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ABSTRACT
Studies in cognitive science have shown that people have differ-
ent optimization goals in mind for route selection: beyond shortest
travel distance (or time), criteria such as smallest number of turns
or straightest path are often considered. A common query that a
traveller in a foreign city may ask is “where is a facility of type X”.
When multiple facilities of the same type are available in the nearby
area, usually not the nearest neighbor but the one which is easiest
to find is preferred for giving instructions by locals, especially in
an unfamiliar and complex urban environment. This paper studies
a novel type of neighboring object selection problem, taking cog-
nitive complexity of navigation into account. The main difficulty
arises from incorporating spatial chunking and landmark informa-
tion into neighbor comparisons. We propose an algorithm based
on network expansion, which uses incremental processing of graph
transformation that models instruction complexity. Our approach
can efficiently find the easiest-to-reach neighbor with the guaran-
teed smallest navigation cost. Through experimental evaluation on
real road networks, the performance of the proposed algorithm is
demonstrated under various settings. Our comparison results reveal
that on average the travel distance of the easiest-to-reach neighbor
is only 19.3% longer than that of the nearest neighbor, whereas the
navigation cost can achieve a 64.8% reduction.

Categories and Subject Descriptors:H.2.8 [Database Applica-
tions]: Spatial databases and GIS

General Terms: Algorithms, Experimentation, Human Factors

Keywords: nearest neighbor, easiest-to-reach neighbor, navigation
cost, spatial chunking, landmarks

1. INTRODUCTION
The design of most current navigation systems relies on the cal-

culation ofshortest travel distance(or time) in a network. How-
ever, numerous papers in spatial cognition (e.g., [4, 7, 9, 16, 21])
have shown that people use more than distance as the optimization
goal for route selection. Other criteria such as smallest number of
turns or straightest path also might play an important role in the
process of route planning.
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Figure 1: Nearest neighboro1 (reachable via the dashed thick
path) and easiest-to-reach neighboro2 (reachable via the solid
thick path) of the query location q in a network.

Imagine a mobile or Web-based location-based service that can
apply cognitive principles for generating navigation instructions.
The service should be able to answer a typical spatial query that
a traveller asks: “where is a facility of type X?”. When there are
multiple facility instances available, in an unfamiliar and complex
urban environment not the nearest neighbor but theeasiest-to-reach
neighbor might be preferred for giving instructions. Without yet
formally defining the easiest-to-reach neighbor, we first give an ex-
ample in Figure 1.q represents the query location with four data
objects of the requested typeo1, o2, o3 ando4 nearby. Existing
nearest neighbor search algorithms such as [3, 10, 14, 18, 24] find
thato1 has the shortest network distance fromq.

Navigation service communicateshow to reach a destinationto
users by providing sequences of instructions asroute directions. At
each intersection, whether continue straight or to turn has to be de-
cided. These instructions guide a user from one decision point to
the next. For example, the route directions for reachingo1 could
be turn right {onto street A}, turn left at the second intersection,
and then turn first left, while the route directions for reachingo2

could beturn left {onto street B}, go straight until landmark C
(here “{}” denotes additional describing elements which can be
dropped). Since a smaller number of turning instructions can re-
duce the cognitive effort as well as possible navigational errors,o2

is regarded as a better choice here compared too1 in terms of nav-
igation complexity. To assess costs in such a setting, we need to
examine two issues, namely,spatial chunking andlandmarks.

In the conceptualization process of a route, instead of giving in-
structions at every single decision point (intersection), spatial chunk-
ing groups multiple instructions of the same type (e.g., continue
straight until a turning sign appears) [13]. This is based on es-
tablished principles used from a cognitive perspective for changing
granularity in route directions [12]. By combining elementary route
information into higher order elements, neighbor descriptions can



be simplified. In the example of Figure 1, it can be seen that the
reduction of instruction complexity for describing how to reacho1

or o2 from q corresponds to the number and type of intersections
chunked. It also implies that the total instruction complexity could
be much smaller than the sum of each individual instruction.

Besides chunking consecutive decision points, landmarks can be
incorporated to achieve better route directions (e.g., turn right at
the 7-Eleven). Compared to turn-by-turn instructions with street
names (predominantly adopted in current in-car navigation systems
and online map services), a range of studies in human factors and
ergonomics have empirically demonstrated the beneficial effects of
incorporating landmarks into vehicle and pedestrian navigation in-
structions [8, 19, 23], such as improved navigation performance
and confidence and reduced cognitive effort. Landmarks are also
frequently referred to in human communication of routes and spa-
tial reasoning. Furthermore, future navigation systems can be made
more effective and safer, by using landmarks as key navigation cues
into automatically generated route directions [6].

In contrast to previous research that solves the route selection
problem of finding an optimum route in cognitive sensefor a given
pair of source and destination(e.g., [4, 9]), this paper studies a
novel type of neighboring object selection problemwhen there are
multiple choices as the destinationin the area. In addition, we in-
corporate spatial chunking and landmark information which are not
adequately addressed before in route directions, to resemble human
interpretation of instructions. By applying a set of chunking rules
to route direction elements, we can assess navigation costs from a
cognitive perspective, and formulate a query that finds the easiest-
to-reach neighbor.

In a database context, to search for the easiest-to-reach neighbor
with the smallest navigation cost it is unnecessary to first compute
the optimal descriptions of all neighbors and then compare them in
order to find one as the best choice. Given a path network (e.g., the
road network of a city) with pre-defined landmarks annotated on
it, the principle similar to that of Incremental Network Expansion
(INE) [18] can be adopted, to perform node expansion starting from
query location on a locally transformed “dual” graph [25, 26]: the
edges are treated as nodes, and intersections as edges where each of
the weights represents the instruction complexity. Instead of pre-
computing the costs of all turns in a path network, we incrementally
transform a graph. Our core idea is that during the greedy process
of expansion, the cognitive principles ofdecision point complexity,
spatial chunkingand reference to landmarkscan be synthetically
taken into account to dynamically label the nodes. Our approach
can locate promising data objects earlier, and efficiently find the
choice with the guaranteed smallest navigation cost. Some exten-
sions of the proposed algorithm are also discussed. Since the cost
function is adaptive to different requirements, our approach can be
tailored to user preferences. Finally, we conduct a systematic ex-
perimental evaluation on real road networks, which well represent
typical urban areas. The performance of the proposed algorithm is
extensively studied under various parameter settings.

The main contributions of our work are as follows:

• We introduce and solve a new type of spatial query. Find-
ing the easiest-to-reach neighbor provides new features for
advanced navigational assistance.

• We devise a model that computes instruction complexity on-
the-fly. This strategy not only reduces processing costs sig-
nificantly but also makes it feasible to incorporate landmarks
into instructions.

• We compare our algorithm against existing work and show
that, in return for slightly longer travel distances, easiest-

to-reach neighbors offer considerable advantages in terms of
their ease of navigation.

2. RELATED WORK
Generating navigation instructions consists of two cognitive steps

[15]: first, a route isselectedfor a pair of source and destination;
then, its conceptualization is transformed to a sequence of instruc-
tions topresentthe information.

2.1 Route Selection
The traditional approach is to apply Dijkstra’s algorithm (or a

variant) on a graph representation of a given geometric path net-
work to find the shortest path. The distances of nodes are used as
travel costs. It is also possible to substitute the distance with time
[2, 11]. However, the “cheapest” path can also be found according
to some cost function using the cognitive aspects rather than travel
distance or time.

Duckham and Kulik [4] proposed an algorithm to computesim-
plest paththat minimizes thecomplexity of instructions. The idea
of classifying different intersections was inspired by Mark [16].
Since the storage of edge-edge relations is required to allow indi-
vidual weighting of each intersection for measuring the total in-
struction complexity, routing is not performed on the original ge-
ometric graph, but on a dual graph which models decision point
complexity. Afterwards, shortest-path calculation can be applied
on such a transformed graph to preferentially select a route through
intersections that can be described using less complex instructions.
An interesting finding of the experiments in [4] is that, simplest
paths which completely rely on the measure of instruction com-
plexity are on average only 16% longer than shortest paths.

Haqueet. al. [9] proposed an algorithm to compute themost
reliable path, defined as the one with the smallestintersection am-
biguities. Analogous to the instruction complexity, the possible
ambiguity of each intersection can be inferred from itsdegree of
connectivity. For example, travellers are more likely to get lost at
a 5-way intersection than at a 4-way intersection. Unreliability of
a route is the total ambiguity of intersections that the navigator en-
counters. The rationale behind is that traversing a more reliable
path leads to fewer navigational errors, which in turn may reduce
the travel distance in practice (avoiding re-orientations).

Although these algorithms use different cost functions, their rout-
ing procedures are similar since they use only specific weights (rep-
resenting the complexities/ambiguities of intersections) and there
is no longer reference to geometric distance information after dual
modelling. However, so far spatial chunking and landmarks have
not been adequately addressed. They both have a potential to lead
to much less cognitive effort required to follow route directions.

Our work emphasizes on finding the best choice for navigation in
respect of cognitive complexity when multiple neighboring objects
are available1. This destination choiceproblem complements the
prior studies finding the optimum route in cognitive sense for a
given pair of source and destination. To some extend, the difference
here resembles the relationship between shortest-path calculation
and nearest neighbor search problems in networks.

2.2 Context-Specific Route Presentation
The presentations of previously selected routes can be simpli-

fied by taking current surrounding environment into account [22].
While one-to-one relations between decision point/action pair and

1Or to be general, if more than one choice is needed for browsing,
finding the top-k easiest-to-reach neighbors ranked in ascending
order of navigation cost.



instruction represent a low granularity, a high granularity stands for
a many-to-one relation expressed by one instruction covering mul-
tiple decision points of a route. The different granularity levels are
produced by applying chunking rules to route direction elements
[12, 13]. As we shall elaborate in Section 4.1, multiple actions at
decision points can be grouped into higher order route direction el-
ements according to numerical and structural chunking, as well as
landmark information [20].

Landmarks can be broadly defined asexternal reference points
that are potentially useful as navigation cues. Particularly, we dis-
tinguish betweenlocal and global landmarks. This corresponds
to the distinction made between specifying a specific route (local
landmark) and specifying a spot on the way to a destination but
without requiring a traveller to reach this spot via a specific route
(global landmark). For example, chunkings based on distant but
well-recognizable landmarks (e.g., turn right at the skyscraper) pro-
vide a kind of overall guidance. [17] shows that landmarks are se-
lected for route directions preferably at decision points. We focus
on point-like landmarks located at intersections where travellers
have to turn, or along route segments for confirmation. For sim-
plicity, linear landmarks spreading along a route (e.g., follow the
river) or areal landmarks (e.g., across the park) are not considered
in this study.

2.3 Nearest Neighbor Search in Networks
Papadiaset al. [18] introduced two frameworks fork nearest

neighbor search in spatial networks. The Incremental Euclidean
Restriction (IER) approach applies the property that the Euclidean
distance between two nodes is a lower bound of their network dis-
tance for search space pruning. The Incremental Network Expan-
sion (INE) approach performs network expansion similar to Di-
jkstra’s algorithm from query point and examines data objects in
the order they are encountered. They showed that in general INE
performs better than IER. As an optimization of IER, Denget al.
[3] proposed incremental Lower Bound Constraint (LBC). Kolah-
douzan and Shahabi [14] presented a Voronoi-based Network Near-
est Neighbor (VN3) approach. VN3 divides data space into the
first-order network Voronoi diagram with respect to data objects.
Finding thek nearest neighbors is done by identifying the first
nearest neighbor using the Voronoi diagram, and deriving the sub-
sequent nearest neighbors from adjacent Voronoi cells. Other near-
est neighbor search algorithms based on pre-computation include
techniques that use pre-computed shortest-path information stored
in quadtrees [24] or grid-based data structures [10].

Unlike the above existing work, we study a different problem
that considers cognitive complexity of navigation. The weights of
network edges representing instruction complexities are computed
on-the-fly. Only the principle similar to that of INE which expands
network search towards data objects most likely to be in the fi-
nal solution is borrowed here. In the experimental evaluation, we
show the comparisons of travel distances and navigation costs of
the easiest-to-reach neighbor and the nearest neighbor.

3. INSTRUCTION COMPLEXITY AND
MODELLING

We assume a network contains a setO of static data objects, all
representing a particular type of facility instances. A network is
traditionally represented by a (connected and simple) graphG =
(N, E), whereN is the set of nodes, andE is the set of edges
(without restriction of generality, the direction of edges is ignored).
G is normally sparse due to a small number of branches at an in-
tersection, which implies that|E| = O(|N |). This weighted graph
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Figure 2: Weighting of decision point complexity.deg(v) is the
degree of a nodev (i.e., the number of branches meeting at this
intersection).

additionally has a cost functionψ : E → R+ that maps each edge
e ∈ E to a nonnegative number. The network distancedG(u, v)
between two nodesu andv is defined to be the length (i.e., sum of
the costs) of the shortest path connecting them. To search for the
easiest-to-reach neighbor which has the smallest navigation cost, a
(cognitive) model is needed for instruction complexity.

Each neighbor description is built up from a setI of possible
instructions (such asturn left, turn right, andgo straight). Each
instruction that guides a user to leave one edgee and enter the
next edgee′ in G has a cost associated with it using the function
ω : I → R+. Potentially any meaningful cost value can be as-
signed as long as more complex decision points are associated with
larger costs. In the experimental evaluation we adopt the weight-
ing scheme shown in Figure 2 adapted from [4], which is based on
a cognitive model to reflect the amount of information needed to
successfully negotiate different decision points. In short, the cost
function is not an attribute attached to individual edges or nodes
in graph, but associated withpairs of adjacent edges(if G would
be directed, the cost function should be associated withpairs of
consecutive edgesinstead) to represent thenegotiation costof a
decision point. Since in a realistic setting travellers have to reas-
sure that they are still on track, we further assign thetraversal cost
of each route segment (or equivalently, passing a decision point) to
be at least a positive number (e.g., we set this value to be two), even
if just moving straight on. Thus, this model emphasizes the effect
of both the overallnumberof decision points and thetypeof inter-
sections in measuring the navigation cost of reaching a neighbor.

In addition, as aforementioned instructions may also include ref-
erences to landmarks. For instructions that refer to landmarks from
a pre-defined set2, each landmark has a value which relates to a
few factors (such as distance and orientation of a traveller when
approaching, and saliency of the landmark itself). Thus, each in-
struction including a landmark also has a cost associated with it
using the functionw : I → R+, which models the cognitive effort
of its execution. Generally, small costs are assigned to landmarks
with high information content and large costs are assigned to less
prominent landmarks. Here, we use the similar weighting strategy

2Our work is concerned with incorporating landmarks in route di-
rections, rather than extracting landmarks from databases like some
other studies such as [5]. Therefore, we assume that a set of poten-
tially useful landmarks is given a priori with their positions and
characteristics available.



described in [1] to assign such a cost valuewi of a specific land-
mark with respect to the node of traveller’s position:

wi = a ·Distance + b ·Orientation + c · Salience

wherea, b, andc are the preference parameters when looking for
landmarks,Distance andOrientation values are given by the
spatial configuration andSaliency value is derived from the inher-
ent characteristics of the landmark itself.

In essence, each common node shared by a pair of adjacent edges
(e, e′) in E can be labelled with a cost, which models the instruc-
tion complexity when leaving one edgee and entering the other
edgee′. Note that, each instruction may be valid for different pairs
of adjacent edges, andeach pair of adjacent edges could have more
than one instruction associated with it. For example, the instruc-
tions “turn right at the intersection” and “turn right at the 7-Eleven”
might both encode the equivalent action at a particular decision
point. Different instructions may have different costs. However,
when we have several instructions (including the possibility of us-
ing landmarks in the instructions) to describe how to reach the next
decision point from the current one,the minimum navigation cost is
determined by the instruction with the smallest cost. From a cogni-
tive perspective, the costwi of a turning instruction incorporating a
landmark is generally smaller than the costωi of a plain instruction
that encodes the equivalent action. Thus, the parametersa, b, andc
should be calibrated to properly assign cost values.

Modelling instruction complexity was previously treated as con-
structing an evaluation mapping of dual graphG′ = (E′, ξ) from
the original node-edge graphG = (N, E) in [4, 25, 26].E′ is the
set of edges inG andξ is the set of pairs of adjacent edges, with
each weight representing instruction complexity. However, we can-
not follow such a dual modelling to weight the combination of pairs
of adjacent edges for solving our problem, for two reasons:

• First, all the edge-edge relations need to be enumerated to
make the dual construct of the whole graph available. In
other words, the individual weighting of each pair of adja-
cent edges in the network has to be pre-computed. For each
nodeni in G, there arem(m− 1)/2 pairs, withm being the
degree ofni (as a rough estimation we can make a reason-
able assumption about the mean degrees to be 3 in networks
in the geographical domain). It incurs a high cost to compute
and maintain such a large number of weights.

• Second, using landmarks in instructions will not be easily
possible. When reference to landmarks is considered, the
cost assignment process critically depends on the distance
between the node representing a traveller’s position and a
landmark, as well as the orientation of the traveller with re-
spect to the landmark when approaching. This process is in-
trinsically query-dependent and as a result, cannot be easily
materialized.

Since easiest-to-reach neighbors are generally close to query lo-
cations, usually only a small portion of the network is relevant to
query processing. In fact rather than assigning costs in advance, we
can compute instruction complexity on-the-fly from geometry and
topology. For real path networks (not necessarily like the rectangu-
lar block structure as shown in Figure 1), the degree of each node is
first computed. Normally, a turn is perceived as an enforced devi-
ation from the geodesic line. Thus, the set of possible instructions
for decision points can be inferred from the angular deviations from
the previous movement which are then matched to categories of an-
gular intervals. For example, only the movement with angular devi-
ation less than12◦ is deemed as continuing straight. Other choices

for angular intervals here are possible as well. Through such an
incremental materializationstrategy to obtain the relevant part of
a transformed graph, we can follow the network from the query
locationq and expand further in a similar fashion to Dijkstra’s al-
gorithm (a greedy process still yielding the global optimum). Data
objects are inspected in the order they are encountered. Since nu-
merical, structural and landmark chunkings impose multiple com-
plex issues onto the process, we introduce a set of chunking rules
employed in this study before presenting easiest-to-reach neighbor
search.

4. NAVIGATION COST WITH CHUNKING
The hierarchical organization of spatial information and the abil-

ity to change between different granularity levels are important
characteristics of the cognitive organization of spatial knowledge.
In this section, we elaborate some popular means of chunking con-
secutive decision points into higher order route direction elements,
which have direct influences on measuring navigation costs.

4.1 Chunking Rules
Numerical Chunking: Numerical chunking characterizes the

grouping of actions at decision points by counting them and sum-
marizing them as a single instruction.
Example:Go straight at the first and second intersections, and then
turn left⇒ Turn left at the third intersection.
Example:Turn first left, and then turn left again⇒ Turn left twice.

Structural Chunking: Salient structural characteristics of in-
tersections or other environmental elements allow identifying these
locations uniquely. Within the context of a specific route, some in-
tersections can have highly salient features, especially when they
are complex, enforce a change in the movement or even block it.
Example:Turn left at the T-intersection(when a T-intersection is
reached at the end of a road from the “body” of the T, a turning
instruction is mandatory so it marks the end of a chunk).

Landmark Chunking: Landmarks located along a route can
be used to chunk certain parts of the route. Such landmarks are
considered point-like if they are located at a specific spot along the
route (e.g., an intersection), and are only functionally relevant for
this spot. It could chunk all straight following route segments until
a specific action is required at the end of chunk. The principle is
similar to structural chunking.
Example:Turn left at the church.

Sometimes if a landmark is well known or has good visibility,
it potentially allows chunking large parts of a route without the
need of mentioning actions to be taken at the intermediate decision
points in-between start and end of the chunk. This kind of chunk-
ings is termedglobal chunking. By using global landmarks, a route
does not always have to be fully specified and individual decision
point/action pairs may be no longer identifiable. On the contrary,
in the case that part of a route is chunked by local landmarks, the
involved decision point/action pairs are implicitly represented but
still identifiable.

4.2 Measuring Navigation Costs
In Section 3, we have mentioned that the navigation cost of reach-

ing a neighbor is constituted of negotiation cost and traversal cost.
Let {s = n1 → n2 → . . . → nm = d} represent a path
which passes through a sequence of nodes wheree(ni, ni+1) ∈ E,
i = 1, . . . , m − 1. Assume we have the relevant part of the trans-
formed graph, which gives the complexity of each involved instruc-
tion ωi. We introduce two policies in the measure of navigation
costNC(s Ã d), which can assess the cognitive complexity of
navigation it takes to travel along the path(s Ã d).
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Figure 3: Examples of how navigation costs are measured when
chunking rules are applied (the part in bold is negotiation cost
and the part with underline is traversal cost).

POLICY 1. When numerical chunking is applied to group ac-
tions at multiple decision points, besides the first decision point
the negotiation costs for other decision points in the chunk are no
longer evaluated. However, since a minimum traversal cost of each
route segment is enforced, the navigation cost is always increased
by the value of traversal cost when passing more decision points.

POLICY 2. A chunk cannot be arbitrarily long unless a struc-
tural feature or a landmark unambiguously marks its end. For
structural chunking or landmark chunking, the navigation cost is
determined by the instruction complexity at the final decision point
at the end of the chunk, plus the cumulative traversal cost that re-
lates to how many decision points have been chunked.

Figure 3 shows three examples of measuring the navigation costs
when chunking rules are applied (the weighting scheme of decision
point complexity follows Figure 2). The first example illustrates
Policy 1 and the second example illustrates Policy 2. As we can
see from the third example, navigation costs should be measured
by properly applying the above two policies together to deal with
different chunkings. Compared to simply computing the sum of
individual decision points

∑m−1
i=1 ωi, these two policies enable us

to better assess costs from a cognitive perspective. Note that we
assume when chunking rules are applied, navigation cost is mono-
tonically increasing when passing more decision points. This ex-
cludes the use of global chunking, in particular, the use of global
landmarks in route directions.

4.3 Problem Formulation
With the measure of navigation cost, we are able to formally

define our neighboring object selection problem (for generality, a
version of finding the top-k choices is stated below).

DEFINITION 1 (k EASIEST-TO-REACH NEIGHBOR SEARCH).
Considering a set of data objectsO = {o1, o2, . . . , on} and a
query locationq on a path network. Ak easiest-to-reach neigh-
bor search is defined as a query that finds a subsetO′ ⊆ O of k
objects with minimum navigation cost to reach fromq, i.e., for any
objecto′ ∈ O′ ando ∈ O −O′, NC(q Ã o′) ≤ NC(q Ã o).

5. SEARCH ALGORITHM
Given a path network annotated with additional information of

landmarks, this section presents a computationally efficient algo-
rithm for easiest-to-reach neighbor search. Our approach combines
the considerations behind both route selection in cognitive sense
and context-specific route presentation. The proposed algorithm
favors a route with the smallest cost in terms of total instruction

complexity. Meanwhile, it generates the best presentation of a route
in light of the employed chunking rules. Here, the incremental pro-
cessing of graph transformation is used to model instruction com-
plexity. The algorithm is essentially a single source algorithm that
performs node expansion starting from query locationq, and in-
spects data objects in the order they are encountered. Since chunk-
ings leave open more options to describe a neighbor which needs to
be carefully considered, the challenge of the algorithm design lies
in how to efficiently find a data object while guaranteeing that we
minimize the navigation cost of reaching it.

To sum up, two most fundamental distinctions of our algorithm
from the conventional INE for nearest neighbor search are:

• It works on a transformed graph modelling instruction com-
plexity (where nodes are dynamically labelled by several cog-
nitive principles), rather than geometric distance information
(where edge weights are fixed), to evaluate the navigation
cost of reaching a neighbor.

• The predecessor instruction of each step is recorded during
the expansion, to apply chunk validity check for adapting the
action to be taken to its context. This is crucial for computing
the smallest cost of a node expansion.

5.1 Chunk Validity Check
Grouping of instructions performed in spatial chunking could be

handled by introducing virtual edges in a graph that serve as “short-
cuts” by connecting route segments which can be described by sub-
sequent identical instructions. This method however will make the
graph non-planar. In this study we adopt another method to handle
this by inclusion in network expansion (propagating identical in-
structions forward through the graph from the edge currently being
processed). First, we need to know whether edges arechunkable.

DEFINITION 2 (CHUNKABLE EDGE). An edgeet is chunk-
able from edgees with an instructioni if there is a path fromes to
et that can be encoded as sequence of executions ofi, and such a
sequence is valid according to the employed chunking rules.

As decision points in a chunk can be covered with a single in-
struction, besides the decision point to reach the first edge, the ne-
gotiation costs of the following decision points in the chunk are
no longer evaluated individually (recall that for the first example
in Figure 3, the navigation cost of “turn left twice” is measured by
4+2, rather than 4+4). We should only add traversal costs when
passing more decision points but ignore negotiation costs for those
edges which are chunkable. Formally, to implement this behavior
in our algorithm, we assume achunk validity checkfunction.

DEFINITION 3 (CHUNK VALIDITY CHECK FUNCTION). We
define a chunk validity check functionv : E×E×I → {true, false}
for a given starting edgees ∈ E, terminating edgeet ∈ E, and
instructioni ∈ I. v(es, et, i) is true only ifet is chunkable fromes

usingi.

5.2 Network Expansion
We first consider a scenario that excludes global chunkings (i.e.,

only local landmarks can be included in route directions). The
pseudo-code of the module for searchingk easiest-to-reach neigh-
bors is presented in Algorithm 1 and explained in detail below.
Given the relevant part of a locally transformed graph with specific
weights of involved intersections and pre-defined landmarks, and
the chunk validity check functionv, the algorithm takes a query
locationq and a valuek denoting the number of data objects re-
quested as input, and returns thek easiest-to-reach neighbors to-
gether with their corresponding navigation costs fromq.



Algorithm 1
Input:

Query locationq, number of data objects requestedk.
Output:

k easiest-to-reach neighbors with theirNCs.
Description:
1: initialize NCmax ←∞;
2: find the edge(ninj) that coversq;
3: Scover = FindObjects(ninj);

//Scover is the set of objects covered by(ninj)
4: O′ = {p1, . . . , pk} are thek easiest-to-reach neighbors sorted in as-

cending order ofNC (initially empty);
5: Q = [(ni, NC(ni), min_NC(ni), pre_i(ni)),

(nj , NC(nj), min_NC(nj), pre_i(nj))]; //sorted byNC
6: dequeue the noden in Q with the smallestNC(n);
7: while |O′| ≤ k andNC(n) ≤ NCmax do
8: for each adjacent nodenx of n connected by unexplored edgedo
9: Scover = FindObjects(nnx);

10: updateO′ from O′ ∪ Scover ;
11: NCmax = NC(q Ã pk);
12: enqueue or update(nx, NC(nx), min_NC(nx), pre_i(nx));

//evaluate with the cost function and chunk validity check
13: end for
14: dequeue the next noden in Q;
15: end while

Our algorithm incrementally expands its search for data objects
through the network starting fromq. Whenever a node is expanded,
all outgoing edges from the node are retrieved and adjacent nodes
are explored. Yet-to-be-visited nodes are stored in a priority queue
Q sorted in ascending order of navigation cost to reach fromq
(Q is assumed to be empty initially and does not allow duplicate
nodes). The information of each element inQ is represented as
a tuple(n, NC(n), min_NC(n), pre_i(n)), wheren is the node
ID, NC(n) is thecurrently determinednavigation cost fromq to
the node,min_NC(n) is the minimum possiblenavigation cost
from q (by assuming traversal costs only, which is computed based
on the number of route segments to reach the node), andpre_i(n)
is the recorded predecessor instruction. The algorithm iteratively
expands the node currently with the smallestNC and adds its ad-
jacent nodes intoQ (if a node has been visited before and hence
is already in the priority queue then, if the newly determined navi-
gation cost is smaller than itsNC stored inQ, the navigation cost
is updated). These operations are repeated, and terminated when
the following conditions are met: we havek data objects found
by Scover in {p1, . . . , pk}, and no other object is possible to have a
smaller navigation cost than thekth one we already found (once the
next noden to be expanded inQ has a navigation costNC(n) that
is larger thanNCmax). Our core idea is that local landmarks are
integrated in the cost evaluation by using instructions incorporating
landmarks to override plain instructions whenever appropriate, and
spatial chunkings are handled by chunk validity check during each
step the expansion. As we will see in Section 5.3, an additional
post-verification module can be employed in the presence of global
landmarks with the aid of obtained minimum possible navigation
cost information,min_NC(n).

To clarify the algorithm, we explain it using an example as shown
in Figure 4 in conjunction with Table 1, to find the first easiest-
to-reach neighbor with respect to the query locationq. A simple
instruction setI = {Left → L, Right → R, Straight → S}
is assumed for ease of illustration. The cost functionω follows the
scheme shown in Figure 2. Next, we describe the workings of the
algorithm step by step.

First, after initialization the algorithm begins with searching in
the network R-Tree to locate the query pointq, for finding which
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Figure 4: The sample example following Figure 1, with sub-
script of a node denoting the visiting order of it.

edge on the original graph it lies on. The result is(n1, n2). Then
it checks whether there are any data objects on this edge (with the
functionFindObjects) to be added into in-memory listScover. In
our example hereScover = ∅. Then,n1 andn2 are added into the
priority queueQ. Nodes inQ should be sorted byNC in ascend-
ing order. Here, we assign nodes directly connected to the query
point q with zero navigation cost (i.e., no cost is applied to the ini-
tial orientation stage). A more sophisticated choice might include
weights for initial orientation, perhaps preferentially selecting ini-
tial orientations that are easier to explain (e.g., orientation towards
an easily visible landmark).

Next, the algorithm removes the node with smallestNC from Q
and expands it. In case of a tie we pick up an arbitrary one, so the
element(n1, 0, 0, S) is dequeued first andn1 is expanded. Since
the negotiation cost of the turning instruction “L” vian1 to n3 is 4
(according to Figure 2) and the minimum traversal cost is assigned
to be 2, we enqueue a new element(n3, 4, 2, L) in Q. Every time
we dequeue the element of a noden which is to be expanded, the
navigation cost fromq to each adjacent nodenx of n connected by
an unexplored edge will be evaluated according to the cost function
ω together with the chunk validity functionv. This is because we
have the predecessor instruction of each step recorded and when
consecutive instructions are identical, the increment for the naviga-
tion cost is just the traversal cost (smaller), but not negotiation cost
(larger). As discussed above,the increment for the navigation cost
for expansion to a new node should always be determined by the
instruction with the smallest cost if there are multiple possibilities
to encode the action. For example, when the algorithm dequeues
the element(n2, 0, 0, S) and expands the noden2, since the in-
struction of the action fromn2 to its adjacent noden4 is “S” which
is identical with the previous one, the navigation cost is increased
by 2, so(n4, 2, 2, S) is added intoQ. At the same time, the navi-
gation cost fromq to n5 (another adjacent node ofn2) is evaluated.
Since the negotiation cost of the turning instruction “R” vian2 to
n5 is 8 (according to Figure 2), another element(n5, 8, 2, R) is
also enqueued. In this way, the algorithm iteratively expands the
node with the smallestNC and adds its adjacent nodes intoQ (the
detailed steps are shown in Table 1). Note that, when a noden
is removed from the priority queue for expansion, we have to ex-
amine all its adjacent nodes connected by unexplored edges. If an
adjacent node has been visited before (by another expansion) and
is already inQ, once an even smallerNC value than the old one is
obtained, the tuple stored inQ will be updated. For example, when
n3 is expanded in step 6, the navigation cost to its adjacent noden5

via the pathq → n1 → n3 → n5 should be evaluated. The result
is 4+8=12 which is larger than theNC value of 8 obtained from the
previous step, so the original tuple(n5, 8, 2, R) is kept unchanged.
On the other hand, althoughn11 is first visited from the expansion



Step Operation Elements in the priority queueQ (sorted in ascending order ofNC)

1 Locate the edge(n1, n2) that coversq (n1, 0, 0, S), (n2, 0, 0, S)

2 No object on(n1, n2), expandn1 (n2, 0, 0, S), (n3, 4, 2, L)

3 No object on(n1, n3), expandn2 (n4, 2, 2, S), (n3, 4, 2, L), (n5, 8, 2, R)

4 No object on(n2, n4) or (n2, n5), expandn4 (n6, 4, 4, S), (n3, 4, 2, L), (n5, 8, 2, R), (n7, 10, 4, R)

5 No object on(n4, n6) or (n4, n7), expandn6 (n3, 4, 2, L), (n8, 8, 6, R), (n5, 8, 2, R), (n7, 10, 4, R)

6 No object on(n6, n8), expandn3 (n9, 6, 4, S), (n8, 8, 6, R), (n5, 8, 2, R), (n7, 10, 4, R)

7 No object on(n3, n9) or (n3, n5), expandn9 (n10, 8, 6, S), (n8, 8, 6, R), (n5, 8, 2, R), (n7, 10, 4, R), (n11, 14, 6, L)

8 No object on(n9, n10) or (n9, n11), expandn10 (n8, 8, 6, R), (n5, 8, 2, R), (n12, 10, 8, S), (n7, 10, 4, R), (n11, 14, 6, L), (n13, 16, 8, L)

9 No object on(n10, n12) or (n10, n13), expandn8 (n5, 8, 2, R), (n14, 10, 8, S), (n12, 10, 8, S), (n7, 10, 4, R), (n11, 14, 6, L), (n13, 16, 8, L)

10 No object on(n8, n14) or (n8, n7), expandn5 (n14, 10, 8, S), (n12, 10, 8, S), (n7, 10, 4, R), (n11, 10, 4, S), (n13, 16, 6, L)

11
No object on(n5, n7) or (n5, n11), expandn14 (n12, 10, 8, S), (n7, 10, 4, R), (n11, 10, 4, S), (n15, 12, 10, S), (n13, 16, 8, L),

(n16, 18, 10, R)

12
No object on(n14, n15) or (n14, n16), expandn12 (n7, 10, 4, R), (n11, 10, 4, S), (n17, 12, 10, S), (n15, 12, 10, S), (n13, 16, 8, L),

(n16, 18, 10, R), (n18, 18, 10, L)

13
o2 is found on(n12, n17) and no object on (n11, 10, 4, S), (n16, 12, 6, S), (n17, 12, 10, S), (n15, 12, 10, S), (n13, 16, 8, L),
(n12, n18), expandn7 (n18, 18, 10, L)

14
No object on(n7, n16), expandn11 (n16, 12, 6, S), (n17, 12, 10, S), (n15, 12, 10, S), (n13, 12, 6, S), (n18, 18, 10, L),

(n19, 19, 6, L)

15
No object on(n11, n13) or (n11, n19), expandn16 (n17, 12, 10, S), (n15, 12, 10, S), (n13, 12, 6, S), (n20, 14, 8, S), (n18, 18, 10, L),

(n19, 19, 6, L)

Table 1: Network expansion process for the example of Figure 4. Underline typeface means the this element is newly enqueued after
this expansion, and bold typeface means the original tuple for this node which is already inQ is updated with a lowerNC.

of n9 in step 7 (an element(n11, 14, 6, L) is enqueued due to the
expansion pathq → n1 → n3 → n9 → n11), its navigation cost
is lowered in step 10 (the tuple is updated to(n11, 10, 4, S) due to
the expansion pathq → n2 → n5 → n11). Likewise, although
n16 is first visited from the expansion ofn14 in step 11, its naviga-
tion cost is lowered in step 13 with the expansion ofn7. Wheno2

is discovered on the edge(n12, n17) after the expansion ofn12, we
set the thresholdNCmax = 12 which provides a bound to restrict
the search space. Finally, due to the fact that further expanding
n16

3 which has a same navigation cost withNCmax cannot find
any objects with smaller navigation cost, the algorithm terminates
ando2 is returned as the answer.

For implementation, we mainly need four data structures to sup-
port the network expansion process: (i) anadjacency component
which captures the network connectivity; (ii) anedge component
which provides the information of each network edge(u, v), length
of the edgedG(u, v), and a pair of pointers to the adjacency list for
its two endpointsu andv; (iii) an instruction complexity component
which includes the cost of each network edge pair (these costs are
computed during the expansion); (iv) anR-tree componentwhich
indexes the MBRs of edges.

By expanding the node with the smallestNC and adding new
adjacent nodes, the algorithm maximizes the chance that promis-
ing data objects are located earlier than others. This is similar in
spirit to Dijkstra’s algorithm to propagate a search “wavefront” for
finding the shortest paths from a source node to multiple destina-
tions. However, in our problem we need to consider that currently
determined navigation costs of nodes could be lowered by differ-
ent expansion paths and chunking rules. Our algorithm works on a
transformed graph modelling instruction complexity, and we only
materialize the relevant part of it when actually needed. The cogni-
tive principles of spatial chunking and reference to landmarks are
also carefully taken into account. At the heart of our algorithm is
the chunk validity check that is employed during the expansion.
Previous action at a decision point used to reach an edge from its

3As shown in step 15, while the similar steps of expandingn17,
n15 andn13 are omitted from the table for brevity.

preceding edge is recorded for each step. The algorithm applies
every valid chunking rule to minimize the navigation cost. When
the algorithm explores a new edge, it immediately checks whether
two edges are chunkable so that the navigation cost can be lowered
compared to the cost when treating them separately. If consecutive
edges are chunkable, rather than evaluating the increment for the
navigation cost by the regular negotiation cost, only a small traver-
sal cost is added (the first navigation cost measuring policy). Since
the navigation cost with chunking is monotonically increasing, the
correctness of our algorithm is guaranteed. In effect, ifm edges
are chunkable by an instruction, the navigation cost is simply the
negotiation cost at the starting decision point of the chunk, plus
m − 1 times the traversal cost. For example, the navigation cost
of q → n1 → n3 → n9 → n10 → n12 → o2 is measured by
4 + 4× 2. By keeping track ofpre_i(n), “do n times” chunkings
are include in our network expansion.

5.3 Post-verification for Global Landmarks
For the purpose of testing whether there is any global landmark

that could be included in route directions and consequently results
in an even smaller navigation cost to reach a neighbor, an additional
post-verification module can be used. Recall that for each noden,
besides the navigation costNC(n) we also store the information of
minimum possible navigation costmin_NC(n) during the expan-
sion by assuming traversal costs only.min_NC(n) is measured as
a lower boundof any possible navigation cost even if global chunk-
ing is applied. Note that, the minimum number of route segments
to reach a node depends on the expansion path. For example in the
process shown in Table 1,min_NC(n11) is first computed as 6 in
step 7 (viaq → n1 → n3 → n9 → n11, 3 times the traversal
cost), but becomes 4 later in step 10 (viaq → n2 → n5 → n11,
only 2 times the traversal cost).

For global chunking, recall that the navigation cost is determined
by the instruction referring to a global landmark at the final deci-
sion point, plus the cumulative traversal cost that relates to how
many decision points have been chunked (the second navigation
cost measuring policy). For example, if we have an available global
landmark LM located at the intersectionn18 as shown in Figure 5,
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Figure 5: With a global landmark LM located at n18 (repre-
sented by a hexagon), the description ofo3 could be “turn right
at LM” (via the dashed thick path).
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Figure 6: The grey bold subgraph (min_NC ≤ 10) needs to be
verified whether there is any global landmark.

the route directions for reachingo3 could be simplyturn right at
LM. Suppose the cost value of executing such a turning instruc-
tion at the landmark LM is 4, the navigation cost of reachingo3 is
10+4=14. This is because the minimum number of route segments
to reachn18 is 5, so the cumulative traversal cost is 10 although
there is no need to mention the actions at the five intermediate de-
cision pointsn1, n3, n9, n10 andn12 in-between the start (q) and
the end (n18) of the chunk.

Using min_NC(n), we can test the possibility whether some
other data objects which have inclusion of global landmarks in their
neighbor descriptions can result in even smallerNC. To this end,
the tentative easiest-to-reach neighbor we have found in the net-
work expansion process needs to be further verified to ensure that
our eventual choice has the smallest navigation cost. The pruning
condition can be summarized as: if the cost of instruction refer-
ring to global landmark is defined to be at leastcmin, the area
reachable fromq with minimum possible navigation cost under
NCmax − cmin should be searched for global landmarks. For ex-
ample, if we definecmin = 2, in Figure 6 the grey bold subgraph
(reachable fromq with min_NC under 12-2=10) needs to be ver-
ified whether there is any global landmark that can be included in a
neighbor description.

6. TAILORING TO USER PREFERENCES
It is often a desirable feature of navigation services to be adap-

tive to user preferences. The easiest-to-reach neighbor search al-
gorithm tends to be reluctant to choose a turn, so in some extreme
cases it could produce routes of considerable length. When there
are a variety of choices of the same facility type available, some-
times navigators being guided in unfamiliar geographic environ-
ments would like to achieve certain trade-off between nearest and
easiest-to-reach neighbors, or prefer major roads to minor roads,

etc. With the proposed algorithm as a basis, we introduce some
possible extensions to support these more sophisticated behaviors.

The problem of nearest neighbor search has been studied exten-
sively in spatial networks [3, 10, 14, 18, 24]. If travellers want to
achieve some balance betweentravel distanceandnavigation cost,
we can introduce a parameterλ to determine the cost used in the
network expansion process described above. The hybrid of these
two criteria can be reflected by a modified cost function

λ · Costdistance + (1− λ) · Costinstruction

whereCostdistance is derived from the cost functionψ : E → R+

regarding network distance of traversing the edges,Costinstruction

derived from the functionω : I → R+ modelling instruction com-
plexity of turning onto the edges, andλ ∈ [0, 1] is a heuristic pa-
rameter used in the weighted sum (in order to produce dimensional
similitude, the value ofλ has to be calibrated for specific road net-
works to scaleCostdistance andCostinstruction to be in the same
units). Thus, a node shared by a network edge pair can be labelled
with some new cost value embedded with both travel distance and
cognitive complexity of navigation. These costs are also to be com-
puted on-the-fly from geometry and topology during the expansion.

The easiest-to-reach neighbor algorithm sometimes selects ma-
jor roads simply by virtue of their straighter geometry and less con-
nected topology (i.e., fewer intersections). A modification of the
cost function could easily be implemented to explicitly prefer cer-
tain types of road. For example, major roads could be preferred
by making the costs for turns onto a major road smaller and turns
off a major road larger, whereas minor roads could be avoided by
making the costs of turns onto a minor road larger and turns off a
minor road smaller.

7. EXPERIMENTAL EVALUATION
In this section, we report the experiment results of the proposed

search algorithm.

7.1 Setup
We use two real-world road network datasets for the experiments.

They are the road networks for the city of Oldenburg (6,105 nodes,
7,034 edges) and San Joaquin County (18,263 nodes, 23,874 edges),
respectively. The reason for using these two networks is that they
well represent typical urban configurations. The degrees of con-
nectivity in the both road networks are mostly between 2 to 4. All
angular deviations less than12◦ per side (within a24◦ sector) are
perceived as “go straight”. In addition, we annotate 500 and 2,000
nodes as point-like landmarks located at intersections on Oldenburg
and San Joaquin County road networks respectively, with the loca-
tion and saliency information specified. 20% of them are annotated
as global landmarks.

Data objects are synthetically generated on the networks with
different densities (defined asthe percentages of the number of data
objects over the number of nodes in the network) varying from 1%
to 10%. These data objects are distributed uniformly over the whole
network space so that the data object distribution follows the net-
work distribution. They are indexed by an R-tree with the maxi-
mum of 10 entries in each node. According to our analysis of real
Point of Interest (POI) information available for another road net-
work for California4, 71.4% types of facilities have a distribution

4This is the only dataset currently we have access to the real cat-
egories of POI information. However, since it represents the road
network of a whole state, we prefer to use the above two datasets
which include a denser downtown grid road network region and
sparser suburban road network regions for test purpose.



Parameter Setting

Data object density 1% to 10%, increment 1%, default: 5%
k 2 to 10, increment 2, default: 4

Table 2: Parameter settings in the experiments.
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Figure 7: Effect of k.

density less than 5%. The default values and ranges of the experi-
mental parameters are summarized in Table 2.

The proposed algorithm is implemented in Java. Fork easiest-
to-reach neighbor search, we execute workloads of 50 queries (ran-
dom pick of 50 nodes in the networks as the test query locations),
also following the network distribution. In the experimental evalu-
ation, we study the efficiency of the proposed search algorithm, by
varying the number of data objects requested and the distribution
density. For each set of experiments, we only vary one parameter
and fix the other to its default value. In the experiments we mea-
sureexecution time, which indicates the total running time for the
query processing. Our experiments are conducted on Windows XP
platform with Intel Core 2 Duo CPU (2.66 GHz) and 4.0 GB RAM.
The results reported are the average of 50 individual queries.

7.2 Results
First, we study the performance of the proposed search algo-

rithm with regard tok, the number of easiest-to-reach neighbors
to be searched. Figure 7 shows the query execution time versusk
ranging from 2 to 10, with or without running the post-verification
module for global landmarks. The results of both networks show
that the running time of the network expansion module increases al-
most linearly withk. As can be expected, for a given road network,
a large value ofk corresponds to a larger area to be searched and
more network expansion steps. However, the increase of overall
number of network nodes accessed is not proportional to the in-
crease ofk. This is because the network search area for candidate
data objects overlaps.

Next, we study the performance of the proposed search algo-
rithm by varying the cardinality of data objects. Figure 8 shows the
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Figure 8: Effect of data object density.

average query efficiency versus distribution density, when search-
ing the default number of easiest-to-reach neighbors with or with-
out running the post-verification module. From this set of exper-
iments, we can conclude that in general when data object density
increases, the execution time of the network expansion module de-
creases. This is because data objects are sparsely distributed in
networks when density is relatively small. The number of steps to
encounter a data object will increase, since more network nodes
need to be expanded to get the results. In addition, by comparing
the results from the two networks, we observe that the performance
of our algorithm is insensitive to different network sizes. This can
be explained as easiest-to-reach neighbors are generally close to
query locations, so normally only a small portion of the network is
relevant to query processing.

Generally, our algorithm performs well if the distribution den-
sity is not very small, andk is not very large (both assumptions are
reasonable in practice). If we investigate the execution time of the
50×2 runs individually, it is observed that the performance of query
processing is poorer for query locations in a denser downtown grid
than a sparser suburban region for the both road networks. Usu-
ally query points far away from the central grid requires relatively
smaller number of expansion steps to find a neighboring object.

Furthermore, in the experimental evaluation we also examine the
answers returned by the existing nearest neighbor search algorithm
INE. We compare the travel distance and navigation cost of the first
easiest-to-reach neighbor of each query with the first nearest neigh-
bor (k=1, under the default density of data objects). The results
reveal that the network distance to get to an easiest-to-reach neigh-
bor has an average increase of 19.3% compared to that of a nearest
neighbor, but at the same time the navigation cost is only about
35.2% compared to that of the nearest neighbor. Thus, in return for
slightly longer travel distances, the easiest-to-reach neighbors offer
considerable advantages over the nearest neighbors in terms of their
ease of navigation (on average a saving of 64.8%), in particular for
travellers unfamiliar with a foreign city. Therefore, the algorithm
for this new type of query could be used as an alternative to the ex-



isting nearest neighbor search algorithms for advanced navigational
assistance, to benefit users by reporting best candidates in terms of
navigation complexity.

8. CONCLUSION AND FUTURE WORK
Finding a facility nearby for navigation is an increasingly pop-

ular and economically important application area for geographic
information systems. Navigation services for people in unfamiliar
environments should select route directions which are easy to fol-
low, even if they are not the shortest ones. This paper introduces
and solves such spatial queries which have not been considered be-
fore. As a result, we bridge the gap between findings from cog-
nitive science and spatial databases. Our contribution is an incre-
mental network expansion algorithm for easiest-to-reach neighbor
search. We use cognitive complexity of navigation to dynamically
label each node during a greedy search. More importantly, the al-
gorithmic correctness and efficiency are ensured through carefully
taking spatial chunking and reference to landmarks into account.
Our algorithm is flexible with respect to the cost function used, and
thus can be tailored to user preferences. Finally, a systematic exper-
imental evaluation has been conducted on different road networks
under various parameter settings, to evaluate its performance.

Currently we assume that for each required turn an instruction is
given and discrete weights are used in the cost function to model
instruction complexity. However, the proposed search algorithm
does not rely on any particular weighting scheme, as long as some
model of instruction complexity can be derived for decision points.
In some contexts, continuous weights (e.g., costs are attributed with
the angle in a turn) can be used if human travellers find them more
appropriate. In addition, knowledge about one’s environment can
influence the amount of information provided in a neighbor de-
scription and the cognitive effort put on the navigator to reach it.
We plan to further investigate tracking user movements by GPS de-
vices to allow for establishing patterns of frequently visited places
which can be assumed to be known. This enables profile-based
destination choices which can better account for specific user char-
acteristics.
Acknowledgments: The work reported in this paper is supported
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