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ABSTRACT q

Studies in cognitive science have shown that people have differ-
ent optimization goals in mind for route selection: beyond shortest
travel distance (or time), criteria such as smallest number of turns o1
or straightest path are often considered. A common query that a
traveller in a foreign city may ask is “where is a facility of type X".

When multiple facilities of the same type are available in the nearby ®0; 04
area, usually not the nearest neighbor but the one which is easiest ®
to find is preferred for giving instructions by locals, especially in ° 02

an unfamiliar and complex urban environment. This paper studies
a novel type of neighboring object selection problem, taking cog-
nitive complexity of navigation into account. The main difficulty
arises from incorporating spatial chunking and landmark informa-
tion into neighbor comparisons. We propose an algorithm based
on network expansion, which uses incremental processing of graph
transformation that models instruction complexity. Our approach
can efficiently find the easiest-to-reach neighbor with the guaran-
teed smallest navigation cost. Through experimental evaluation on

real road networks, the performance of the proposed algorithm is . "
demonstrated under various settings. Our comparison results reveafntrlzv?gef;gﬁgsin;t\’:ﬁcrgs';saﬁgﬁll';y i?] f ;ﬁpﬁn)f(e{rﬁilmwr hae: dﬂ;ﬁ:ﬁ ?éi
that on average the travel distance of the easiest-to-reach neighbor P ' P

. . urban environment not the nearest neighbor buetigest-to-reach
is only 19.3% longer than that of the nearest neighbor, whereas thenei hbor miaht be preferred for qiving instructions. Without vet
navigation cost can achieve a 64.8% reduction. 9 9 P gving : y

formally defining the easiest-to-reach neighbor, we first give an ex-
Categories and Subject Descriptors:H.2.8 [Database Applica-  ample in Figure 1.q represents the query location with four data
tions]: Spatial databases and GIS objects of the requested type, o2, 0s andos nearby. Existing
General Terms: Algorithms, Experimentation, Human Factors nearest neighbor search algorithms such as [3, 10, 14, 18, 24] find
thato; has the shortest network distance frgm

Navigation service communicatésw to reach a destinatioto
users by providing sequences of instructionsage directions At
each intersection, whether continue straight or to turn has to be de-

Figure 1: Nearest neighboro; (reachable via the dashed thick
path) and easiest-to-reach neighbob- (reachable via the solid
thick path) of the query location g in a network.

Imagine a mobile or Web-based location-based service that can
apply cognitive principles for generating navigation instructions.
The service should be able to answer a typical spatial query that

Keywords: nearest neighbor, easiest-to-reach neighbor, navigation
cost, spatial chunking, landmarks

1. INTRODUCTION cided. These instructions guide a user from one decision point to
The design of most current navigation systems relies on the cal- the next. For example, the route directions for reachingould
culation ofshortest travel distancéor time) in a network. How- ~ DPeturn right {onto street A}, turn left at the second intersection,

ever, numerous papers in spatial cognition (e.g., [4, 7, 9, 16, 21]) @nd then turn first leftwhile the route directions for reaching
have shown that people use more than distance as the optimizatiorfould beturn left {onto street B}, go straight until landmark C
goal for route selection. Other criteria such as smallest number of (nhere “{}" denotes additional describing elements which can be

turns or straightest path also might play an important role in the dropped). Since a smaller number of turning instructions can re-
process of route planning. duce the cognitive effort as well as possible navigational erters,

is regarded as a better choice here compared to terms of nav-

igation complexity. To assess costs in such a setting, we need to

examine two issues, namegpatial chunking andlandmarks.
Permission to make digital or hard copies of all or part of this work for In the conceptualization process of a route, instead of giving in-
personal or classroom use is granted without fee provided that copies areStructions at every single decision point (intersection), spatial chunk-
not made or distributed for profit or commercial advantage and that copies ing groups multiple instructions of the same type (e.g., continue
bear this notice and the full citation on the first page. To copy otherwise, to straight until a turning sign appears) [13]. This is based on es-

reput_)lis_h, to post on servers or to redistribute to lists, requires prior specific tablished principles used from a cognitive perspective for changing
permission and/or a fee.
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be simplified. In the example of Figure 1, it can be seen that the to-reach neighbors offer considerable advantages in terms of

reduction of instruction complexity for describing how to reagh their ease of navigation.

or o2 from ¢ corresponds to the number and type of intersections

chunked. It also implies that the total instruction complexity could

be much smaller than the sum of each individual instruction. 2. RE'_‘ATED V_VO_RK ) ) N
Besides chunking consecutive decision points, landmarks can be  Generating navigation instructions consists of two cogpnitive steps

incorporated to achieve better route directions (e.g., turn right at [15]: first, a route isselectedor a pair of source and destination;

the 7-Eleven). Compared to turn-by-turn instructions with street then, its conceptualization is transformed to a sequence of instruc-

names (predominantly adopted in current in-car navigation systemstions topresentthe information.

and online map services), a range of studies in human factors and .

ergonomics have empirically demonstrated the beneficial effects of 2.1 Route Selection

incorporating landmarks into vehicle and pedestrian navigation in- ~ The traditional approach is to apply Dijkstra’s algorithm (or a

structions [8, 19, 23], such as improved navigation performance variant) on a graph representation of a given geometric path net-

and confidence and reduced cognitive effort. Landmarks are alsowork to find the shortest path. The distances of nodes are used as

frequently referred to in human communication of routes and spa- travel costs. It is also possible to substitute the distance with time

tial reasoning. Furthermore, future navigation systems can be made[2, 11]. However, the “cheapest” path can also be found according

more effective and safer, by using landmarks as key navigation cuesto some cost function using the cognitive aspects rather than travel

into automatically generated route directions [6]. distance or time. _ _
In contrast to previous research that solves the route selection Duckham and Kulik [4] proposed an algorithm to compsit®-
problem of finding an optimum route in cognitive sefsea given plest paththat minimizes theeomplexity of instructionsThe idea

pair of source and destinatiofe.g., [4, 9]), this paper studies a  of classifying different intersections was inspired by Mark [16].
novel type of neighboring object selection problamen there are Since the storage of edge-edge relations is required to allow indi-
multiple choices as the destinatiimthe area. In addition, we in-  vidual weighting of each intersection for measuring the total in-
corporate spatial chunking and landmark information which are not Struction complexity, routing is not performed on the original ge-
adequately addressed before in route directions, to resemble huma®metric graph, but on a dual graph which models decision point
interpretation of instructions. By applying a set of chunking rules complexity. Afterwards, shortest-path calculation can be applied
to route direction elements, we can assess navigation costs from &n such a transformed graph to preferentially select a route through
cognitive perspective, and formulate a query that finds the easiest-intersections that can be described using less complex instructions.
to-reach neighbor. An interesting finding of the experiments in [4] is that, simplest
In a database context, to search for the easiest-to-reach neighbopaths which completely rely on the measure of instruction com-
with the smallest navigation cost it is unnecessary to first compute plexity are on average only 16% longer than shortest paths.
the optimal descriptions of all neighbors and then compare themin  Haqueet. al. [9] proposed an algorithm to compute theost
order to find one as the best choice. Given a path network (e.g., thereliable path defined as the one with the smallegersection am-
road network of a city) with pre-defined landmarks annotated on biguities Analogous to the instruction complexity, the possible
it, the principle similar to that of Incremental Network Expansion ambiguity of each intersection can be inferred fromdégree of
(INE) [18] can be adopted, to perform node expansion starting from connectivity For example, travellers are more likely to get lost at
query location on a locally transformed “dual” graph [25, 26]: the a 5-way intersection than at a 4-way intersection. Unreliability of
edges are treated as nodes, and intersections as edges where eachafoute is the total ambiguity of intersections that the navigator en-
the weights represents the instruction complexity. Instead of pre- counters. The rationale behind is that traversing a more reliable
computing the costs of all turns in a path network, we incrementally path leads to fewer navigational errors, which in turn may reduce
transform a graph. Our core idea is that during the greedy processthe travel distance in practice (avoiding re-orientations).
of expansion, the cognitive principles @écision point complexity Although these algorithms use different cost functions, their rout-
spatial chunkingandreference to landmarkean be synthetically ing procedures are similar since they use only specific weights (rep-
taken into account to dynamically label the nodes. Our approach resenting the complexities/ambiguities of intersections) and there
can locate promising data objects earlier, and efficiently find the is no longer reference to geometric distance information after dual
choice with the guaranteed smallest navigation cost. Some exten-modelling. However, so far spatial chunking and landmarks have
sions of the proposed algorithm are also discussed. Since the cosfot been adequately addressed. They both have a potential to lead
function is adaptive to different requirements, our approach can be to much less cognitive effort required to follow route directions.
tailored to user preferences. Finally, we conduct a systematic ex- Our work emphasizes on finding the best choice for navigation in
perimental evaluation on real road networks, which well represent respect of cognitive complexity when multiple neighboring objects
typical urban areas. The performance of the proposed algorithm isare availablé This destination choicgroblem complements the
extensively studied under various parameter settings. prior studies finding the optimum route in cognitive sense for a
The main contributions of our work are as follows: given pair of source and destination. To some extend, the difference
here resembles the relationship between shortest-path calculation

e We introduce and solve a new type of spatial query. Find- and nearest neighbor search problems in networks.

ing the easiest-to-reach neighbor provides new features for
advanced navigational assistance. 2.2 Context-Specific Route Presentation

e We devise a model that computes instruction complexity on-  The presentations of previously selected routes can be simpli-
the-fly. This strategy not only reduces processing costs sig- fied by taking current surrounding environment into account [22].
nificantly but also makes it feasible to incorporate landmarks While one-to-one relations between decision point/action pair and
into instructions.

) ) o 10r to be general, if more than one choice is needed for browsing,
e We compare our algorithm against existing work and show finding the topk easiest-to-reach neighbors ranked in ascending
that, in return for slightly longer travel distances, easiest- order of navigation cost.



instruction represent a low granularity, a high granularity stands for
a many-to-one relation expressed by one instruction covering mul-
tiple decision points of a route. The different granularity levels are

produced by applying chunking rules to route direction elements
[12, 13]. As we shall elaborate in Section 4.1, multiple actions at

decision points can be grouped into higher order route direction el-
ements according to numerical and structural chunking, as well as
landmark information [20].

Landmarks can be broadly definedegernal reference points
that are potentially useful as navigation cuéarticularly, we dis-
tinguish betweerocal and global landmarks. This corresponds
to the distinction made between specifying a specific route (local
landmark) and specifying a spot on the way to a destination but
without requiring a traveller to reach this spot via a specific route
(global landmark). For example, chunkings based on distant but
well-recognizable landmarks (e.g., turn right at the skyscraper) pro-
vide a kind of overall guidance. [17] shows that landmarks are se-
lected for route directions preferably at decision points. We focus
on point-like landmarks located at intersections where travellers
have to turn, or along route segments for confirmation. For sim-
plicity, linear landmarks spreading along a route (e.g., follow the

=

Turn (not at intersection)
(cost =4)

Straight on
(cost =2)

v v

[, [, I
Turn at intersection
(cost =5+deg(v))

D I
Turn at T-intersection
(cost =6)
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river) or areal landmarks (e.g., across the park) are not ConSideredadditionally has a cost function : £ — R that maps each edge

in this study.

2.3 Nearest Neighbor Search in Networks

Papadiast al. [18] introduced two frameworks fok nearest
neighbor search in spatial networks. The Incremental Euclidean
Restriction (IER) approach applies the property that the Euclidean
distance between two nodes is a lower bound of their network dis-
tance for search space pruning. The Incremental Network Expan-
sion (INE) approach performs network expansion similar to Di-
jkstra’s algorithm from query point and examines data objects in
the order they are encountered. They showed that in general INE
performs better than IER. As an optimization of IER, Dezigal.

[3] proposed incremental Lower Bound Constraint (LBC). Kolah-

e € E to a nonnegative number. The network distatiggu, v)
between two nodes andwv is defined to be the length (i.e., sum of
the costs) of the shortest path connecting them. To search for the
easiest-to-reach neighbor which has the smallest navigation cost, a
(cognitive) model is needed for instruction complexity.

Each neighbor description is built up from a debf possible
instructions (such asurn left, turn right, andgo straigh). Each
instruction that guides a user to leave one edgnd enter the
next edgee’ in G has a cost associated with it using the function
w : I — RT. Potentially any meaningful cost value can be as-
signed as long as more complex decision points are associated with
larger costs. In the experimental evaluation we adopt the weight-
ing scheme shown in Figure 2 adapted from [4], which is based on

douzan and Shahabi [14] presented a Voronoi-based Network Near-a cognitive model to reflect the amount of information needed to
est Neighbor (VN3) approach. VN3 divides data space into the successfully negotiate different decision points. In short, the cost
first-order network Voronoi diagram with respect to data objects. function is not an attribute attached to individual edges or nodes
Finding thek nearest neighbors is done by identifying the first in graph, but associated withairs of adjacent edge§f G would
nearest neighbor using the Voronoi diagram, and deriving the sub- be directed, the cost function should be associated paiis of
sequent nearest neighbors from adjacent Voronoi cells. Other nearconsecutive edgesstead) to represent theegotiation costof a
est neighbor search algorithms based on pre-computation includedecision point. Since in a realistic setting travellers have to reas-
techniques that use pre-computed shortest-path information storedsure that they are still on track, we further assignttheersal cost
in quadtrees [24] or grid-based data structures [10]. of each route segment (or equivalently, passing a decision point) to
Unlike the above existing work, we study a different problem be at least a positive number (e.g., we set this value to be two), even
that considers cognitive complexity of navigation. The weights of if just moving straight on. Thus, this model emphasizes the effect
network edges representing instruction complexities are computedof both the overalhumberof decision points and thigpeof inter-
on-the-fly. Only the principle similar to that of INE which expands  sections in measuring the navigation cost of reaching a neighbor.
network search towards data objects most likely to be in the fi-  In addition, as aforementioned instructions may also include ref-
nal solution is borrowed here. In the experimental evaluation, we erences to landmarks. For instructions that refer to landmarks from
show the comparisons of travel distances and navigation costs ofa pre-defined sét each landmark has a value which relates to a
the easiest-to-reach neighbor and the nearest neighbor. few factors (such as distance and orientation of a traveller when
approaching, and saliency of the landmark itself). Thus, each in-
struction including a landmark also has a cost associated with it
using the functionw : I — R, which models the cognitive effort
of its execution. Generally, small costs are assigned to landmarks
with high information content and large costs are assigned to less
prominent landmarks. Here, we use the similar weighting strategy

3. INSTRUCTION COMPLEXITY AND

MODELLING

We assume a network contains a €ebf static data objects, all
representing a particular type of facility instances. A network is
traditionally represented by a (connected and simple) gtaph

2 . . . . . .

: . Our work is concerned with incorporating landmarks in route di-
(N’ ), Wher_eJ_V Is the set O.f nodes,_ anE s the set Qf _edges rections, rather than extracting landmarks from databases like some
(W|_thout restriction of generality, the direction of edges is |gnored_). other studies such as [5]. Therefore, we assume that a set of poten-
G is normally sparse due to a small number of branches at an in-tially useful landmarks is given a priori with their positions and
tersection, which implies thafZ| = O(|N|). This weighted graph characteristics available.



described in [1] to assign such a cost valugof a specific land- for angular intervals here are possible as well. Through such an
mark with respect to the node of traveller’s position: incremental materializatiostrategy to obtain the relevant part of
a transformed graph, we can follow the network from the query
locationg and expand further in a similar fashion to Dijkstra’s al-

wherea, b, andc are the preference parameters when looking for 9orithm (a greedy process still yielding the global optimum). Data

landmarks,Distance and Orientation values are given by the objects are inspected in the order they are encountered. Since nu-

spatial configuration anflaliency value is derived from the inher- ~ Merical, structural and landmark chunkings impose multiple com-

ent characteristics of the landmark itself. plex issues onto the process, we introduce a set of chunking rules
In essence, each common node shared by a pair of adjacent edgegmployed in this study before presenting easiest-to-reach neighbor

(e,€') in E can be labelled with a cost, which models the instruc- Séarch.

tion complexity when leaving one edgeand entering the other

edgee’. Note that, each instruction may be valid for different pairs 4. NAVIGATION COST WITH CHUNKING

of adjacent edges, arech pair of adjacent edges could have more  The hierarchical organization of spatial information and the abil-
than one instruction associated with iFor example, the instruc- jty to change between different granularity levels are important
tions “turn right at the intersection” and “turn right at the 7-Eleven”  characteristics of the cognitive organization of spatial knowledge.
might both encode the equivalent action at a particular decision |n this section, we elaborate some popular means of chunking con-
point. Different instructions may have different costs. However, gsecytive decision points into higher order route direction elements,

when we have several instructions (including the possibility of us- yhjch have direct influences on measuring navigation costs.
ing landmarks in the instructions) to describe how to reach the next

decision point from the current oréae minimum navigationcostis 4.1 Chunking Rules

w; = a - Distance + b - Orientation + ¢ - Salience

determined by the instruction with the smallest c&sbm a cogni- Numerical Chunking: Numerical chunking characterizes the
tive perspective, the cost; of a turning instruction incorporatinga  grouping of actions at decision points by counting them and sum-
landmark is generally smaller than the cesof a plain instruction marizing them as a single instruction.
that encodes the equivalent action. Thus, the parametérandc Example:Go straight at the first and second intersections, and then
should be calibrated to properly assign cost values. turn left = Turn left at the third intersectian

Modelling instruction complexity was previously treated as con-  Example:Turn first left, and then turn left agais- Turn left twice
structing an evaluation mapping of dual gragh= (E’, £) from Structural Chunking: Salient structural characteristics of in-
the original node-edge gragh = (N, E) in [4, 25, 26]. E is the tersections or other environmental elements allow identifying these

set of edges irtx and¢ is the set of pairs of adjacent edges, with  |gcations uniquely. Within the context of a specific route, some in-
each weight representing instruction complexity. However, we can- tersections can have highly salient features, especially when they
not follow such a dual modelling to weight the combination of pairs gye complex, enforce a change in the movement or even block it.
of adjacent edges for solving our problem, for two reasons: Example: Turn left at the T-intersectiofwhen a T-intersection is

e First, all the edge-edge relations need to be enumerated to.reached at the end of a road from the *body” of the T, a turning

make the dual construct of the whole graph available. In instruction is manda_tory so it marks the end of a chunk).

other words, the individual weighting of each pair of adja- Landmark Chunklng.. Landmarks located along a route can
cent edges in the network has to be pre-computed. For eachbe used to chunk certain parts of the route. Such landmarks are
noden, in G, there aren(m — 1) /2 pairs, withm being the considered point-like if they are located at a specific spot along the

. ; route (e.g., an intersection), and are only functionally relevant for
degree ofn; (as a rough estimation we can make a reason- eg ) y y

able assumption about the mean degrees to be 3 in networksthIS spc_)’g. It cquld_chunk_all straight following route segme'nts_ untl_l
a specific action is required at the end of chunk. The principle is

in the geographical domain). It incurs a high cost to compute similar to structural chunking
and maintain such a large number of weights. Example:Turn left at the church

e Second, using landmarks in instructions will not be easily _ Sometimes if a landmark is well known or has good visibility,
possible. When reference to landmarks is considered, the it potentially allows chunking large parts of a route without the
cost assignment process critically depends on the distancen€€d of mentioning actions to be taken at the intermediate decision
between the node representing a traveller's position and a POInts in-between start and end of the chunk. This kind of chunk-
landmark, as well as the orientation of the traveller with re- ings is termedjlobal chunking By using global landmarks, a route
spect to the landmark when approaching. This process is in- d0es not always have to be fully specified and individual decision

trinsically query-dependent and as a result, cannot be easily point/action pairs may be no longer identifiable. On the contrary,
materialized. in the case that part of a route is chunked by local landmarks, the

involved decision point/action pairs are implicitly represented but
Since easiest-to-reach neighbors are generally close to query lo-still identifiable.
cations, usually only a small portion of the network is relevant to . . .
query processing. In fact rather than assigning costs in advance, we4-2 Measuring Navigation Costs
can compute instruction complexity on-the-fly from geometry and  In Section 3, we have mentioned that the navigation cost of reach-
topology. For real path networks (not necessarily like the rectangu- ing a neighbor is constituted of negotiation cost and traversal cost.

lar block structure as shown in Figure 1), the degree of each nodeisLet {s = n1 — na — ... — n, = d} represent a path
first computed. Normally, a turn is perceived as an enforced devi- which passes through a sequence of nodes w{ergni+1) € E,
ation from the geodesic line. Thus, the set of possible instructions ¢ = 1,...,m — 1. Assume we have the relevant part of the trans-

for decision points can be inferred from the angular deviations from formed graph, which gives the complexity of each involved instruc-
the previous movement which are then matched to categories of an-tion w;. We introduce two policies in the measure of navigation
gular intervals. For example, only the movement with angular devi- cost NC'(s ~ d), which can assess the cognitive complexity of
ation less than2° is deemed as continuing straight. Other choices navigation it takes to travel along the pdth~ d).
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Turn and then turn left
at the third intersection
(cost =4+2+2+6)

Turn left at T-intersection
(cost =2+2+6)

Turn left twice
(cost =4+2)

Figure 3: Examples of how navigation costs are measured when
chunking rules are applied (the part in bold is negotiation cost
and the part with underline is traversal cost).

PoLicy 1. When numerical chunking is applied to group ac-
tions at multiple decision points, besides the first decision point
the negotiation costs for other decision points in the chunk are no

longer evaluated. However, since a minimum traversal cost of each
route segment is enforced, the navigation cost is always increased

by the value of traversal cost when passing more decision points.

PoLicy 2. A chunk cannot be arbitrarily long unless a struc-
tural feature or a landmark unambiguously marks its end. For
structural chunking or landmark chunking, the navigation cost is
determined by the instruction complexity at the final decision point

at the end of the chunk, plus the cumulative traversal cost that re-

lates to how many decision points have been chunked.

complexity. Meanwhile, it generates the best presentation of a route
in light of the employed chunking rules. Here, the incremental pro-
cessing of graph transformation is used to model instruction com-
plexity. The algorithm is essentially a single source algorithm that
performs node expansion starting from query locatorand in-
spects data objects in the order they are encountered. Since chunk-
ings leave open more options to describe a neighbor which needs to
be carefully considered, the challenge of the algorithm design lies
in how to efficiently find a data object while guaranteeing that we
minimize the navigation cost of reaching it.

To sum up, two most fundamental distinctions of our algorithm
from the conventional INE for nearest neighbor search are:

e It works on a transformed graph modelling instruction com-
plexity (where nodes are dynamically labelled by several cog-
nitive principles), rather than geometric distance information
(where edge weights are fixed), to evaluate the navigation
cost of reaching a neighbor.

e The predecessor instruction of each step is recorded during
the expansion, to apply chunk validity check for adapting the
action to be taken to its context. This is crucial for computing
the smallest cost of a node expansion.

5.1 Chunk Validity Check

Grouping of instructions performed in spatial chunking could be
handled by introducing virtual edges in a graph that serve as “short-
cuts” by connecting route segments which can be described by sub-
sequent identical instructions. This method however will make the
graph non-planar. In this study we adopt another method to handle
this by inclusion in network expansion (propagating identical in-

Figure 3 shows three examples of measuring the navigation costsStructions forward through the graph from the edge currently being
when chunking rules are applied (the weighting scheme of decision Processed). First, we need to know whether edgestarskable

point complexity follows Figure 2). The first example illustrates

DEFINITION 2 (CHUNKABLE EDGE). An edgee; is chunk-

Policy 1 and the second example illustrates Policy 2. As we can gpje from edge. with an instructioni if there is a path frome, to
see from the third example, navigation costs should be measured,, that can be encoded as sequence of executiosanid such a

by properly applying the above two policies together to deal with
different chunkings. Compared to simply computing the sum of

individual decision point§_7" " w;, these two policies enable us

sequence is valid according to the employed chunking rules.

As decision points in a chunk can be covered with a single in-

to better assess costs from a cognitive perspective. Note that westruction, besides the decision point to reach the first edge, the ne-
assume when chunking rules are applied, navigation cost is mono-gotiation costs of the following decision points in the chunk are
tonically increasing when passing more decision points. This ex- no longer evaluated individually (recall that for the first example

cludes the use of global chunking, in particular, the use of global
landmarks in route directions.

4.3 Problem Formulation

With the measure of navigation cost, we are able to formally
define our neighboring object selection problem (for generality, a
version of finding the togk choices is stated below).

DEFINITION 1 (k EASIESTTO-REACH NEIGHBOR SEARCH).
Considering a set of data objec@ = {01,02,...,0,} and a
query locationg on a path network. A easiest-to-reach neigh-
bor search is defined as a query that finds a suli¥etC O of k
objects with minimum navigation cost to reach frgm.e., for any
objecto’ € O’ ando € O — O’, NC(q ~ o') < NC(q ~ o).

5. SEARCH ALGORITHM

Given a path network annotated with additional information of

landmarks, this section presents a computationally efficient algo-

in Figure 3, the navigation cost of “turn left twice” is measured by
4+2, rather than 4+4). We should only add traversal costs when
passing more decision points but ignore negotiation costs for those
edges which are chunkable. Formally, to implement this behavior
in our algorithm, we assumechunk validity checkunction.

DEFINITION 3 (CHUNK VALIDITY CHECK FUNCTION). We
define a chunk validity check function Ex ExI — {true, false}
for a given starting edge, € FE, terminating edge:; € E, and
instructioni € I. v(es, e¢, 1) is true only ife; is chunkable frone,
usingi.

5.2 Network Expansion

We first consider a scenario that excludes global chunkings (i.e.,
only local landmarks can be included in route directions). The
pseudo-code of the module for searchingasiest-to-reach neigh-
bors is presented in Algorithm 1 and explained in detail below.
Given the relevant part of a locally transformed graph with specific
weights of involved intersections and pre-defined landmarks, and

rithm for easiest-to-reach neighbor search. Our approach combinesthe chunk validity check functiom, the algorithm takes a query
the considerations behind both route selection in cognitive senselocationg and a valuek denoting the number of data objects re-
and context-specific route presentation. The proposed algorithmquested as input, and returns theasiest-to-reach neighbors to-

favors a route with the smallest cost in terms of total instruction

gether with their corresponding navigation costs fr@m



Algorithm 1 n; q n; ny N

Input:
Query locationz, number of data objects requested n3 ns n; ng
Output: @ o
k easiest-to-reach neighbors with tha&ilC's. ng nu nig Nig | N4
Description: -
1: initialize NCrnaz «— o0; n 13 nys
2: find the edgdn;n;) that coversy;
3. Scover = FindObjects(nin;); np ®os :4
IIScover is the set of objects covered By;n ;) o0, s
4: O' = {p1,...,px} are thek easiest-to-reach neighbors sorted in as- ?
cending order ofVC (initially empty); ni7
51 Q = [(ni, NC(n;), min_NC(n;), pre_i(n;)),
5 é"avNC(;};‘Lm;;b__l\g(%khp%_i(ﬁj)%é/’?ogtEd byNC Figure 4: The sample example following Figure 1, with sub-
: dequeue the nodein Q with the smalles n); ; ; it :
7- while |0/] < k andNC(n) < NCrmas do script of a node denoting the visiting order of it.
8. for each adjacent node, of n connected by unexplored edde
9: Scover = FindObjects(nng); o o ]
10: updateO’ from O’ U Scover; edge on the original graph it lies on. The resulfis, n2). Then
11: NCmaz = NC(q ~ pr); it checks whether there are any data objects on this edge (with the
12: enqueue or updaters, NC(ng), min_NC(ne), pre_i(ne)); function FindObjects) to be added into in-memory list.over. In
/levaluate with the cost function and chunk validity check our example hers, = @. Then,n, andn, are added into the
13: endfor L cover T ' -
14'  dequeue the next nodein Q: _pnonty gueueQ. Nodes |_nQ should b_e sorted bW C' in ascend-
15: end while ing order. Here, we assign nodes directly connected to the query

point ¢ with zero navigation cost (i.e., no cost is applied to the ini-
tial orientation stage). A more sophisticated choice might include
weights for initial orientation, perhaps preferentially selecting ini-
Our algorithm incrementally expands its search for data objects tial orientations that are easier to explain (e.g., orientation towards
through the network starting from Whenever a node is expanded, an easily visible landmark).
all outgoing edges from the node are retrieved and adjacent nodes Next, the algorithm removes the node with small¥st from Q
are explored. Yet-to-be-visited nodes are stored in a priority queue and expands it. In case of a tie we pick up an arbitrary one, so the
Q sorted in ascending order of navigation cost to reach fom element(n4,0,0,.S) is dequeued first and, is expanded. Since
(Q is assumed to be empty initially and does not allow duplicate the negotiation cost of the turning instruction “L" via to ns is 4
nodes). The information of each element@his represented as  (according to Figure 2) and the minimum traversal cost is assigned
atuple(n, NC(n),min_NC(n),pre_i(n)), wheren is the node to be 2, we enqueue a new eleméns, 4,2, L) in Q. Every time
ID, NC(n) is thecurrently determinedhavigation cost frony to we dequeue the element of a nadevhich is to be expanded, the
the node,min_NC(n) is the minimum possibl@avigation cost navigation cost frong to each adjacent node, of n connected by
from ¢ (by assuming traversal costs only, which is computed based an unexplored edge will be evaluated according to the cost function
on the number of route segments to reach the node)pand(n) w together with the chunk validity function. This is because we
is the recorded predecessor instruction. The algorithm iteratively have the predecessor instruction of each step recorded and when
expands the node currently with the smalldst’ and adds its ad- consecutive instructions are identical, the increment for the naviga-
jacent nodes int@) (if a node has been visited before and hence tion cost is just the traversal cost (smaller), but not negotiation cost
is already in the priority queue then, if the newly determined navi- (larger). As discussed abowhge increment for the navigation cost
gation cost is smaller than it¥C' stored inQ, the navigation cost for expansion to a new node should always be determined by the
is updated). These operations are repeated, and terminated whemstruction with the smallest cost if there are multiple possibilities
the following conditions are met: we havedata objects found to encode the actionFor example, when the algorithm dequeues

by Scover in {p1, ..., pr}, and no other object is possible to have a the elementn2,0,0,.S) and expands the node, since the in-
smaller navigation cost than tih one we already found (once the  struction of the action from., to its adjacent node, is “S” which
next noden to be expanded i has a navigation cost C'(n) that is identical with the previous one, the navigation cost is increased

is larger thanN C,,.,). Our core idea is that local landmarks are by 2, so(n4, 2,2, .S) is added intaQ. At the same time, the navi-
integrated in the cost evaluation by using instructions incorporating gation cost fromy to ns (another adjacent node at) is evaluated.
landmarks to override plain instructions whenever appropriate, and Since the negotiation cost of the turning instruction “R” wiato
spatial chunkings are handled by chunk validity check during each ns is 8 (according to Figure 2), another elemént, 8,2, R) is
step the expansion. As we will see in Section 5.3, an additional also enqueued. In this way, the algorithm iteratively expands the
post-verification module can be employed in the presence of global node with the smallesV C and adds its adjacent nodes idgqthe
landmarks with the aid of obtained minimum possible navigation detailed steps are shown in Table 1). Note that, when a node
cost informationmin_NC(n). is removed from the priority queue for expansion, we have to ex-
To clarify the algorithm, we explain it using an example as shown amine all its adjacent nodes connected by unexplored edges. If an
in Figure 4 in conjunction with Table 1, to find the first easiest- adjacent node has been visited before (by another expansion) and

to-reach neighbor with respect to the query locatjonA simple is already inQ, once an even smallé¥ C value than the old one is
instruction sel = {Left — L, Right — R, Straight — S} obtained, the tuple stored @ will be updated. For example, when
is assumed for ease of illustration. The cost functicfollows the ns is expanded in step 6, the navigation cost to its adjacentngde
scheme shown in Figure 2. Next, we describe the workings of the via the pathy — n1 — n3 — ns should be evaluated. The result
algorithm step by step. is 4+8=12 which is larger than th€C value of 8 obtained from the

First, after initialization the algorithm begins with searching in previous step, so the original tuples, 8, 2, R) is kept unchanged.
the network R-Tree to locate the query paintfor finding which On the other hand, although; is first visited from the expansion



Step | Operation | Elements in the priority queu@ (sorted in ascending order 8fC)

1 Locate the edgén, no) that coversy (n1,0,0,95), (n2,0,0,5)
2 No object on(n1, no), expandn; (n2,0,0,5),(ns,4,2,L)
3 No object on(n1,n3), expancns (n4,2,2,9),(n3,4,2,L), (n5, 8,2, R)
4 No object on(na, n4) of (n2, ns), expandn, (ne,4,4,5), (n3,4,2,L), (n5,8,2, R), (n7,10,4, R)
5 No object on(n4, ng) or (n4, n7), expandng (n3,4,2,L), (ns,8,6, R), (n5,8,2, R), (n7,10,4, R)
6 No object On(nﬁ,ng), expandns (n9,6,4,5),(ns, 8,6, ), (n5,8,2, R), (n7,10,4, R)
7 No objecton(ng,ng) or (77,3,715), expandng (n10’876rs)7(n8787 6, R)v(n5787 2, R)v(n7710747 R),(TL11,14,6,L)
8 No objecton(ng,nlo) or (ng,nu), expandnig (ng,S,G,R),(n5,872,R),(n12,10, 8, S)v(n77107 4, R)v(n117147 6, L)v(n137167 8, L)
9 No ob eCtOﬂ(nlo,nlz) or (nlo,nlg),expandns (n5,8,2, R), (n14, 10,8, 5), (n12, 10,8, 5), (n7, 10,4, R), (n11, 14,6, L), (n13, 16,8, L)
10 No object on(ng, n14) or (ng, n7), expandns (n14,10,8,5), (n12, 10,8, 5), (n7, 10,4, R), (n11, 10,4, S), (n13, 16,6, L)
11 No object on(ns, nr) or (ns,n11), expandruig (n12,10,8,S), (n7, 10,4, R), (n11, 10,4, 5), (n1s5, 12, 10, S), (n13, 16,8, L),
(n1s, 18,10, R)
12 No object 0I’1(7’L147 ’Vl15) or (7’11147 nls), expandnio (n 10,4, R) (n117 10, 4, S) (7117, 12,10, S): (7115, 12,10, S): (7113, 16,8, L)'
(n16, 18,10, R), (n1s, 18,10, L)
13 o2 is found on(n12, n17) and no object on (n11,10,4,S), (n1e, 12, 6, S), (n17,12, 10, 5), (n15, 12, 10, S), (n13, 16, 8, L),
(nlg, ’nls), expandn7 (nlg, 18 10 L)
14 No object on(n7,n16), expandnn (n16, 12,6, S) (n17, 12,10, S) (n15, 12,10, S) ('n,13, 12,6, S), (nlg, 18, 10, L),
(n19,19,6, L)
15 | Noobjecton(nii, nis) or (n11,n19), expandnie Enn,g (1305) ; (n15,12,10, S), (n13, 12,6, 5), (n20, 14,8, 5), (n1s, 18,10, L),
nig,

Table 1: Network expansion process for the example of Figure 4. Underline typeface means the this element is newly enqueued after
this expansion, and bold typeface means the original tuple for this node which is already i€ is updated with a lower NC'

of ng in step 7 (an elemer{t11, 14,6, L) is enqueued due to the  preceding edge is recorded for each step. The algorithm applies
expansion patlh — n1 — n3 — ng — n11), itS navigation cost every valid chunking rule to minimize the navigation cost. When
is lowered in step 10 (the tuple is updatedtq, 10, 4, S) due to the algorithm explores a new edge, it immediately checks whether
the expansion path — no — ns — ni1). Likewise, although two edges are chunkable so that the navigation cost can be lowered
nie IS first visited from the expansion efi4 in step 11, its naviga- compared to the cost when treating them separately. If consecutive
tion cost is lowered in step 13 with the expansiomef Wheno, edges are chunkable, rather than evaluating the increment for the
is discovered on the edde:2, n17) after the expansion of;2, we navigation cost by the regular negotiation cost, only a small traver-
set the threshol&v C... = 12 which provides a bound to restrict ~ sal cost is added (the first navigation cost measuring policy). Since
the search space. Finally, due to the fact that further expandingthe navigation cost with chunking is monotonically increasing, the

n16° Which has a same navigation cost withC',,.. cannot find correctness of our algorithm is guaranteed. In effectpiedges
any objects with smaller navigation cost, the algorithm terminates are chunkable by an instruction, the navigation cost is simply the
ando is returned as the answer. negotiation cost at the starting decision point of the chunk, plus

For implementation, we mainly need four data structures to sup- m — 1 times the traversal cost. For example, the navigation cost
port the network expansion process: (i) afjacency component of ¢ — n1 — ng — ng — ni1g — ni2 — o2 iS measured by
which captures the network connectivity; (ii) @dge component 4 4 4 x 2. By keeping track opre_i(n), “do n times” chunkings
which provides the information of each network edgev), length are include in our network expansion.
of the edgel: (u, v), and a pair of pointers to the adjacency list for - .
its two endpoi(ntm ;ndv; (iii) an instruction complexity component 5.3 Post-verification for Global Landmarks
which includes the cost of each network edge pair (these costs are For the purpose of testing whether there is any global landmark
computed during the expansion); (iv) &itree componenwhich that could be included in route directions and consequently results
indexes the MBRs of edges. in an even smaller navigation cost to reach a neighbor, an additional

By expanding the node with the smalleSiC' and adding new post-verification module can be used. Recall that for each node
adjacent nodes, the algorithm maximizes the chance that promis-besides the navigation castC'(n) we also store the information of
ing data objects are located earlier than others. This is similar in minimum possible navigation costin_NC(n) during the expan-
spirit to Dijkstra’s algorithm to propagate a search “wavefront” for sion by assuming traversal costs onlyin_NC(n) is measured as
finding the shortest paths from a source node to multiple destina- alower boundof any possible navigation cost even if global chunk-
tions. However, in our problem we need to consider that currently ing is applied. Note that, the minimum number of route segments
determined navigation costs of nodes could be lowered by differ- to reach a node depends on the expansion path. For example in the
ent expansion paths and chunking rules. Our algorithm works on a process shown in Table #in_NC(n11) is first computed as 6 in
transformed graph modelling instruction complexity, and we only step 7 (viag — n1 — n3 — mng — mn11, 3 times the traversal
materialize the relevant part of it when actually needed. The cogni- cost), but becomes 4 later in step 10 (yia= n2 — ns — ni1,
tive principles of spatial chunking and reference to landmarks are only 2 times the traversal cost).
also carefully taken into account. At the heart of our algorithm is  For global chunking, recall that the navigation cost is determined
the chunk validity check that is employed during the expansion. by the instruction referring to a global landmark at the final deci-
Previous action at a decision point used to reach an edge from itssion point, plus the cumulative traversal cost that relates to how
many decision points have been chunked (the second navigation

3As shown in step 15, while the similar steps of expanding, cost measuring policy). For example, if we have an available global
n1s5 andnis are omitted from the table for brevity. landmark LM located at the intersectians as shown in Figure 5,




n; q n; ng N etc. With the proposed algorithm as a basis, we introduce some

o possible extensions to support these more sophisticated behaviors.
n3 ns ny ng The problem of nearest neighbor search has been studied exten-
o ", nm. 0; i |ms sive_ly in spatial networks [3, 10, 14,_ 18, 24]. If tra_vellc_ers want to
0 4 achieve some balance betwegavel distanceandnavigation cost
0 s 20 1 we can introduce a parametgro determine the cost used in the
o o network expansion process described above. The hybrid of these
ni 3 "’ two criteria can be reflected by a modified cost function
n
02 " A COStdistance + (]- - )\) : COStinstruction
np7
whereCost gistance is derived from the cost function : £ — R™
Figure 5: With a global landmark LM located at ns (repre- regarding network distance of traversing the edg&8itinstruction
sented by a hexagon), the description afs could be “turn right derived from the function : I — R* modelling instruction com-
at LM” (via the dashed thick path). plexity of turning onto the edges, ande [0, 1] is a heuristic pa-
rameter used in the weighted sum (in order to produce dimensional
", 4 ,, ne ng similitude, the value oh has to be calibrated for specific road net-
® works to scale€” 0st g;stance ANAC0St;instruction 10 bE IN the same
n3 ns n; ng units). Thus, a node shared by a network edge pair can be labelled
P with some new cost value embedded with both travel distance and
1y ni Ny Nig Ny cognitive complexity of navigation. These costs are also to be com-
. s N s puted on-the-fly from geom_etry and top_ology during the expansion.
T The easiest-to-reach neighbor algorithm sometimes selects ma-
" 03 04 jor roads simply by virtue of their straighter geometry and less con-
2 s B nected topology (i.e., fewer intersections). A modification of the
® 02 ‘ cost function could easily be implemented to explicitly prefer cer-
7 tain types of road. For example, major roads could be preferred

by making the costs for turns onto a major road smaller and turns
Figure 6: The grey bold subgraph (nin_NC' < 10) needs to be off a major road larger, whereas minor roads could be avoided by
verified whether there is any global landmark. making the costs of turns onto a minor road larger and turns off a
minor road smaller.

the route directions for reaching could be simplyturn right at

LM. Suppose the cost value of executing such a turning instruc- 7. EXPERIMENTAL EVALUATION

tion at the landmark LM is 4, the navigation cost of reachigds In this section, we report the experiment results of the proposed
10+4=14. This is because the minimum number of route segmentssearch algorithm.

to reachn;s is 5, so the cumulative traversal cost is 10 although

there is no need to mention the actions at the five intermediate de-7.1  Setup

cision pointsni, na, ng, nio andniz in-between the stargj and We use two real-world road network datasets for the experiments.
the end {.s) of the chunk. o They are the road networks for the city of Oldenburg (6,105 nodes,
Using min_NC(n), we can test the possibility whether some 7 934 edges) and San Joaquin County (18,263 nodes, 23,874 edges),
other data objects which have inclusion of global landmarks in their respectively. The reason for using these two networks is that they
neighbor descriptions can result in even smalgr'. To this end, well represent typical urban configurations. The degrees of con-
the tentative easiest-to-reach neighbor we have found in the ”et'nectivity in the both road networks are mostly between 2 to 4. All
work expansion process needs to be further verified to ensure thatangular deviations less thar® per side (within 224° sector) are
our eventual choice has the smallest navigation cost. The pruningperceived as “go straight”. In addition, we annotate 500 and 2,000
condition can be summarized as: if the cost of instruction refer- no4es as point-like landmarks located at intersections on Oldenburg
ring to global landmark is defined to be at least;», the area and San Joaquin County road networks respectively, with the loca-
reachable fromy with minimum possible navigation cost under  tion and saliency information specified. 20% of them are annotated
NCaz — cmin Should be searched for global landmarks. For ex- ¢ global landmarks.
ample, if we define,,.;, = 2, in Figure 6 the grey bold subgraph Data objects are synthetically generated on the networks with
(reachable frony with nin_NC under 12-2=10) needs to be ver-  gjtfarent densities (defined #se percentages of the number of data
ified whether there is any global landmark that can be included in a objects over the number of nodes in the neteekying from 1%
neighbor description. to 10%. These data objects are distributed uniformly over the whole
network space so that the data object distribution follows the net-

6. TAILORING TO USER PREFERENCES work distribution. They are indexed by an R-tree with the maxi-
It is often a desirable feature of navigation services to be adap- mum of 10 entries in each node. According to our analysis of real

tive to user preferences. The easiest-to-reach neighbor search alPoint of Interest (POI) information available for another road net-

gorithm tends to be reluctant to choose a turn’ S0 in some extremeWOrk for Ca“fornlé, 71.4% types of facilities have a distribution

cases it could produce routes of considerable length. When there4_|_his is the only dataset currently we have access to the real cat
are a variety of choices of the same facility type available, some- egories of POI information. However, since it represents the road

times navigators being guided in unfamiliar geographic environ- petwork of a whole state, we prefer to use the above two datasets
ments would like to achieve certain trade-off between nearest andwhich include a denser downtown grid road network region and
easiest-to-reach neighbors, or prefer major roads to minor roads,sparser suburban road network regions for test purpose.




[ Parameter | Setting | Oldenturg
Data object density] 1% to 10%, increment 1%, default: 5% 0 T e ooy
k 2 to 10, increment 2, default: 4 . With post-veificalion ——

Table 2: Parameter settings in the experiments.
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Network expansion only —+—
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(a) Oldenburg road network.
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(b) San Joaquin County road network.
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Figure 8: Effect of data object density.
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average query efficiency versus distribution density, when search-
ing the default number of easiest-to-reach neighbors with or with-
out running the post-verification module. From this set of exper-
Figure 7: Effect of k. iments, we can conclude that in general when data object density
increases, the execution time of the network expansion module de-
creases. This is because data objects are sparsely distributed in
density less than 5%. The default values and ranges of the experi-networks when density is relatively small. The number of steps to
mental parameters are summarized in Table 2. encounter a data object will increase, since more network nodes
The proposed algorithm is implemented in Java. Feasiest-  need to be expanded to get the results. In addition, by comparing
to-reach neighbor search, we execute workloads of 50 queries (ran-the results from the two networks, we observe that the performance
dom pick of 50 nodes in the networks as the test query locations), of our algorithm is insensitive to different network sizes. This can
also fO”OWing the network distribution. In the experimental evalu- be exp|ained as easiest-to-reach neighbors are genera”y close to
ation, we study the efficiency of the proposed search algorithm, by query locations, so normally only a small portion of the network is
varying the number of data objects requested and the distribution relevant to query processing.
density. For each set of experiments, we only vary one parameter Generally, our algorithm performs well if the distribution den-
and fix the other to its default value. In the experiments we mea- Sity is not very small, and is not very |arge (bo’[h assumptions are
sureexecution timewhich indicates the total running time for the  reasonable in practice). If we investigate the execution time of the
query processing. Our experiments are conducted on Windows XP50x 2 runs individually, it is observed that the performance of query
platform with Intel Core 2 Duo CPU (2.66 GHz) and 4.0 GB RAM.  processing is poorer for query locations in a denser downtown grid

(b) San Joaquin County road network.

The results reported are the average of 50 individual queries. than a sparser suburban region for the both road networks. Usu-
ally query points far away from the central grid requires relatively
7.2 Results smaller number of expansion steps to find a neighboring object.

First, we study the performance of the proposed search algo- Furthermore, in the experimental evaluation we also examine the
rithm with regard tok, the number of easiest-to-reach neighbors answers returned by the existing nearest neighbor search algorithm
to be searched. Figure 7 shows the query execution time virsus INE. We compare the travel distance and navigation cost of the first
ranging from 2 to 10, with or without running the post-verification easiest-to-reach neighbor of each query with the first nearest neigh-
module for global landmarks. The results of both networks show bor (k=1, under the default density of data objects). The results
that the running time of the network expansion module increases al- reveal that the network distance to get to an easiest-to-reach neigh-
most linearly withk. As can be expected, for a given road network, bor has an average increase of 19.3% compared to that of a nearest
a large value ok corresponds to a larger area to be searched and neighbor, but at the same time the navigation cost is only about
more network expansion steps. However, the increase of overall 35.2% compared to that of the nearest neighbor. Thus, in return for
number of network nodes accessed is not proportional to the in- slightly longer travel distances, the easiest-to-reach neighbors offer
crease ofk. This is because the network search area for candidate considerable advantages over the nearest neighbors in terms of their
data objects overlaps. ease of navigation (on average a saving of 64.8%), in particular for

Next, we study the performance of the proposed search algo- travellers unfamiliar with a foreign city. Therefore, the algorithm
rithm by varying the cardinality of data objects. Figure 8 shows the for this new type of query could be used as an alternative to the ex-
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