
Local Network Voronoi Diagrams

Sarana Nutanong†, Egemen Tanin†‡, Mohammed Eunus Ali†, Lars Kulik†‡

†Department of Computer Science and Software Engineering
University of Melbourne, Victoria, Australia

‡NICTA Victoria Research Laboratory, Australia
{sarana,egemen,eunus,lars}@csse.unimelb.edu.au

ABSTRACT

Continuous queries in road networks have gained significant re-
search interests due to advances in GIS and mobile computing.
Consider the following scenario: “A driver uses a networked GPS

navigator to monitor five nearest gas stations in a road network.”

The main challenge of processing such a moving query is how to
efficiently monitor network distances of the k nearest and possi-
ble resultant objects. To enable result monitoring in real-time, re-
searchers have devised techniques which utilize precomputed dis-
tances and results, e.g., the network Voronoi diagram (NVD). How-
ever, the main drawback of preprocessing is that it requires ac-
cess to all data objects and network nodes, which means that it
is not suitable for large datasets in many real life situations. The
best existing method to monitor kNN results without precompu-
tation relies on executions of snapshot queries at network nodes
encountered by the query point. This method results in repetitive
distance evaluation over the same or similar sets of nodes. In this
paper, we propose a method called the local network Voronoi di-

agram (LNVD) to compute query answers for a small area around
the query point. As a result, our method requires neither precom-
putation nor distance evaluation at every intersection. According to
our extensive analysis and experimental results, our method signifi-
cantly outperforms the best existing method in terms of data access
and computation costs.

Keywords

Nearest neighbor, Spatial databases, Query processing.

1. INTRODUCTION
Advances in GIS and mobile computing have led to research in-

terests in continuous spatial queries in road networks. An applica-
tion scenario is: “a driver who uses a GPS navigator to continually
query the nearest gas station with respect to the moving query lo-
cation.” The main challenge of performing such a task in real time
is that the user’s movement may result in changes in the shortest
paths from the user to the surrounding nodes. These changes cause
reevaluation of network distances, which is a costly operation in
terms of graph traversal [7, 14].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM GIS ’10, November 2-5 2010. San Jose, CA, USA
Copyright 2010 ACM 978-1-4503-0428-3/10/11 ...$10.00.

To facilitate monitoring of the nearest neighbor (NN) with re-
spect to a moving query point, research in this area largely focuses
on techniques which utilize precomputed network distances and/or
partial results. One common example of such techniques is the net-
work Voronoi diagram (NVD) [10, 11]. The NVD of a setD of data
objects consists of |D| cells (i.e., collections of road segments) such
that every location in a cell shares the same nearest object in D.
Figure 1 shows the NVD of four objects a, b, c and d on a road
network. As shown in the figure, the road network is decomposed
into four cells VC(a), VC(b), VC(c) and VC(d) corresponding to a,
b, c and d, respectively. Assume that a user at the location q is
searching for the nearest neighbor. Using the NVD technique, we
can see that q is in the Voronoi cell VC(c) (the grey region), hence
c is the NN of q. The NN remains unchanged as long as q remains
inside the same region.

Figure 1: Network Voronoi diagram of a dataset {a, b, c, d}

Amajor drawback of this technique is that it requires access to all
objects and network nodes in the data space. In a large network, the
practicality of this technique lies in an assumption that construction
of an NVD can be done offline. The offline-construction assump-
tion may not hold in navigation applications where the dataset D
contains different kinds of objects and users submit object prefer-
ences during runtime. For example, a driver searching nearby gas
stations that offer bio-diesel and accept petrol discount cards would
require an NVD to be built from that specific subset of D. An-
other case is when a navigation application uses the travel time de-
rived from the current traffic condition as the proximity measure. In
such an application, changes in the traffic condition will invalidate
precomputed NVDs. When offline-construction is inapplicable, the
best existing method [1] is to execute snapshot kNN queries at net-
work nodes encountered by the query point. As mentioned earlier,
a drawback of this method is the high graph traversal cost.

To alleviate both drawbacks, we propose a technique called the
local network Voronoi diagram (LNVD). Specifically, an LNVD is
constructed by computing the NVD of a subspace around the query
point. The main novelty of our approach is a method to determine

upon which part of the LNVD can be relied to produce accurate
results. No graph traversal operation is required as long as the query
point remain in this part. Consequently, our method requires neither
offline-construction nor repetitive graph traversal operations.

The contributions of this paper can be summarized as follows.
• We propose a technique, called LNVD, to locally compute

an NVD. Our technique is the first to address the problem of
locally computing a network Voronoi diagram.

• We generalize the LNVD technique to the order-k LNVD
(kLNVD) to support monitoring of k nearest objects and pro-
vide proof of correctness for the technique.

• We conduct a complexity analysis and show the construction
time with respect to the value of k and the number n of nodes
in the kLNVD. We also show that kLNVD has a lower over-
all cost than the best competitor [1].

• We conduct extensive performance evaluations and our re-
sults show our proposed technique significantly outperforms
the best competitor.

2. PROBLEM FORMULATION
We study the problem of road-network nearest neighbor moni-

toring for a moving query point and a static dataset. A road net-
work can be represented as a graph G, i.e., a set N of nodes (junc-
tions) and a set E of edges (road segments). The weight of an edge
EDGE(ni ,nj) denotes the cost of travelling from node ni to node
nj , e.g., the distance or time. Edge weights can only assume non-
negative values. For any given two locations v1 and v2 on the graph
G, DIST(v1, v2) denotes the cost of traversing PATH(v1,v2), the
path connecting v1 to v2 that minimizes the travelling cost. Since
in practice a road network may consist of both one-way and two-
way roads, G is modeled as a directed graph. That is, an edge in E
can be unidirectional or bidirectional. In summary, G satisfies the
following quasi-metric conditions: (i) non-negativity, (ii) identity of
indiscernibles, and (iii) triangle inequality.

The k nearest neighbor (kNN) query [6] finds the nearest k data
objects with respect to a given query point. A formal definition of
the kNN query is given as follows.

DEFINITION 1 (k NEAREST NEIGHBOR (kNN) QUERY).
Given a set D of objects and a query point q, the kNN query finds

a listA of objects such that:

(i) A contains k objects from D;

(ii) for any object x ∈ A and object y ∈ (D−A), DIST(q, x) ≤
DIST(q, y);

(iii) for any adjacent entries xi and xi+1 in the list A,

DIST(q, xi) ≤ DIST(q, xi+1).

The moving kNN (MkNN) query is defined as follows.

DEFINITION 2 (MOVING kNN (MkNN) QUERY). Given a

setD of objects and a moving query point q, the MkNN query finds

a kNN result for every position of q.

3. RELATED WORK
Papadias et al. [12] proposed two approaches to processing

spatial-network kNN queries, the incremental network expansion

(INE) and incremental Euclidean restriction (IER). INE-kNN is
based on the Dijkstra’s algorithm [4], i.e., incrementally expand-
ing the search space along network edges until k nearest objects
are found. IER-kNN finds a number k′ of nearest neighbors in the
Euclidean distance where k′ is greater than or equal to k and calcu-
lates the network distances of these k′ objects to obtain the actual
spatial-network k NNs. Furthermore, an optimization in terms of

data access and distance calculations to IER-kNN was proposed
by Deng et al. [3]. In the same manner as the A* algorithm [13],
their method uses the Euclidean distance measure to derive an up-
per bound value for pruning purposes.

Cho and Chung [1] proposed a continuous kNN technique that
performs snapshot kNN queries at the intersections on the query
path. Specifically, using one of the aforementioned snapshot kNN
techniques [3, 12], continuous query answers can be produced by
exploiting the fact that the movement of a user travelling in a spa-
tial network is constrained by network connectivities. They showed
that kNN results between any two nodes can be inferred from those
of the nodes. The drawback of this approach is that it can incur
repetitive distance calculations over similar sets of nodes.

Mouratidis et al. [9] studied a kNN monitoring problem in a dy-
namic environment where locations of the query point and data ob-
jects as well as edge weights can change. They proposed a method
to handle this problem by keeping part of the kNN answer though
incremental maintenance of the shortest path tree (SPT). Incremen-
tal SPT maintenance is suitable for changing edge weights and
moving data objects, since such updates trigger only small changes
to the SPT. However, using this method with moving query points
still incurs frequent reevaluation of the kNN answer. This is be-
cause as the query point moves from the original location q to q′ ,
a vast majority of the shortest path tree (with the root at q) can
become invalid with respect to the new location q′ .

Both Dijkstra’s and the A* algorithms incur expensive graph
traversal operations, this cost is accentuated with continuous
queries. This is because, the shortest paths from a query point q

to its surround nodes change as q moves from one node to an-
other [14]. To address this issue, algorithms that utilize precom-
puted distances or partial results have been proposed. One classic
example is the network Voronoi diagram (NVD) [10, 11]. In a spa-
tial network, the NVD of a setD of data objects consists of regions
(i.e., collections of road segments) and each object in D is associ-
ated with a region/cell in which it dominates.

Kolahdouzan and Shahabi proposed a technique called the
Voronoi-based network nearest neighbor (VN3) search [7] based
in the first-order network Voronoi diagram. The technique can pro-
vide M1NN results via a simple lookup operation, while processing
MkNN queries with a higher value of k can be done by examin-
ing neighboring regions. In addition, they also proposed continu-
ous kNN algorithms [8] based on the VN3 technique. An impor-
tant drawback of these approaches [7, 10, 11] is that data objects
are used in the precomputation which means that changes in the
dataset or edge weights can render the NVD obsolete.

To remedy the dataset update problem, data objects are decou-
pled from the precomputation process. This decoupling is done by
precomputing shortest paths between network nodes and storing
the shortest path information in a hierarchical or grid-based data
structure. Samet et al. [14] formulated a kNN algorithm that utilizes
precomputed shortest path information stored in quadtrees. Specif-
ically, for each node x, the shortest path to every other node in the
network is computed. Each edge EDGE(nx ,ny) (fromnx to an im-
mediate neighbor ny) is associated with destination nodes nz such
that EDGE(nx ,ny) forms part of the shortest path PATH(x,z). This
creates a shortest path map of all nodes reachable by nx , where
each destination node is categorized according to the edges to the
immediate neighbors. For efficiency purposes, collections of des-
tination nodes are stored as quadtree regions where each region
contains only one node type.

Demiryurek et al. [2] proposed a grid-based solution to stor-
ing shortest path information. Each EDGE(nx ,ny) stores a boolean
vector 〈b1, ..., bc〉 where bi indicates whether EDGE(nx ,ny) forms

part of the shortest path from x to any node in Grid i. In addition to
a kNN algorithm, they also proposed kNN monitoring techniques
which utilize this shortest path information. Although these tech-
niques [2, 14] are unaffected by dataset updates, other updates such
as changes in edge weights may affect shortest paths and invalidate
precomputed shortest path information.

4. PRELIMINARIES
In this section, we describe the shortest path tree (SPT) and net-

work Voronoi diagram (NVD) concepts [11] which form a basis of
our proposed method. The simplest form of an SPT is one with
a single reference point, which can be obtained by executing the
Dijkstra’s algorithm [4]. Figure 2 illustrates how PATH(n12, c) is
calculated by incrementally discovering surrounding nodes accord-
ing to their distances to c. In this example, n9 is discovered first
with a distance of 3 units. Next,n8,n5 and n7 are discovered with
distances of 5 (via c), 6 (via n9) and 6 units (via n8), respectively.
The search halts when n12 is discovered with a distance of 8 units
via n9.

Figure 2 also shows that each of the nodes involved in the search
is associated with a label (p, d, nh) where p denotes the reference
point, d denotes the shortest distance, and nh denotes the node
from which the shortest distance is derived. The shortest path from
n12 to c can be obtained by recursively traversing the next hop
nh in the label (p, d, nh) until 9 is reached. In this case, we ob-
tain 〈n12, n9, c〉 as the shortest path. As displayed in Figure 2, a
shortest path tree (where the reference point c is the root) is formed
by linking the next hop nh of all nodes involved in the calculation.

Figure 2: Calculation of DIST(n12, c) via the Dijkstra’s algo-

rithm where each node (involved in the computation) is associ-

ated with a label (q, d,nh).

The same incremental expansion principle can also be used to
construct an NVD of a set D of data objects. The first step is to
build an SPT with objects in D as reference points and incremen-
tally expand the search space around each of these objects until all
nodes are visited. By ensuring that nodes are visited according to
the minimum distance to the objects in D, each node is associated
with its nearest object.

After the SPT ofD is constructed, NVD cell boundaries are com-
puted based on the information regarding the distance and NN ob-
tained during the SPT construction. Specifically, a boundary point
is computed for each edge where the two end nodes have different
nearest objects. After the Voronoi cells boundaries are identified,
the NNwith respect to any query location q in the data space can be
obtained by identifying the cell in which q resides. The main draw-
backs of this method is that it requires: (i) global access to the data,
where costs could be prohibitive; (ii) a preconstructed Voronoi di-
agram for each dataset. In the next section, we will show how such
drawbacks can be mitigated by our proposed technique.

5. LOCALIZING VORONOI DIAGRAMS
This section presents our proposed technique, the local network

Voronoi diagram (LNVD), and how it can be used to process mov-
ing nearest neighbor queries. As exemplified in Figure 3, an LNVD
is a Voronoi diagram of a subspace. In other words, we delimit the
area of interest to road segments (edges), intersections (nodes) and
data objects within a specific search region. As a result, construc-
tion of an LNVD requires only local information and by limiting
the search region to a small, manageable size, an LNVD can be
constructed on the fly. In this example, we set our search region to
the region within a range of 14 units from the query point q. This
search region (highlighted in grey) is denoted as SR(q, 14). Based
on information within SR(q, 14), an LNVD is constructed. Since
SR(q, 14) contains three objects a, b and c, our LVND, in this
case, has three local Voronoi cells where each is associated with its
nearest neighbor (NN). The correctness of these NNs are guaran-
teed even under partial information.

An LNVD comprises local Voronoi cells of data objects within
the search region. Each local Voronoi cell LVC(p) can be bounded
by two bisector types:
(i) internal: a boundary between LVC(p) and one of its immedi-

ate neighbors known.
(ii) external: a boundary between a cell of a known neighbor and

a region in which the search region does not provide further
NN information.

As illustrated in Figure 3, the cell LVC(c) is bounded by three inter-
nal bisectors and three external bisectors. The LNVD in this exam-
ple is the road segments covered by the three cells LVC(a), LVC(b)
and LVC(c). As long as the query point q remains inside the LVND,
the NN with respect to q can be obtained by identifying the cell in
which q resides.

Figure 3: Local network Voronoi diagram with respect to a

search region SR(q, 14) and objects a, b and c

5.1 Data Retrieval
The first step to constructing an LNVD is to retrieve the data

objects in the search region SR(q, r). We utilize the incremental-
network-expansion (INE) range query [12] to retrieve objects and
to calculate the network distances of nodes within the search re-
gion. For example, SR(q, 14) in Figure 3 comprises nodes and
edges in the grey region whose distances from q are less than or
equal to 14 units. The boundaries that delimit this search space are
shown as grey crosses in the figure.

5.2 Reliability of Local Information
Since we consider only a subset of the whole data space, the

Voronoi diagram constructed based on this local information cannot
be complete. In this subsection, we present a method to determine
the reliability of a local NN result. The condition of an object being
reliable with respect to a node ni is formally defined as follows.

DEFINITION 3 (RELIABILITY OF A DATA OBJECT). Given

an object p inside SR(q, r) and s outside SR(q, r), p is reliable

with respect to ni if it is guaranteed that s is not closer to ni than

p. That is, DIST(ni , p) is less than or equal to a lower bound of

DIST(ni , s).

We now describe how to derive INFIMUM(DIST(ni , s)), the
greatest lower bound of DIST(ni , s). Since we only know
that s is outside SR(q, r), INFIMUM(DIST(ni , s)) is the
MINIMUM DISTANCE (MINDIST) from ni to the boundary set B
of SR(q, r). That is,

INFIMUM(DIST(ni , s)) = MINDIST(ni ,B).

As a result, we need to rule out the region containing locations v

such that v is closer to B than any object. This is because, an object
outside SR(q, r) can be the NN with respect to v. In other words,
SR(q, r) does not pertain enough information to produce the NN
with respect to v. As shown in Figure 3, MINDIST(n12,B) is 4
units while c as the nearest object in SR(q, r) produces a distance
of 8 units. Hence, n12 does not have a guaranteed NN. A method
to identify regions that have no guaranteed NN is presented in the
next subsection.

5.3 Construction
The intuition behind our LNVD construction method is to iden-

tify the following two region types:
• local Voronoi cell (LVC), a region with a guaranteed NN;
• boundary-dominated cell (BDC), a region in which the NN

cannot be inferred from information in SR(q, r).
We propose a method to incrementally label nodes based on their
distances to its nearest object and the boundaries of SR(q, r).
Specifically, we consider the boundary set B as one data object
whose distance from a node ni is given by MINDIST(ni ,B). By
associating the closest object (or the boundary set B) to each node
in SR(q, r), we can identify edges EDGE(ni ,nj) such that ni and
nj are associated with two different nearest objects (denoted as pi

and pj , respectively). The bisector between the cells of pi and pj

on EDGE(ni ,nj) is the location equidistant to pi and pj .
Algorithm 1 provides the steps of our proposed LVND construc-

tion method. We first define the network data structure used in the
algorithm. A network/graph is represented using the adjacency-list
format, i.e., a list of nodes where each node entry contains infor-
mation regarding its adjacent nodes. The data structure NODE is
defined as follows.

DEFINITION 4 (NODE). The structure of a node ni contains

the following attributes:

• ID: the node identification.
• Adjacency list (AdjList): a list of edges to/from immediate

neighbors and associated weights.

• Label: a label of ni contains three attributes (p, d, nh)
where

– p is the associated NN,

– d represents DIST(ni , p), and
– nh represents the next hop in order to reach p.

• Type: a node type is “Labelable” by default and becomes

“Permanent” after it is labelled.

Another important data structure used in the construction process
is the priority queue, which is defined as follows.

DEFINITION 5 (PRIORITY QUEUE). A priority queue is a

container of priority queue entries. Each priority queue entry com-

prises four attributes (n, p, d, nh). The first attribute n is a refer-

ence of the node to which the entry corresponds. The other three

attributes (p, d, nh) form a labeling candidate for n. Entries in a

priority queue are organized in such a way that an entry (p, d, nh)
with the smallest labelling distance d is always the head entry.

Algorithm 1: Construct-LNVD(D, G, q, r)

input : Dataset D, Graph G, Query Point q, Distance r

output: Graph G with labels and LVC boundaries

Initialize Priority Queue PQ;1

A← INE-RangeQuery(D, G, q, r);2

B ← {v : DIST(q, v) = r};3

for each (object p inA) do4

Node np ← Create a network node from p;5

G.Insert(np);6

PQ.Insert(PQEntry (np , p, 0,−));7

for each (node nb adjacent to B) do8

PQ.Insert(PQEntry (nb ,B, r − DIST(q, nb),B));9

while PQ is not empty do10

PQEntry (n, p, d, nh)← PQ.DequeueHead();11

if n.Type is Labelable then12

n.Label← (p, d, nh);13

n.Type← Permanent;14

for each Adjacent node na of n in SR(q, r) and na is15

Labelable do
Distance da ← d+ weight of EDGE(na ,n);16

PQ.Insert(PQEntry (na , p, da, n));17

for each bidirectional edge EDGE(ni ,nj) in SR(q, r) do18

Check for external and internal bisectors on EDGE(ni ,nj);19

return G;20

The LNVD construction steps in Algorithm 1 can be described
as follows. The algorithm accepts four input parameters: the dataset
D, the graph G, the query point q and the range r. The construction
process is divided into the following three stages.

Initialization (Lines 1 to 9): The first step is initialization of a pri-
ority queue PQ. Next we execute a range query to retrieve objects
whose distances from q is less than or equal to r, and to calcu-
late network distances of nodes within the range. Upon comple-
tion of the range query execution, we also identify the boundary
set B of SR(q, r), i.e., a set of locations v such that DIST(q, v) is
equal to r. (A method to determine an appropriate size for SR(q, r)
is given in Section 8.1.) For each of the retrieved objects p, we
create a node entry np , insert it into G and modify the affected
edges accordingly. Next, a priority queue entry (np , p, 0,−) is
created and inserted into PQ. Note that the fourth attribute, next
hop, is null (“−”) since np is already at p. For each node nb adja-
cent to B, we create an entry (nb ,B, MINDIST(nb,B),B), where
MINDIST(nb ,B) is equal to (r − DIST(q, nb)). The entry is then
inserted into PQ.

In the context of our running example (Figure 3), after the ini-
tialization steps, PQ has

• initial object entries of (a, a, 0,−), (b, b, 0,−) and
(c, c, 0,−);

• initial boundary entries of (n2,B, 3,B), (n1,B, 4,B),
(n10,B, 4,B), and (n12,B, 4,B).

SPT construction (Lines 10 to 17): Our SPT construction process
is conducted in a best-first manner. In particular, at each iteration
of the while loop, the head entry (n, p, d, nh) is retrieved from
PQ. Then, we check whether the corresponding node n can still
be labelled. If so, the node label is set to (p, d, nh) and the node
type is changed to permanent. Next, for each node na in SR(q, r)
that can reach n by a single hop, we calculate a labelling distance
da (for na) as the sum of d and the weight of EDGE(na ,n). The

while loop iterates until PQ is exhausted. An end result of this
step is an SPT of objects in SR(q, r) as generators. Each node in
the SPT is associated with a reliable NN or the boundary set B as
displayed in Figure 4.

Based on the example given in Figure 3, Figure 4 shows the order
in which nodes are labelled during the SPT construction. The SPT
is generated from {a, b, c} and B as reference locations. The con-
struction process starts from nodes with smallest distances to these
reference locations and incrementally explore neighboring nodes
until every node SR(q, r) is associated with its nearest object.

Figure 4: Shortest path trees generated from {a, b, c} and B

Bisector calculation (Lines 18 to 19): After having created an
SPT, each node is associated with its reliable NN or the boundary
set B. The next step is to compute external and internal bisectors
by checking each bidirectional edge EDGE(ni ,nj) in SR(q, r).1

• Internal bisector. An internal bisector is on an edge
EDGE(ni ,nj) such that ni and nj are associated with two
different NNs (assuming no boundaries on EDGE(ni ,nj)).
Let pi and pj be the NNs of ni and nj respectively. The
internal bisector on EDGE(ni ,nj) is the location v such that

DIST(v, pi) = DIST(v, pj).

Consider EDGE(n3,n7) in Figure 3 as an example. The NN
of n3 is b with the distance of 5 units and the NN of n7 is
c with the distance of 6 units. The bisector between b and a

on EDGE(n3,n7) is the location 1 units from n3 and 2 units
from n7. The location is 7 units to both b and a.

• External bisector. An external bisector is on an edge
EDGE(ni ,nj) such that ni is associated with an NN pi

and nj is associated with B.2 The external bisector on
EDGE(ni ,nj) is the location v such that

DIST(v, pi) = MINDIST(v,B).

Consider EDGE(n5,n6) in Figure 3 as an example. The NN
of n5 is a with the distance of 4 units while n6 is associated
with B with MINDIST(n6,B) of 2 units. The bisector be-
tween a and B on EDGE(n5,n6) is the location 2 units from
n5 and 4 units from n6. The location is 6 units to both nb

and B.
1If EDGE(ni ,nj) is unidirectional (ni → nj), the NN of any lo-
cation v between ni and nj is the same as that of nj , since we
cannot travel to ni without passing nj . This principle also applies
to the order-k LNVD described in the next section.
2For the purpose of bisector calculations, we consider each bound-
ary in B as a node with the MINDIST to B of 0 units.

Note that boundary calculation on one edge is independent from
others. Hence one may choose to defer the computation until an
edge is visited by the query point to avoid unnecessary boundary
computation.

5.4 Query Processing
Processing a moving nearest neighbor query using the LNVD

technique can be done as follows. Assume that the initial location
of the query point is q. We can use Algorithm 1 to construct an
LNVD with respect to a search region SR(q, r). After an LNVD is
constructed, it can be used to provide the following information:

• the nearest neighbor with respect to any location q′ within
the LNVD by identifying the local Voronoi cell in which q′

resides;
• the shortest path to the nearest neighbor using the shortest

path tree.
If q′ is outside the LNVD (i.e., having crossed an external bisec-
tor), we can again use Algorithm 1 to construct an LNVD with
respect to the current query location q′. It is also possible to derive
a technique to make use of existing information to reduce the con-
struction cost of the new LVND. Formulation of such a technique
and its computational benefits (in comparison to constructing a new
one from scratch) can be investigated as future work.

5.5 Proof of Correctness
This section shows that Algorithm 1 produces accurate results.

First, we show that network distances calculated by the algorithm
is correct in Lemma 1.

LEMMA 1 (CORRECTNESS OF DISTANCE CALCULATIONS).
For any location v in SR(q, r), only nodes in SR(q, r) are re-

quired to calculate (i) the distance from v to the set B of SR(q, r)
boundaries, and (ii) the distance from v to its its guaranteed NN p

(if exists).

PROOF. First, we show that a path from v to a boundary in B
that includes a location v′ outside SR(q, r) can never be the path
that minimizes the distance from v to B. Since SR(q, r) is fully
enclosed by B, in order to travel from v to v′ , one has to en-
counter a boundary x in B. Since, DIST(x, v′) cannot assume a
negative value, DIST(v, v′) can never be smaller than or equal to
MINDIST(v,B) and the calculation of MINDIST(v,B) need not
include any node outside SR(q, r).

Second, we show that for each location v with a reliable NN of
p, PATH(v,p) does not include any location v′ outside SR(q, r).
According to Definition 3, for p to be reliable with respect to v, the
following condition has to be satisfied:

DIST(v, p) ≤ MINDIST(v,B).

Since v′ is outside the boundaries of SR(q, r),

DIST(v, p) ≤ MINDIST(v,B) < DIST(v, v′).

Hence, PATH(v,p) can never include v′ .
As a result, we need to consider only nodes and edges in

SR(q, r) in order to calculate distances from a location v to its
guaranteed NN or the boundary set B.

After having established that distances calculated by Algorithm 1
is correct, we are now ready to show that the NN associated to each
local Voronoi cell is also correct in Lemma 2.

LEMMA 2 (CORRECTNESS OF ALGORITHM 1). Given an

object p inside a search space SR(q, r), for any location v in

LVC(p), p is the nearest neighbor of v.

PROOF. Since LVC(p) is bounded by internal and external bi-
sectors, any location v in LVC(p) satisfies the following two con-
ditions. First, for all data objects p′ inside SR(q, r),

DIST(v, p) ≤ DIST(v, p′).

Second, p is reliable with respect to v. That is, for all data objects
s outside SR(q, r),

DIST(v, p) ≤ DIST(v, s).

Since each data object is either inside or outside SR(q, r), p is
guaranteed to be the nearest neighbor with respect to any given
location v in LVC(p).

6. EXTENDING TO ORDER-K
The earlier described LNVD concept can be generalized to the

order-k LNVD (kLNVD). An kLNVD with respect to SR(q, r)
consists of local Voronoi cells (LVCs), where each cell corresponds
to a specific kNN result. As displayed in Figure 5, an kLVND
(where k is 2) consists of four LVCs corresponding to the following
four rank-sensitive kNN answers: 〈a, c〉, 〈b, c〉, 〈c, a〉 and 〈c, b〉.
Similar to an order-1 LNVD, the boundaries of each LVC in an
kLVND may comprise internal and external bisectors which are
defined as follows.

• Internal bisector (white cross). A location where the query
answer changes from one guaranteed kNN to another.

• External bisector (black cross). A location where the bound-
ary set B has the same distance as the kth NN. That is, the
kth NN is about to become unreliable.

Figure 5: Order-2 local network Voronoi diagram with respect

to a search region SR(q, 14) and objects a, b and c

6.1 Algorithm
Algorithm 2 provides the steps to construct a kLNVD. The al-

gorithm is based on the same best-first graph traversal principle in
Algorithm 1. In the same fashion as the order-1 LNVD where each
network node is associated with its NN, each network node in a
kLNVD is associated with its k NNs. Specifically, for each node
n , n .Label is replaced by n .LabelList (a list of labels). Hence, the
labelling of n is done by inserting a label into n .LabelList and n

becomes permanent upon completion of k labels or inclusion of a
boundary label.

The algorithm shares the same initialization steps (Lines 1 to 9)
as Algorithm 1. For the SPT construction (Lines 10 to 18), we
also utilize the best-first graph traversal principle using the prior-
ity queue PQ. At each iteration, the head entry (n, p, d, nh) is de-
queued from PQ. The entry is added into n .LabelList if (i)n .Type
is labelable, and (ii) there is no label with p as the associated NN

Algorithm 2: Construct-kLNVD(D, G, k, q, r)

input : Dataset D, Graph G, k, Query Point q, Distance r
output: Graph G with labels and LVC boundaries

Initialize Priority Queue PQ;1

A← INE-RangeQuery(D, G, q, r);2

B ← {v : DIST(q, v) = r};3

for each (object p inA) do4

Node np ← Create a network node from p;5

G.Insert(np);6

PQ.Insert(PQEntry (np , p, 0,−));7

for each (node nb adjacent to B) do8

PQ.Insert(PQEntry (nb ,B, r − DIST(q, nb),−));9

while PQ is not empty do10

PQEntry (n, p, d, nh)← PQ.DequeueHead();11

if n.Type is Labelable and no existing label with p then12

n.LabelList.Add(Label (p, d, nh));13

if n.LabelList.Length = k or Object p is the set B of14

SR(q, r) boundaries then
n.Type← Permanent;15

for each Adjacent node na of n in SR(q, r) and na is16

Labelable do
Distance da ← d+ weight of EDGE(na ,n);17

PQ.Insert(PQEntry (na , p, da, n));18

for each bidirectional edge EDGE(ni ,nj) in SR(q, r) do19

Check for external and internal bisectors on EDGE(ni ,nj);20

return G;21

in n .LabelList. The node type is changed from labelable to perma-
nent if there are k labels or an entry with B is inserted. For each
adjacent node na in SR(q, r), a priority queue entry is created and
is inserted into PQ. The while loop repeats until PQ is exhausted.
As a result, each node ni is associated with at most k unique re-
liable NNs, which are ranked according to the distances from ni .
For each node ni in SR(q, r), the number of associated NNs de-
pends on the number of reliable NNs it has, which is determined by
MINDIST(ni ,B). For examples,

• n10 has no NN associated because B is closer to n10 than
any object in SR(q, r);

• n1 is associated with only b, because b is the only object
with a distance smaller than MINDIST(n1,B);

• n5 has two NNs, a and c, because both DIST(n5, a) and
DIST(n5, c) are smaller than MINDIST(n5,B).

Internal and external bisectors can be calculated by categorizing
the bidirectional edges EDGE(ni ,nj) into three types:

• Both ni and nj have data objects as k NNs. In this case,
we can use the split-point calculation method [8] to identify
locations that the kNN answer changes. All bisectors calcu-
lated in this case are internal, since there is no boundary set
B involved in the calculations. As exemplified in Figure 6,
the bisector BT(a, c) separates the two LVCs, LVC(〈a, c〉)
and LVC(〈c, a〉).

Figure 6: Both end nodes have 2 reliable data objects

• One of the end nodes (namely nj) has the boundary set

B in its label list. We still use the split-point calculation
method [8] to identify internal bisectors based on the NNs
from the two end nodes. The only difference is that the
calculation terminates when B replaces the kth nearest ob-

ject. That is, an external bisector x is found. By this means
we guarantee that for any location v between ni and x,
MINDIST(v,B) is always greater than or equal to the kth
NN with respect to v. Hence, all of the k NNs are re-
liable with respect to v (Definition 3). As exemplified in
Figure 7, n7 is associated with 2 reliable objects c and
b, while n3 only has b as its only one reliable object.
The edge EDGE(n7,n3) has one internal bisector and one
external bisector. The internal bisector BT(c, b) separates
LVC(〈c, b〉) and LVC(〈b, c〉). The external bisector sepa-
rates LVC(〈b, c〉) from the exterior of the LNVD.

Figure 7: Only one end node has 2 reliable data objects

• Both end nodes have the boundary set B in their label lists.

Such edges are ignored since neither end nodes have reliable
k NNs.

As a result, each EDGE(ni ,nj) is decomposed into local Voronoi
cells (LVCs) where each corresponds to a specific rank-sensitive
kNN answer.

6.2 Proof of Correctness
Since network distances in Algorithm 2 are calculated in the

same way as Algorithm 1, their correctness is also supported by
Lemma 1. For the kNN results, we can extend Lemma 2 and its
associated proof as follows.

LEMMA 3 (CORRECTNESS OF ALGORITHM 2). Given an

LVC with an associated kNN answer of 〈p1, ..., pk〉, for any

location v the LVC, 〈p1, ..., pk〉 are the rank-sensitive kNN
answer with respect to v.

PROOF. The function of internal and external bisectors of
kLVND is similar to those of order-1 LNVD, so we extend the
proof for Lemma 2 as follows. For any location v in an LVC of a
kNN list 〈p1, ..., pk〉, internal and external bisectors ensures the
following.

• First, internal bisectors ensure that the kNN list is sorted
according to the distances to v, and for any object p′ in
SR(q, r) but not in the kNN list, p′ is not closer to v than
any object in the kNN list.

• Second, external bisectors ensure that all of objects in the
kNN list are reliable with respect to v. That is, there is
no object outside SR(q, r) closer to v than any object in
〈p1, ..., pk〉.

As a result, 〈p1, ..., pk〉 is guaranteed as the rank-sensitive kNN
answer for all locations v in LVC(p).

7. COMPLEXITY ANALYSIS
In this section, we analyze the time complexity of the

kLVND construction algorithm and the best competitor by
Cho and Chung [1]. For conciseness, we call their method “CC-
kNN”. We assume that the number of intersections is much greater
than the number of data objects as it is the case in existing litera-
ture [11, 12].

7.1 Proposed Method: Order-k LNVD
We now derive the complexity of Algorithm 2 as follows. The

total cost can be considered as the sum of the costs of the following
steps: (i) execution of a range query and insertion of initial entries
into the priority queue; (ii) the main kLNVD construction loop.

In Sections 5 and 6, for exposition purposes, a search region is
expressed as SR(q, r), where q denotes the search region’s cen-
troid and r denotes the search range. In other words, q determines
the location and r determines the size of the search region. In our
analysis, we use the number n of nodes inside the search region in-
stead of r to represent the size of the search region. This is because,
n has a more easy to analyze, observable effect on the processing
cost than r. Note that the same INE range query concept can still
be applied to discover n nearest nodes around q. That is, the search
terminates when n nearest nodes around the query point is discov-
ered instead of when the distance r is reached. In this case, the
value of r is determined by n. That is, r is the distance from q to
the farthest node of the n nodes in the search space.

We first derive the range query cost. Assume that the Dijkstra’s
algorithm is used in the retrieval process to compute the distances
and shortest paths of nodes in the search region. We obtain O(e +
n log n) as the cost of this operation, where e denotes the number
of edges in the search region [5]. In a planar graph, e is proportional
to the product of n and the degree of the graph, which is a small
constant. Therefore, we have O(n log n) as the range query cost in
our setting. The next operations are insertions of the generators in
A and nodes adjacent to the boundary set B into the priority queue.
The cost of each insertion operation (using the Fibonacci heap) is
constant [5]. Therefore the cost of these insertion operations are
O(|A| + |B|). Both |A| and |B| are much smaller than n, so it is
dominated by the range query cost. Therefore, the cost of the first
step is O(n log n).

Next, the cost of constructing a kSPT can be derived from the
number of iterations of the while loop (Lines 10 to 18) and the
cost of priority queue operations (i.e., dequeue and insertion) for
each iteration. The number of while loop iterations is the maximum
number of priority queue entries, which can be derived as a product
of three parameters: the number n of nodes, the number k of labels
per node and the maximum number of priority queue entries that
can be generated from each label.3 The last parameter is equal to
the degree d of the graph, i.e., the number of adjacent nodes. We
have (n · k · d) as the number of priority queue entries and the
number of iterations.

For each iteration, the cost of a dequeue operation is logarithmic
with respect to the priority queue size. We also use (n · k · d) as
the priority queue size. Hence, the total cost of the dequeue oper-
ations is O (n · k · d · log(n · k · d)). For the priority queue inser-
tions, only at most (n · k) of priority queue entries would satisfy
the condition in Line 12 and the for loop (Lines 16 to 18) iterates
at most d times. Therefore we have O (n · k · d) as the total cost
of the insertion operations, which is dominated by the dequeue op-
erations. In a planar graph, the degree d is a small constant, so the
total cost of the second step isO (kn log kn).

The cost of bisector calculations is not included in the con-
struction cost. This is because calculations of bisectors on an edge
EDGE(ni ,nj) can be deferred until EDGE(ni ,nj) is visited by the
query point. That is, only edges along the query trajectory have
their bisectors calculated. As a result, the construction cost involves
only two cost components: (i)O(n log n) for the initialization, and
(ii)O(kn log kn). Since the latter dominates the former, we have

O (kn log kn)

as the total construction cost.
The value of k is the number of nearest neighbors reported to

the user. The number n of nodes determines the search region size,

3Under the assumption that (|A|+ |B|) is much smaller than n, the
(|A| + |B|) initial priority queue entries can be neglected.

which has the two following effects. First, n has a positive corre-
lation with the construction cost. Second, a greater value of n also
means that we have a larger kLNVD, which in turn provides more
kNN answers per each construction. Studies on these effects of the
value of n are given in Section 8.1.

7.2 Best Existing Competitor
We now consider the competitor, CC-kNN [1], which executes

the kNN query at each network node. Assume that the Dijkstra’s
algorithm [4] is used to discover the k NNs at each instance of
the kNN query. The cost for each query instance can be given as
O(n′ log n′), where n′ denotes the number of nodes visited by the
Dijkstra’s algorithm in order to obtain the k NNs. The number n′

of visited nodes can be estimated as a product of the number k
of objects and the relative density ρ of nodes with respect to ob-
jects (i.e., the number of nodes divided by the number of objects).
Figure 8 provides an empirical support for this estimate (k · ρ) by
comparing it with measured values of n′. The test was conducted
on a road network dataset of North America with 175,813 nodes.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8 9 10

#
n

o
d

e
s
 n

’

k

measured n’
estimated n’

(a) k vs n′

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 400 800 1200 1600 2000

#
n

o
d

e
s
 n

’

Relative Density

measured n’
estimated n’

(b) ρ vs n′

Figure 8: The number n′ of nodes involved in a kNN evaluation

in comparison to the estimate (k · ρ) (Each result is the average

from 20 query instances.)

We can therefore express the cost of each kNN retrieval as

O (kρ log kρ) .

That is, the kNN cost is loglinear with respect to the product of k
and ρ. This cost is incurred every time the query point encounters
a new node.

7.3 Summary
For the kLVND, since the search space must include at least k

objects, (k ·n) is greater than (k ·ρ). As a result, the kLVND cost of
O (kn log kn) is greater than the kNN cost. However, the kNN cost
of O (kρ log kρ) is incurred every time the query point encounters
a new node, which can be disadvantageous in a setting with a high
node density. In the next section, through experimental studies, we
show that the order-k LNVD has a lower cost than the competitor,
CC-kNN, when taking into account the fact that an LNVD contains
kNN answers of multiple nodes.

8. EXPERIMENTAL STUDIES
In this section, we evaluate the performance of our proposed

method in comparison to the best competitor, CC-kNN [1]. The
experiments were conducted on a machine with an 2.66GHz Intel
Core 2 Duo CPU, 4GB of main memory, and Linux 2.6.32 kernel
as the operating system. All techniques were implemented on Java.
We used a road network dataset of North America with 175,813
nodes and a diameter of 18,579 units. The experiments consist of
two studies. In the first study, we present an empirical method to
determine the size of a search region for the LNVD construction
algorithm (Algorithm 2). In the second study, we compare the per-
formance of our proposed method to that of the competitive one.

8.1 Determination of the Search Region Size
In the first experimental study, we present an empirical method to

derive an appropriate size of the search region (SR) with different
values of k and ρ. As mentioned earlier, the SR size can be varied
by adjusting the number n of nodes it contains. The value of n is
important to the performance of our kLNVD method. A greater n
value provides a larger kLNVD but incurs a greater construction
cost. If the n value is too small on the other hand, kLNVD may
not contain enough complete nodes (nodes with a complete kNN
answer) and results in frequent kLVND constructions. We use m
to denote the number of complete nodes in a kLNVD.

In this experimental study we observe the effect of n on the pro-
cessing cost t and the payoff, i.e., the number m of complete nodes.
The processing cost (denoted as t) is the product of the following
two measurements:

• the number of while-loop iterations in Algorithm 2, and
• the logarithm of the maximum priority queue size.

Our main objective is to find an SR size n that yields a reasonable
cost-payoff ratio (t/m) for given values of k and ρ.

An appropriate search region size n depends on the k values, and
the relative density ρ of nodes with respect to objects. Specifically,
a greater value of k requires a greater value of n to counteract a
stricter kNN completion requirement for each node, and a greater
value of ρ requires a greater value of n to compensate for the re-
duced number of objects per node. As a result, we use (n/ρ/k) as
a normalized SR size to neutralize the effects of k and ρ. We varied
the value of (n/ρ/k) from 1 to 6 in this study. Experiments were
conducted on k of 4 and 8 objects and ρ of 400 and 800 nodes per
object.

Figure 9(a) shows the effect of (n/ρ/k) on the processing cost t.
We can see that t has a positive correlation with (n/ρ/k), since an
increase in n results in a greater number of iterations and a greater
priority queue size. It can be seen that an increase in (n/ρ/k) re-
sults in both an increase in the number m of complete nodes and
the processing cost t. In order to find an appropriated value of n
(with respect to fixed values of k and ρ), we display the processing
cost per complete node, i.e., (t/m), in Figure 9(b). For all exper-
imented values of k and ρ, (t/m) drastically reduced as (n/ρ/k)
increased from 1 to 2. An increase in the value of (n/ρ/k) beyond
3 hardly improved the processing cost per complete node. In the
interests of keeping the LNVD in a small and manageable size, we
use 3 as our value of (n/ρ/k). That is, we set the SR size such that
the number n of nodes is

n = 3 · ρ · k. (1)

Another measure we use to display the behavior of Algorithm 2
is the completion ratio (m : n), i.e., the number of complete nodes
divided by the number n of nodes inside the SR. Figure 9(c) dis-
plays the effect of (n/ρ/k) on the completion ratio. The figure
shows that the completion ratio increases in a diminishing rate as
(n/ρ/k) increases. The results from different values of k and ρ
produce approximately the same curve. As a result, Equation 1 ef-
fectively sets the completion ratio to approximately 35%

Since we set the number n of nodes inside SR to (3 · ρ · k), we
can express the kLNVD construction cost as

O
`

ρk2 log ρk2
´

.

As earlier discussed, for this value of n, the number m of complete
nodes is 35% of n, i.e.,m = (0.35 ·3 ·ρ ·k). Hence, we can express
the cost per complete node as

O
`

k log ρk2
´

.

Since only some of the m complete nodes in SR are visited by the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6

P
ro

c
e

s
s
in

g
 c

o
s
t

t
(x

1
0

6
)

n/ρ/k

k=8, ρ = 800
k=8, ρ = 400
k=4, ρ = 800
k=4, ρ = 400

(a) Processing cost t

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 1 2 3 4 5 6

C
o

s
t-

p
a

y
o

ff
 r

a
ti
o

 (
t/

m
)

n/ρ/k

k=8, ρ = 800
k=8, ρ = 400
k=4, ρ = 800
k=4, ρ = 400

(b) Processing cost per com-
plete node (t/m)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 1 2 3 4 5 6

C
o

m
p

le
ti
o

n
 r

a
ti
o

 (
m

/n
)

n/ρ/k

k=8, ρ = 800
k=8, ρ = 400
k=4, ρ = 800
k=4, ρ = 400

(c) Completion ratio (m/n)

Figure 9: kLNVD construction costs and payoff

query point, a more accurate comparison can be done by measuring
the performance of the two methods when used to process an actual
moving kNN query. Specifically, the comparative cost of the two
methods depends on the number nq of nodes encountered by the
query point per each time a kLNVD is constructed. For example,
in a planar graph, we can assume that nq is proportional to

√
m,

which results in a cost per visited node of

O
“

k
p

ρk log ρk2

”

.

In comparison to the CC-kNN’s processing cost of
O (ρk log ρk) , we can see that kLNVD is more suitable to a
setting of a small k value and high node density ρ. We argue that
a setting of large ρ and small k is a valid assumption in actual
application environments through the following reasons. First,
a mobile user who is driving or walking can pay attention to
only a small number k of resultant objects. For example, most
navigation devices display only 5 to 10 NNs at a time. Second, a
high number of nodes is required to produce an accurate model of
a road network. For examples, eight nodes are required to model
an intersection where right turns (assuming a left-hand traffic) are
not permitted, and four nodes are required to model a road u-turn.
To provide an insight into the behaviors of the two methods in a
more realistic query processing environment, we report results of
our experimental studies in the next section.

8.2 Performance Comparison
In this section, we study the performance of our proposed

method in comparison to CC-kNN [1]. We used two trajectory
types: single destination (SD) and multiple destination (MD).

• An SD trajectory represents a user travelling along a short-
est path from a start location and a destination, e.g., a user
travelling interstate.

• An MD trajectory represents a case of a user changing their
destination every 300 units, e.g., a delivery truck driver drop-
ping off goods at multiple locations.

We generated 20 trajectories of each type and experimental results
are reported as average of these trajectories. The trajectory length
is fixed to 3,000 units, i.e., 1.61% of the network diameter. Experi-

ments were conducted to study the effect of two parameters:
• The k value: ranged from 2 to 10 with a default of 6.
• The density ρ of nodes with respect to objects: ranged from

400 to 2,000 with a default of 1,200.
The aim of this set of experiments is to test the validity of the cost

per visited node of the kLNVD, O
`

k
√

ρk log ρk2
´

, and the cost
of CC-kNN, O (ρk log ρk) , derived in Section 8.1 (also recall the
analysis in Section 7.) The processing cost can be given as the prod-
uct of the number of iterations and the cost per iteration. The cost
per iteration is the logarithm of priority queue size. For kLNVD,
O

`

k
√

ρk
´

represents the number of iterations and O
`

ρk2
´

repre-
sents the priority queue size. For CC-kNN, both number of itera-
tions and priority queue size areO (ρk). As we vary the parameters
k and ρ, we expect the behavior of both algorithms to conform with
this analysis.

For each parameter, the two methods are compared using the
following cost measures.

• Total time: the time taken to process a trajectory.
• Processing cost: the product of: (i) the number of iterations

of the while-loop in Algorithm 2, and (ii) the logarithm of the
maximum priority queue size.

• Number of queries: The number of times the NN query or
the kLNVD construction method is executed.4

Total time. Figure 10 shows that the total times of both methods
have positive correlations with ρ and k, which conform with the
cost analysis given in Section 8.1. The figure also shows that SD
trajectories are more expensive to process than MD, since MD tra-
jectories are more likely to remain in the same area than SD. Our
proposed method, kLNVD, consistently outperforms CC-kNN by
approximately one order of magnitude. The breakdown of the total
time is given in the next paragraph.

 100

 1000

 10000

 2 4 6 8 10

ti
m

e
 (

m
s
)

k

CC (SD)
CC (MD)

kLNVD (SD)
kLNVD (MD)

(a) k vs total time

 100

 1000

 10000

 400 800 1200 1600 2000

ti
m

e
 (

m
s
)

ρ

CC (SD)
CC (MD)

kLNVD (SD)
kLNVD (MD)

(b) ρ vs total time

Figure 10: Effects of k and ρ on the total time

Processing cost. We define the processing cost as the product of
the number of while-loop iterations and the cost per iteration (log-
arithm of the priority queue size). Figure 11 shows the processing
cost and these two components with respect to different values of
k and ρ. As suggested by the analysis, Figure 11(a) shows that an
increase in k provides a more drastic effect on the number of iter-
ations than CC-kNN and Figure 11(b) shows that an increase in ρ
produces a drastic increase in the number of iterations of CC-kNN
and a moderate increase for kLNVD. The number of iterations of
kLNVD in both figures are significant lower than that of CC-kNN.

In terms of the priority queue size (Figures 11(c) and 11(d)), CC-
kNN has a significantly smaller priority queue than kLNVD. This
is because kLNVD construction involves more nodes and labels per
node than CC-kNN. As suggested by the cost analysis, the priority
queue size of kLNVD drastically increases as k increases, while an
increase in ρ produces an increase in the same rate as CC-kNN.

The overall processing cost (Figures 11(e) and 11(f)) is approx-

4This measure is indicative of the number of communications when
data objects are retrieved from a remote location.

imately the product of the number of iterations (Figures 11(a)
and 11(b)) and the logarithm of the priority queue size (Fig-
ures 11(c) and 11(d)). Hence, the number of iterations has a greater
effect on the processing cost than the priority queue size. Fig-
ures 11(e) and 11(f) also shows that kLNVD significantly outper-
forms CC-kNN.

 100

 1000

 10000

 2 4 6 8 10

tr
a

v
e

rs
a

l
c
o

s
t

(x
1

0
0

0
 n

o
d

e
s
)

k

CC (SD)
CC (MD)

kLNVD (SD)
kLNVD (MD)

(a) k vs number of iterations

 100

 1000

 10000

 400 800 1200 1600 2000

tr
a

v
e

rs
a

l
c
o

s
t

(x
1

0
0

0
 n

o
d

e
s
)

ρ

CC (SD)
CC (MD)

kLNVD (SD)
kLNVD (MD)

(b) ρ vs number of iterations

 100

 1000

 2 4 6 8 10

P
Q

 s
iz

e

k

CC (SD)
CC (MD)

kLNVD (SD)
kLNVD (MD)

(c) k vs PQ size

 100

 1000

 400 800 1200 1600 2000

P
Q

 s
iz

e

ρ

CC (SD)
CC (MD)

kLNVD (SD)
kLNVD (MD)

(d) ρ vs PQ size

 1

 10

 100

 2 4 6 8 10

p
ro

c
e

s
s
in

g
 c

o
s
t

(x
1

0
0

0
0

0
0

)

k

CC (SD)
CC (MD)

kLNVD (SD)
kLNVD (MD)

(e) k vs processing cost

 1

 10

 100

 400 800 1200 1600 2000

p
ro

c
e

s
s
in

g
 c

o
s
t

(x
1

0
0

0
0

0
0

)

ρ

CC (SD)
CC (MD)

kLNVD (SD)
kLNVD (MD)

(f) ρ vs processing cost

Figure 11: Effects of k and ρ on the processing cost

Number of retrievals. The number of retrievals represents the
number of queries executed to retrieve objects from the database,
i.e., the number of kLNVD constructions, and the number of visited
nodes (discounting the repeats) for CC-kNN. Figure 12 shows that
the number of retrievals for kLNVD reduces as k and ρ increase,
since the number m of complete nodes is given as (0.35 · 3 · ρ · k).
The number of retrievals for CC-kNN is determined by the num-
ber of visited nodes. Hence, the parameters ρ and k have no effect
on this measure. We can also see that kLNVD continues to outper-
forms CC-kNN significantly.

 1

 10

 100

 1000

 2 4 6 8 10

#
q

u
e

ri
e

s

k

CC (SD)
CC (MD)

kLNVD (SD)
kLNVD (MD)

(a) k vs number of retrievals

 1

 10

 100

 1000

 400 800 1200 1600 2000

#
q

u
e

ri
e

s

ρ

CC (SD)
CC (MD)

kLNVD (SD)
kLNVD (MD)

(b) ρ vs number of retrievals

Figure 12: Effects of k and ρ the number of retrievals

8.3 Summary
We show that the number n of nodes in SR should be set to

(3 · ρ · k) to obtain a reasonable completion ratio (Figure 9(c)) and
to keep the kLNVD size small and manageable. We continue to
show that by setting n to this value, kLNVD is more scalable than
CC-kNN as ρ increases and outperforms CC-kNN for all experi-
mented values of k. We take advantage of the fact that the best-first
priority queue processing cost is linear with respect to the number
of iterations (traversal operations) and logarithmic with respect to
the number of entries. Hence, by having a larger priority queue but
less traversal operations, the overall processing cost is improved.

9. CONCLUSIONS
We have proposed a method to process moving k nearest neigh-

bor (MkNN) queries which requires neither preprocessing nor
repetitive distance evaluation. The complexity analysis and experi-
mental results have shown that our proposed method, order-k local

network Voronoi diagram (kLNVD) scales better than CC-kNN [1]
as ρ increases. Specifically, kLNVD significantly outperforms CC-
kNN in terms of the total time, traversal cost, processing cost and
the number of data retrievals. As future work, we plan to apply the
local computation of Voronoi diagrams to different domains, e.g.,
the Euclidean and other normed vector spaces.

Acknowledgement. This work is partially supported under the
Australian Research Council’s Discovery funding scheme (project
number DP0880215).

10. REFERENCES
[1] H.-J. Cho and C.-W. Chung. An efficient and scalable approach to

CNN queries in a road network. In VLDB, pages 865–876, 2005.

[2] U. Demiryurek, F. B. Kashani, and C. Shahabi. Efficient continuous
nearest neighbor query in spatial networks using Euclidean
restriction. In SSTD, pages 25–43, 2009.

[3] K. Deng, X. Zhou, H. T. Shen, S. W. Sadiq, and X. Li. Instance
optimal query processing in spatial networks. VLDB J.,
18(3):675–693, 2009.

[4] E. W. Dijkstra. A note on two problems in connection with graphs.
Numeriche Mathematik, 1:269–271, 1959.

[5] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM, 34(3):596–615,
1987.

[6] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases. ACM Trans. Database Syst., 24(2):265–318, 1999.

[7] M. R. Kolahdouzan and C. Shahabi. Voronoi-based k nearest
neighbor search for spatial network databases. In VLDB, pages
840–851, 2004.

[8] M. R. Kolahdouzan and C. Shahabi. Alternative solutions for
continuous k nearest neighbor queries in spatial network databases.
GeoInformatica, 9(4):321–341, 2005.

[9] K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis.
Continuous nearest neighbor monitoring in road networks. In VLDB,
pages 43–54, 2006.

[10] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial
Tessellations: Concepts and Applications of Voronoi Diagrams.

Wiley, Chichester, second edition, 2000.

[11] A. Okabe, T. Satoh, T. Furuta, A. Suzuki, and K. Okano. Generalized
network Voronoi diagrams: Concepts, computational methods, and
applications. International Journal of Geographical Information
Science, 22(9):965–994, 2008.

[12] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in
spatial network databases. In VLDB, pages 802–813, 2003.

[13] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, second edition, 2003.

[14] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network
distance browsing in spatial databases. In SIGMOD, pages 43–54,
2008.

