse NN queries. Reverse NN queries are used to find
the objects that have a query point as their nearest neighbor. Recent approaches also use
a grid-based model [3,9,22] rather than extending the R-tree concept. Our work differs
from the moving object indexing research as we assume that the objects are static but
the query point is in motion. In addition, many moving object indexing methods, such as
the TPR-tree-based schemes, assume that the trajectories are known to a certain extent.
Finally, these indexing methods commonly focus on spatial snapshot queries while our
work focuses on continuous queries.

Tao and Papadias [19] introduce time-parameterized queries in spatio-temporal data
that extend the snapshot queries with the expiry time concept. A time-parameterized
query returns an expiry time along with a set of results. Other researchers have extended
this work. For example, Iwerks et al. [8] build on this concept to allow for changes on
pending update events for enabling truly continuous spatial queries. However, these
papers neither focus on maintaining the rank information for the spatial objects nor on
static objects with a moving query point.

Zheng and Lee [24], and Song and Roussopoulos [18] developed the first approaches
to address queries where the objects are assumed to be static but the query point is in
motion. Zheng and Lee use a Voronoi diagram-based approach to answer 1-NN queries.
Song and Roussopoulos address kNN queries, where k can be greater than one, and
use sampling-based methods to avoid brute-force resubmissions of new queries for a
moving query point. A sampling-based approach, however, may miss certain updates or
become computationally expensive for frequent updates.

Tao et al. [20,21] introduce CNN queries for moving objects with a priori known
trajectories. Given a line segment, their result set contains a set of (object, interval)
tuples. Each tuple represents the NN for a given interval on the line segment. A kNN
version of the algorithm is also available. This work can be extended to trajectories
consisting of several line segments.

Zhang et al. [23] introduce a location-based querying approach that is closely related
to our work. They define validity regions for which the result of a query remains the
same. Hence, clients do not need to resubmit queries that will not change the result set.
In contrast to our work, they do not consider order sensitive ranking queries. They ac-
knowledge the necessity of incremental algorithms that reduce redundant computations
and communication, a requirement which we directly address in our approach.

Extensions to compute multiple CNN queries more efficiently are given in [7,10].
In [7] safe regions (similar to validity regions) are defined, where the output of multiple,
registered CNN queries cannot change for a database of moving objects. They use the
concept of safe regions to reduce the communication overhead in wireless applications.
In [10] conceptual partitioning is used to ignore updates from objects that are far away
from a query to reduce runtime costs. Such techniques can be used in tandem with our
work to handle multiple CNN queries.

3 One-Dimensional Queries

We first present our approach in the case where all bisectors can be ordered along
one axis to motivate the basic ideas. As a simplified notation, we call this case the
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one-dimensional case and present our approach on the x-axis. Many properties carry
over to CNN queries on higher dimensions.

3.1 Notation and Definitions

Assume n sites {S1, S2, . . . , Sn} are ordered on a straight line, i.e., a moving query
point Q will first hit S1, then S2, and so forth until Q finally hits the last site Sn. A
perpendicular bisector between two sites Si and Sj , is called B(Si, Sj) =def Bij and
is defined as the straight line that is equidistant from the sites Si and Sj:

B(Si, Sj) =def {P | d(P, Si) = d(P, Sj)}

where d is the usual Euclidean distance. Since Bij = Bji by definition, we can as-
sume without loss of generality that i < j for Bij throughout the rest of this paper. Let
di denote the distance from the query point Q to a site Si, i.e., di =def d(Q, Si).
In addition, we introduce a precedence relation ≺ for bisectors: Bij ≺ Bkl, if
d(Q, Bij) < d(Q, Bkl). Given these definitions, a set of basic properties that we use
for our algorithms is summarized in the following observation.

Observation 1. If the sites {S1, S2, . . . , Sn} are all on a single straight line with
di < di+1 ∀i ∈ {1, . . . , n − 1}, then

1. ∀i, j, k : i < j ⇒ Bik ≺ Bjk

2. ∀i, j, k : j < k ⇒ Bij ≺ Bik

3. ∀i, j, k, l : i < k ∧ j < l ⇒ Bij ≺ Bkl

These properties follow from the fact that di < dj if i < j and the triangle inequality
for distances.

3.2 A Base Algorithm

We explain the algorithm in the one-dimensional case with an example. At each step we
maintain two sorted lists S and B. S contains the sites ordered in terms of their distance
to the query point, i.e., their rank order. We also maintain B, a list of bisectors ordered
by increasing x coordinates. We use the bisector list to detect when the next rank update
will occur. It suffices to keep only those n− 1 bisectors in the list B that are of the form
Bii+1. This means we only keep those bisectors between sites that are neighbored in S.
We show in Section 4.1 for the two-dimensional case, why we do not need to track all
bisectors (i.e., O(n2) bisectors).

Let {. . . , Si, Sj, Sk, Sl, . . .} be an ordered list for the sites. If the query point crosses
a bisector Bjk then Sk is now closer to the query point than the site Sj . This also
means that the list S changes to {. . . , Si, Sk, Sj , Sl, . . .}. Since we only keep track of
the bisectors between neighboring sites, our list {. . . , Bij , Bjk, Bkl, . . .} changes to
{. . . , Bik, Bjk, Bjl, . . .}. More precisely, we have to delete at most two bisectors from
B and correspondingly insert at most two new ones. Note that these bisectors need not
to be located next to each other on the straight line. They will be neighbors to each other
if they are kept under the ≺ order rather than the order given by the x-axis. For each
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rank update, we need to update the list of neighboring bisectors in order to detect the
next rank update. In our example of a query point that moves from S1 to S5 (Figure 1),
the algorithm will update the two lists as indicated below. At each step, the position of
the query point with respect to the bisectors is shown with a ‘*’. We also show which
bisectors are introduced and removed from B.

S = {S1, S2, S3, S4, S5}, (1)

B = {∗, B12, B23, B34, B45},

S = {S2, S1, S3, S4, S5}, (2)

B = {B12, ∗, B13, B34, B45}, in : B13, out : B23

S = {S2, S3, S1, S4, S5}, (3)

B = {B13, ∗, B14, B23, B45}, in : B23, B14, out : B12, B34

S = {S2, S3, S4, S1, S5}, (4)

B = {B14, ∗, B23, B15, B34}, in : B34, B15, out : B13, B45

S = {S3, S2, S4, S1, S5}, (5)

B = {B14, B23, ∗, B15, B24}, in : B24, out : B34

S = {S3, S2, S4, S5, S1}, (6)

B = {B23, B15, ∗, B24, B45}, in : B45, out : B14

S = {S3, S4, S2, S5, S1}, (7)

B = {B15, B24, ∗, B25, B34}, in : B34, B25, out : B23, B45

S = {S3, S4, S5, S2, S1}, (8)

B = {B12, B25, ∗, B34, B45}, in : B45, B12, out : B24, B15

S = {S4, S3, S5, S2, S1}, (9)

B = {B12, B25, B34, ∗, B35}, in : B35, out : B45

S = {S4, S5, S3, S2, S1}, (10)

B = {B12, B23, B35, ∗, B45}, in : B45, B23, out : B34, B25

S = {S5, S4, S3, S2, S1}, (11)

B = {B12, B23, B34, B45, ∗}, in : B34, out : B35

After an initial O(n log n) sort to rank the sites, by using a doubly-linked list, in tan-
dem with an array of the sites for direct access in their natural order, one can decrease
the cost of each rank update on the sorted site list to O(1). Unfortunately, for the bisec-
tor list, we can show that for every bisector crossed, we have to perform O(log n) steps
for n sites. We can use a balanced tree over the bisector order ≺ to achieve this.

The existence of a natural order between the sites in one dimension significantly
improves the runtime behavior of the basic algorithm stated above. We will see that the
moving query point will take O(n) steps in the two-dimensional case to locate the next
bisector to be intersected.
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Fig. 1. A straight line, with five sites and a moving query point (marked with a cross). The long
bisectors form the original bisector list when the query point is on the left of the site S1. The
shorter bisectors are the new bisectors that are introduced when the moving query point crosses
an existing bisector.

This simple one-dimensional version of our algorithm shows: first, we only need to
make incremental updates to keep our site ranks at all times; second, the updates are
only required when the moving query point crosses a bisector, which avoids unneces-
sary query resubmissions at any other time.

4 Multi-dimensional Queries

For higher dimensional spaces, the main idea of the base algorithm does not change.
In this section, we present the algorithm in the two-dimensional space but the approach
can be applied to higher dimensional spaces. The main difference between the one-
dimensional case and the higher dimensional case is the lack of a natural order for an
arbitrary set of lines, i.e., the bisectors in our case (or hyper-planes for higher dimen-
sions).

As in the one-dimensional case, we maintain for n sites n − 1 bisectors in two di-
mensions. Using these bisectors, we define a region where the ranks of the sites do not
change. In fact, this region maps to a cell in the ordered order-k Voronoi diagram [11]
of these n sites where k = n. We only keep track of one cell at any time and only n − 1
bisectors, and thus, we do not require the precomputation of this Voronoi diagram. As
long as the query point stays in this cell, the ranks of the sites do not change, which
renders a query resubmission redundant. Once the query point crosses a bisector, a rank
update is required.

Crossing a bisector implies that the order for the two corresponding sites of this
bisector needs to be altered. As in one dimension, we alter the rank of these sites first. As
a side effect, we also have to update the n− 1 bisectors. Similar to the one-dimensional
case only a small subset of bisectors needs to be updated when a rank update occurs.
The updated bisector list then defines a new ordered order-k Voronoi cell (k = n),
which we can use to detect the next bisector crossing.
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We first introduce the basic mathematical concepts for our algorithm and state the
relevance of our work to ordered order-k Voronoi diagrams. We then present the final
algorithm and its runtime complexity.

4.1 Rank Maintenance Using Regions

At the heart of our algorithm lies the observation that we only need n − 1 neighbor-
ing bisectors for the n sites in order to determine the next rank update. We prove this
observation in this subsection.

Three straight lines that are not pairwise parallel, generally have three distinct in-
tersection points. Bisectors, however, have an important property that does not hold
for general line arrangements: concurrency. Three lines are concurrent if they have a
common intersection point P . Because two straight lines can only intersect in at most
one point, the point P is the only point in which the three bisectors intersect. Given
two points Q and R, we use the notation QR for the segment connecting those two
points. The following theorem states that there are always triplets of bisectors for sites
in general position (i.e., no three points are collinear) that are concurrent.

Theorem 1. Let Si, Sj , and Sk be sites in general position and Bij , Bjk , Bik their
bisectors. If P is an intersection point of Bij and Bjk , i.e., Bij ∩Bjk = {P}, then Bik

also intersects Bij and Bjk in P , i.e., P ∈ Bik.

Proof. Let P be an intersection of Bij and Bjk (e.g., as in Figure 2). Because Bij is a
bisector, it follows |SiP1| = |SjP1|. Applying Pythagoras’ Theorem we get |SiP | =
|SjP |. Similarly, we obtain |SjP | = |SkP | due to |SjP2| = |SkP2|. Hence, we get
|SiP | = |SkP |, which means that P ∈ Bik .

Therefore, the set of all bisectors does not constitute a simple arrangement [12] of lines
(a line arrangement is simple if there are no concurrent intersection points). Theorem 1
allows us to introduce a precedence relation on bisectors. In order to motivate the gen-
eral definition, we will first introduce the precedence relation for two bisectors.

Let H(Si, Sj) =def Hij =def {P | d(P, Si) ≤ d(P, Sj)} denote the closed half
plane that includes Si but not Sj . This half plane is also called the dominance region
of Si over Sj . The intersection of two half planes is a closed sector. We obtain from
Theorem 1 that three bisectors generate exactly six sectors (see Figure 2). A segment
that connects a point in a sector with a point outside of this sector always first intersects
its bounding bisectors before it intersects the third bisector. We record this observation
in the following lemma. We use the notation β(P, Q, R) if the point Q is between the
points P and R, i.e.:

β(P, Q, R) ⇔def ∃λ ∈ [0, 1] : Q = λP + (1 − λ)R.

It is important to note that this notation also captures the case where concurrent inter-
section points occur.
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Fig. 2. Three bisectors for three sites intersecting at one point

Lemma 1. Let Si, Sj , and Sk be sites in general position, and Bij , Bjk , and Bik be
their bisectors, then:

Q ∈ Hij ∩ Hjk :

∀Q′, R [R ∈ QQ′ ∧ R ∈ Bik ⇒
∃R′ [β(Q, R′, R)] ∧ (R′ ∈ Bij ∨ R′ ∈ Bjk)].

On the basis of Lemma 1, we can formally define a precedence relation for bisectors:

Definition 1. Let Si1 , Si2 , . . . , Sik
be k sites in general position, B be the set{

Bi1i2 , Bi2i3 , . . . , Bik−1ik

}
of the k − 1 corresponding bisectors, and Blm another

bisector not in B. We say that the bisector set B precedes the bisector Blm with respect
to an arbitrary set A, written as B �A Blm, if and only if:

∀Q ∈ A : ∀Q′, R

[

R ∈ QQ′∧R ∈ Blm ⇒ ∃R′ β(Q, R′, R)∧

⎛

⎝
k−1∨

j=1

R′ ∈ Bijij+1

⎞

⎠

]

.

An immediate consequence of the definition of the precedence relation is the follow-
ing corollary.

Corollary 1. For every bisector Blm holds:

B �A Blm ∧ B′ �A′ Blm ⇒ B ∪ B′ �A∩A′ Blm.

Proof. Since A ∩ A′ ⊂ A, A′ and B, B′ ⊂ B ∪ B′, the corollary follows from the
definition of the precedence relation (if the disjunction is true for the bisectors in the set
B and B′ then it is true a fortiori for B ∪ B′).
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Our goal is to rank the sites for a moving query point at all times. We previously stated
that two sites change their rank for a query point if the query point crosses their bisector.
On the other hand, as long as a query point is in one half plane, or more generally in the
intersection of a set of half planes, the ranks of the sites do not change. This motivates
the concept of a fixed-rank region. A fixed-rank region is related to the ordered order-k
Voronoi cell concept [11]. The fixed-rank region Hi1i2···ik of order k is the set of all
points such that the sites Si1 , Si2 , . . . , Sik

are ranked by their distance1. More formally:

Definition 2

Hi1i2···ik =def

k−1⋂

j=1

Hij ij+1

If all indices are consecutive then we use the following notation:

H l,m =def

m−1⋂

j=l

Hjj+1.

The triangle in Figure 3 is the fixed-rank region H1,4. The figure illustrates that the set
of bisectors B12, B23, and B34 precede the bisectors B14 and B24 with respect to the
gray triangle. Note that the bisector B24 has to be concurrent with the bisectors B23 and
B34 according to Theorem 1 (which means that B24 intersects the boundary of the gray
triangle at a single point). In addition, using B45 will introduce another rank for the site
5, i.e., H1,5.

Using the precedence definition, we can rewrite Lemma 1 as {Bij , Bjk} �Hijk Bik.
If a set of bisectors B precedes another bisector Blm, we also say that Blm succeeds B.
The next theorem states that every bisector Blm succeeds a set of neighboring bisectors
with respect to the set H l,m.

Theorem 2. For every bisector Blm holds:

m−1⋃

i=l

{Bii+1} �Hl,m Blm.

Proof. We prove this theorem via induction over k = m − l. If k = 1, i.e., m = l + 1,
then H l,l+1 = Hll+1, and Bll+1 �Hl,l+1 Bll+1 is trivially true. Assume now the
theorem holds for k−1, i.e., k−1 = m− l−1, and m > l+1. We can apply Lemma 1
and get:

{Bll+1, Bl+1m} �Hl,m Blm.

According to the induction assumption the theorem is true for k − 1 so that we can
apply it to Bl+1m and obtain:

m−1⋃

i=l+1

{Bii+1} �Hl+1,m Bl+1m.

1 It is also possible to define a partial-fixed-rank region, i.e., a more general concept where only
a subset of the ranks are relevant, but we omit the details for this concept here since they are
not relevant to our discussion.
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Fig. 3. A set of sites and some bisectors and a fixed-rank region. The ranks of the sites are used
for naming the sites and the bisectors. The moving query point is initially located in the grey
triangle.

Due to Corollary 1 and H l,m ⊂ H l+1,m and two precedence relations above, the theo-
rem follows.

Since H1,n ⊂ H l,m, the following corollary is an immediate consequence of Corol-
lary 1 and Theorem 2.

Corollary 2. For every bisector Blm holds:

n−1⋃

i=1

{Bii+1} �H1,n Blm.

4.2 Incremental Rank Maintenance

According to Corollary 2, the set B of the n− 1 bisectors Bii+1, i = 1..n− 1, precedes
all other bisectors. Therefore, it is sufficient that the algorithm only keeps a list of the
bisectors in B. Our approach is to partition the set B of bisectors and keep two sub-lists
of them: (1) a minimal set M of those k bisectors that enclose a query point (this list
is cyclicly sorted), and (2) an unsorted list R of the remaining n − k − 1 bisectors.
This partition improves the performance of the spatial tests on the fixed-rank region
condition, i.e., whether or not the moving query point has exited the current region.
Other improvements, such as keeping a simple cache for the bisector toward which
the motion of the query point is currently directed, can also be used to improve the
complexity of the tests but are not the focus of this paper.

As it was the case in one dimension, the algorithm keeps track of the ranking of the
sites in a sorted list, i.e., S. S sorts the sites with respect to their distance. Once the
query point crosses one of the bisectors of M, the two corresponding sites change their
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ranks in S, i.e., the site further away is now closer and vice versa. Hence, the S list is
updated. Updating this list implies there are some bisectors that are now redundant in
our lists. These have to be deleted. Then, new bisectors need to be inserted. These steps
are again similar to the one-dimensional case. As we alter the ranks of only two sites,
and we only have to maintain the neighboring bisectors B, it follows that the number of
bisectors that need to be deleted is at most two. Similarly, the number of bisectors that
need to be added is also at most two.

Assume S = {Si1 , Si2 , . . . , Sin}, then a rank update consists of the following two
events:

1. If the query point crosses the bisector Bi1i2 (Bin−1in ), then we have to delete the
bisector Bi2i3 (Bin−2in−1 ) and insert the bisector Bi1i3 (Bin−2in ). If the query point
crosses any other bisector, for example Bijij+1 , we have to delete two bisectors,
Bij−1ij and Bij+1ij+2 , and then insert the two new bisectors Bij−1ij+1 and Bijij+2 .

2. Finally, we have to check if any of the bisectors in R are now in M. This is required
as the new fixed-rank region could now be defined by the inclusion of some of the
bisectors that were not in the previous version of the list M.

In the case that the query point crosses two (or in general m) bisectors at the same
time, i.e., the the crossing point is the intersection of at least two bisectors, then we have
to update the ranks and lists simultaneously. The algorithm, however, will work without
any modifications, if each bisector crossing is treated independently. The aggregated
update can be decomposed into m separate updates that can be treated independently of
each other and without any modifications required from our algorithm. Obviously, for
scenarios in which many bisectors are crossed simultaneously, more efficient methods,
which update multiple bisectors at the same time, could be introduced. We do not focus
on this improvement in this paper but leave it for future work.

Finally, we illustrate the algorithm in an example below (Figure 4). We show in the
example how the sets S, M, and R have to updated in the illustrated configuration.

S = {S1, S2, S3, S4, S5, S6},

M = {B23, B34, B12, B45}, R = {B56},

S = {S2, S1, S3, S4, S5, S6}, in : B13, out : B23

M = {B12, B34, B45}, R = {B13, B56},

S = {S2, S1, S4, S3, S5, S6}, in : B14, B35, out : B13, B45

M = {B34, B12, B14, B35}, R = {B56},

S = {S2, S4, S1, S3, S5, S6}, in : B13, B24, out : B12, B34

M = {B14, B24, B56, B35}, R = {B13},

S = {S4, S2, S1, S3, S5, S6}, in : B12, out : B14

M = {B24, B12, B13, B56}, R = {B35},

S = {S4, S2, S1, S3, S6, S5}, in : B36, out : B35

M = {B56, B13, B36, B24}, R = {B12}



262 L. Kulik and E. Tanin

Fig. 4. A section of the trajectory of a moving query point. Sites are labeled with their ranks (i.e.,
when the query point was at its starting position). The grey areas are the fixed rank regions.

4.3 Complexity

As in the one-dimensional case, the initial ranking process can be computed in
O(n log n) time for n sites. For each crossed bisector we need to make an O(n) pass on
the bisector lists to keep them up-to-date, because, in contrast to the one-dimensional
case, there is no natural order of bisectors in two or higher dimensions. Thus, we make
a full pass over the R to construct the new M. In Section 5, we will see that given a
direction of travel (an optimistic approach that assumes that this direction will be fol-
lowed by the moving query point for a long time period), we can reduce the update
complexity significantly. On the other hand, for trajectories that are arbitrary polygonal
curves (note that in any case we do not have prior knowledge about the trajectory itself),
it is an open question whether the bisectors can be maintained in O(log n) time. This is
a future research direction: the neighboring bisectors do not necessarily form an arbi-
trary set of lines, but may involve relationships similar to the ones presented previously
in this paper.

We now show that the worst case complexity of the algorithm is O(n3) for a move-
ment of the query point that crosses a field of sites in its entirety.

Remark 1. If n sites are in general position and a query point Q moves on an arbitrary
polygonal curve, then each line segment s of the polygonal curve can intersect up to
n(n−1)/2 bisectors. The total number of updates on that line segment for our algorithm
is then O(n3).

Proof. Note that two sites can change their rank with respect to Q if and only if Q
crosses their corresponding bisector. Each bisector can be written as a two-subset of
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the n sites. Thus, there are at most
(
n
2

)
= n(n − 1)/2 bisectors and each bisector

corresponds to exactly one rank update. Each rank update is O(n), because the list R
maintained in the algorithm is an unsorted list. Therefore, the total number of updates
is at most O(n3). This bound is tight (see Figure 5 for an example where n = 6).
If all sites lie on a half-circle above the diameter of the circle aligned with the x-axis
and Q moves along a line segment that is parallel to the x-axis and the line segment
is above the intersection point of all bisectors and below the intersection points of B12
and Bn−1n with the circle, then Q has to intersect all the bisectors during its travel over
the segment. It is important to note that along the path of the moving query point the
bisectors are always introduced in front.

Fig. 5. All sites lie on a circle. A trajectory of a query point that will cross all the bisectors.

Note that the configuration in Figure 5 is not the only configuration that has the worst
case complexity of O(n3). Even if all sites do not lie on a circle but, for example, have
slightly different positions such that the lines are not intersecting in a single point, the
horizontal line in Figure 5 will still intersect the O(n2) bisectors.

A simple solution to the rank maintenance problem that one can easily introduce is
the precomputation of all the bisectors for n sites. In this case, for O(n2) bisectors,
we have to maintain our list M to detect the next update point. Using a similar worst
case analysis, we can see that this leads to an O(n4) cost, which is more expensive than
our approach. This simple solution also has the disadvantage of precomputing all the
bisectors even if the moving query point may lead to only a few updates in S. Hence,
this approach always performs worse than our algorithm.

Another simple solution would be to precompute the ordered order-k Voronoi dia-
gram of n sites for k = n. This diagram will have O(n4) faces in the worst case. The
following example shows that the total number of faces is indeed O(n4).

Remark 2. If n/2 (assuming n is even) sites are arranged parallel to the x-axis with
increasing distances and the remaining n/2 sites are placed parallel to the y-axis (again
with increasing distances), then there are
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n

2
− 1

︸ ︷︷ ︸
for S1

+
n

2
− 2

︸ ︷︷ ︸
for S2

+ . . . + 1︸︷︷︸
for Sn−1

bisectors along each axis. This generates O(n4) faces.

One can link the neighboring cells of this diagram to form a data structure and en-
able rank maintenance by visiting sites on a trajectory of a moving query point. This
approach, given a similar worst case scenario as above, will again perform poorly in
comparison to our work due to the obvious precomputation overhead. In addition, it
ignores the cases where only a few rank updates may be required on a trajectory, e.g.,
due to a short trajectory. On the other hand, for long trajectories that may include circu-
lar patterns, the precomputation of the ordered order-k Voronoi diagram may be quite
beneficial. While our algorithm continues to invest O(n) time for maintaining the list
M for every bisector crossing, the precomputation will only lead to an O(1) behavior
for each update.

5 Multi-dimensional Queries with Directions

A common travel pattern that occurs in many real-life scenarios is a trajectory consisting
of long straight line segments (e.g., Figure 6). In this case, an optimistic heuristic that
gives a better performance than our original algorithm is to use balanced trees to store
the list R. This will reduce the cost of updating M from R to O(log n) for n sites.
Hence, the overall worst case behavior of the algorithm reduces to O(n2 log n) along a
line segment.

This approach assumes that the number of line segments of the trajectory is much
smaller than the number of bisectors to be crossed.

Given a direction we sort the n sites in O(n log n) time. The list R of bisectors is
stored in a balanced tree rather than an unsorted list. The cost of the creation of the
balanced tree is also O(n log n). The intersection points of the bisectors of R with the
line segment can be used to store and find each bisector in this tree. Hence, bisector
insertion and deletion operations can now be done in O(log n) time as well as finding
the bisector that the moving query point can intersect next after M is invalidated with
a bisector crossing. Thus, redefinition of M can also be done in O(log n) time.

In the worst case a moving query point crosses all O(n2) bisectors along the straight
line segment leading to computational complexity of O(n2 log n). Once the moving
query point changes its direction, the tree that has been constructed for the old travel
direction becomes invalid. The tree reconstruction requires an additional O(n log n)
cost for each direction change.

One marginal scenario that can occur is when many bisectors intersect at one point
and a line segment from the trajectory of the moving query point also intersects with this
point. In this case, many lines may fall under the same leaf node of the tree structure.
For updating M, this does not have an effect. Any of the rank updates can occur in any
order. On the other hand, insertions and deletions to the tree may require an additional
data structure. As we cannot differentiate these bisectors with their intersection points,
we have to use their designations (e.g., k and l for Bkl). However, this does not change
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Fig. 6. A moving query point Q, four sites, and all of the bisectors for this setting. The query point
moves from the starting point illustrated by a cross on K and then changes its direction at point
D and moves on L. The order of the bisectors to be crossed does not change given a direction.

the space or time complexity of the algorithm as designations can also be used with a
balanced tree structure.

6 General Rank Maintenance

We have introduced in Definition 2 the concept of a fixed-rank region. We developed
two algorithms for incrementally maintaining the ranks of all sites. Our algorithms were
based on the assumption that all sites are ranked consecutively. In this section we relax
this assumption.

To motivate why non-consecutive ranks are important, we consider the following
scenario: instead of a single agent ranking n sites, multiple agents are co-located and
distribute their load by ranking the n sites jointly. Each agent only keeps track of a
certain number of ranks. For example, if S consists of 9 sites, one agent keeps track
of the first 3 ranks, a second agent the next 3 ranks and a third agent the last 3 ranks.
Alternatively, the first agent could track the ranks 1, 5, 9, the second agent the ranks 2,
6, 8, and the last agent the ranks 3, 4, 7.

First, we present an algorithm for tracking a single rank k. The algorithm determines,
for a given k, which site is of rank k for a query point at any position along its trajectory.
This problem is related to the kth-nearest neighbor Voronoi diagram concept. A kth-
nearest neighbor Voronoi region consists of all points for a given site Si such that Si is
always the k-th closest site.

The algorithm for maintaining a single rank k works as follows (initially assume all
sites are already ranked according to their distance). As the first step, the algorithm



266 L. Kulik and E. Tanin

selects the k-th site, called S1k
. Then, at every step i, the algorithm keeps, for Sik

,
the list of all bisectors of Sik

, because the rank of Sik
can only change when one

of those bisectors is crossed. More precisely, at each step we keep an unsorted list
Bi =

⋃n
j=1,j �=k{Bijik

}, and as long as the query point does not intersect any of those
bisectors of Bi, the rank of Sik

does not change. Once the moving query point intersects
one of the bisectors, this bisector will determine the new site Si+1k

and Bi+1 will be
computed. The cost to keep Bi at every step is O(n). If m sites are visited as being the
k-th neighbor, the total complexity is O(mn).

This algorithm can be easily extended to keep track of l ranks. In the first step,
the algorithm selects the l sites according to their rank and stores them as an l tuple
(S1k1

, . . . , S1kl
). As in the algorithm for a single rank, we keep l lists Bi1 , . . . , Bil

for
the l ranks. The total cost of the algorithm is O(ln) at each step, which leads to a total
complexity of O(mln) for m rank updates. If j agents keep track of n ranks and the
ranks form a partition of the n ranks so that

∑j
i=1 li = n, then the total complexity for

all j agents is
∑j

i=1 O(mlin) = O(mn2).

7 Conclusions and Future Work

In this paper, we introduced the continuous rank maintenance problem for moving query
points. In contrast to previous work, the CNN queries investigated in this work are order
sensitive. For a moving query point, we introduced algorithms to track the ranks of sites
without any prior knowledge about the trajectory of the query point. We defined a fixed-
rank region that determines the set of all those points for which the ranks of the sites
do not change. This reduces the need for any query reprocessing and communication
because in a fixed-rank region no updates are required. When one of the bisectors of
the fixed-rank region is crossed, the ranks of all the sites are updated incrementally. We
showed that our algorithms only need to keep track of n − 1 bisectors, from a set of
n(n − 1)/2 bisectors, for all n sites. We introduced a more general concept for rank
maintenance that allows us to track subsets of ranks. We developed algorithms that are
able to track a single rank k as well as a subset of ranks, possibly by multiple agents.
This enables a distributed approach for rank maintenance.

We introduced several extensions to our base algorithm. In the general case, in which
a query point moves along an arbitrary polygonal curve, we showed that for each bi-
sector crossing, we need an O(n) pass over the bisectors to keep the fixed-rank region
up-to-date. In the special case, in which the trajectory consists of long straight line
segments, we proved that only O(log n) steps are required for updating the ranks of
neighbors.

In our future work, we will investigate methods that reduce the number of updates for
a moving query point that travels along an arbitrary polygonal curve in less than O(n)
time. We plan to take advantage of the insight that the n−1 neighboring bisectors do not
form an arbitrary arrangement of lines but may exhibit spatial relationships similar to
the ones presented with this paper. Second, we will update our algorithms for situations
where we can assume minimal prior knowledge about the trajectory of the query point.
For example, a speed limitation may imply that the point cannot reach some segments
of the bisectors given a period of time. Third, we will evaluate those cases where a query
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point intersects concurrent bisectors. In the long term, we aim to adapt the algoritms to
cope with dynamic situations in which the sites as well as the query point are in motion.
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