
Hierarchical Data Summarization

Egemen Tanin
Department of Computer Science and Software Engineering

University of Melbourne
Victoria, Australia

egemen@csse.unimelb.edu.au

SYNONYMS
Hierarchical Data Summarization

DEFINITION
Given set of records data summaries on different attributes are frequently produced in data management
systems. Commonly used examples are the number of records that fall into a set of ranges of an attribute
or the minimum values in these ranges. To improve the efficiency in accessing summaries at different
resolutions or due to a direct need for investigating a hierarchy that is inherent to the data type, such as
dates, hierarchical versions of data summaries can be used. A data structure or algorithm is labelled as
hierarchical if that structure or algorithm uses the concept of subcomponents to systematically obtain
conceptually larger components. The method of obtaining a larger component is regularly induced by
the user’s understanding of the domain, such as dates in a year, as well as the fact that hierarchies can
also be created automatically by a set of rules embedded into the system. Thus, rules used in a data
structure’s creation, e.g., B+-trees, are also considered as a means for hierarchical data summarization.
In fact, different variants of popular data structures are used in hierarchical data summarization. Various
algorithms for data reduction and aggregation have also adopted hierarchical processing techniques.

HISTORICAL BACKGROUND
From a data structures point of view, foundations of hierarchical data summarization (HDS) techniques can be
found in indexing literature for databases. Although many of the indexing techniques, e.g., B+-trees, are used
for efficiently selecting records stored on a disk, they can also be considered as hierarchical summaries on large
amounts of data. For multidimensional and spatial data, indices such as R-trees and quadtrees can be used for HDS.

Today, many versions of popular indexing techniques that directly target retrieval of summary information exist.
Some indices are also used in query optimization due to their HDS capabilities, e.g., using a space decomposition
one can guess the number of records in a certain region of data before a join operation can take place. More
recently, spatial indexing techniques, for example quadtrees, were developed for distributed settings such as
sensor networks for HDS.

Historically, histograms are the most basic structures that could be used for data summarization. They are
frequently utilized in query optimization decisions. They are also used in data warehousing. Hierarchical versions
of histograms were recently built and are of interest for HDS.

From an algorithmic point of view, techniques such as wavelet transformations, sketches, and data clustering
with aggregation, when run in a hierarchical fashion, can be considered as HDS techniques. These techniques are
extensively deployed in data management as well as in other fields of computer science over many years.



In recent years, for distributed data processing, variants of known algorithms have become popular in HDS. For
example, researchers have introduced data aggregation techniques on sensor networks that can be considered as
HDS techniques that rely on sketches. In this context, random-tree-based data aggregation algorithms in sensor
networks can also be considered as basic HDS techniques. All of these different roots and aspects of hierarchical
data summarization are visited in this article.

SCIENTIFIC FUNDAMENTALS
B+-trees are frequently used in databases. A B+-tree is given in Figure 1 (only some parts of the tree are shown
to simplify the presentation). B+-trees are hierarchical structures where internal nodes store keys and the leaf
nodes contain the records attached to these keys. Due to their high fanout they are commonly shallow as well as
balanced, i.e., in comparison to binary trees. They are used for efficient selection of a range of records from disks.
The lowest level contains links between neighboring nodes to allow for sequential access to consecutive data items.

Figure 1: An example B+-tree

The B+-tree and related data structures can be considered as basic means of keeping hierarchical summary
information. Given a fanout for a B+-tree, upper levels of the tree can be easily used for approximate HDS. One
can refer to these levels to find the approximate number of items in a range. To make this HDS method more
accurate, extra information should be maintained within the tree structure. For example, counts can be kept
with each link in this hierarchy [10]. This requires extra space and maintenance costs as each count needs to be
stored and updated with insertion and deletion operations. This can cause problems if many levels and nodes
need to be maintained per update operation and if updates occur frequently for a given tree. If small errors in
counters are tolerated then these overheads can be significantly reduced [3]. Counts form only one form of data
summaries. Thus, the idea of counts is extended to other types of data summaries in [4] and [9].

For a set of queries and objects in space, such as range queries and a set of waterways in a country, spatial data
structures can be used to efficiently store the data and answer queries on this data. For example, quadtrees are
well-known, space-partitioning based structures. They are used with many different types of spatial data and
thus many quadtree variants can be found in the literature. For example, a PR quadtree is given in Figure 2. In
this example, the space is recursively divided into four quadrants until a single data item is left in each quadrant.
In Figure 2, the space partitioning is shown (on the left) with its mapping tree structure (on the right). The
positions of all the data items are also stored in the structure (not shown in the figure). Another related space
partitioning method is the k-d tree. For k-d trees different dimensions of the underlying space is partitioned in
turns at different levels of the tree. (Note that some of these methods are better named as tries, however, due to
historical reasons, they are referred to as trees.)

If spatial objects are grouped together using bounding boxes and then a hierarchy of these bounding boxes

2



Figure 2: An example quadtree with point objects

are created, one can obtain an index called the R-tree. R-trees also have many variants. In comparison to
quadtrees, they are commonly more balanced indexing schemes. However, many variants suffer from the fact
that multiple bounding boxes, defining the tree nodes, can overlap in space. This nature of R-trees can reduce
the pruning capability of this structure as a query may have to investigate multiple branches for the same
space. Although disjoint-bounding-box based versions of R-trees exist, these variants could partition the data
items into multiple boxes. There are many other spatial indices that are not presented in this article for the
brevity of the presentation. The techniques mentioned are used to present HDS methods based on spatial indexing.

Similar to the case in B+-trees, spatial indices can also be viewed as HDS techniques. Moreover, data summaries
can be explicitly maintained with these spatial data structures. This information can then be used for query
processing, e.g., aggregate queries. Recently, spatial indexing is used in distributed settings for data summariza-
tion. For example, [7] introduces fractional cascading in sensor networks. In this approach, each sensor maintains
detailed readings that it has obtained as well as data from its nearby neighbors. Information regarding other
sensors are not kept as accurately. The space of sensors is partitioned using a distributed quadtree that is
overlayed onto the sensor network. The partitioning is done in a similar manner to the PR quadtree example
in Figure 2. With increasing distance to the rest of the sensors in the network (i.e., to faraway quadrants) the
amount of data collected from them drops with a function, e.g., a logarithmic function. This paradigm utilized
the fact that data and queries in sensor networks are spatially and temporally correlated. Thus, this structure
can be used to efficiently serve routing requests using locally summarized data as well as to answer queries. The
distributed structure can be seen as a multi-rooted HDS technique as each sensor uses the same summarization
scheme independently.

Similar to fractional cascading, [6] introduces the DIMENSIONS system that uses a pyramid-based space
decomposition to aggregate and summarize data in a sensor network. Each quadrant finds a “local” leader
node for building a distributed pyramid of nodes with their data. Other similar systems are DIM and DIFS
systems [8, 11] that use spatial indices on sensor networks for processing selection queries as well as resorting to
summaries for user interest elimination. In [8] a k-d tree based structure is introduced while [11] introduces a
multi-rooted quadtree type for avoiding bottlenecks from having a single root node.

Indices such as quadtrees and R-trees are also utilized in query optimization (e.g., [1]). As they represent
summary information about the space they cover, they can easily be used in estimating the runtime costs of a
query before it is executed.

In comparison to sophisticated indexing methods, a simple technique for summarizing data is the histogram.
Histograms have long been employed in query optimization as they are compact and easy to maintain. With the
emergence of data warehousing and On-line Analytical Processing (OLAP) technologies, they have also become

3



crucial components from a new angle in data management. For data sets that explicitly contain hierarchies, e.g.,
years-months-weeks, histograms can easily be used.

From a processing cost estimation and query optimization point of view, Bruno et al. [5] introduced the concept
of nested buckets with histograms. This can be seen as the first form of HDS using histograms. Later, Reiss
et al. [14] built on this concept for distributed settings for bandwidth usage reduction. Reiss et al. present
hierarchical histograms for aggregate query processing on identification data, i.e., RFIDs.

From an algorithmic point of view many methods that have long been used in approximating and summarizing
data can be considered as hierarchical approaches to summarization. For example, wavelet transformations are
well-established techniques in signal processing that can be used and considered as HDS methods. Lets consider
wavelets in the context of spatial data to give a simple example.

A three dimensional (3D) object in space can be approximated using a triangular mesh. One can use different
sets of triangles, i.e., small or large, to give a more or less detailed approximation of the surface of the 3D object.
Thus, an object can be represented in different resolutions using different meshes. If these meshes are related to
each other geometrically, one can easily progressively update the details for this object on demand. Therefore, if
M I denotes a triangular mesh at resolution I, one can then represent an object as a series of meshes, M0, M1,
..., MJ , where, M0 is the base mesh and MJ is the final mesh. Figure 3(a) shows a triangular mesh with one
triangle, M0, (1, 2, 3), for a 2D object. The triangle is the coarse approximation for the surface of the given circle.

Lets consider a simple transformation. To obtain a higher resolution approximation of the given surface in the
figure, the triangle (1, 2, 3) is divided into four sub-faces by introducing new vertices (4′, 5′, 6′), Figure 3(b). The
new set of vertices are now displaced to make the mesh better fit to the surface of the circle. The new, finer
resolution mesh M1, is shown in Figure 3(c). This operation can be done recursively and can be represented
with a simple transformation function. The coefficients that represent the difference between M0 and M1 are
d0
4, d0

5, and d0
6. In this simple wavelet transformation, for example, the wavelet coefficient d0

4 is obtained by
v1
4 −

v0
1+v0

2
2 = v1

4 − v1
4′ . Thus, the wavelet-based decomposition of a mesh MJ produces a base mesh M0 and

the sets, {W0,W1, ...,WJ−1}, of coefficients. From an HDS point of view, the recursive execution of the above
mentioned method can be seen as a hierarchical summarization of a detailed polygonal representation of a
complex data set. Various further HDS methods can be derived using the base concept of wavelets. For exam-
ple, recently, [2] uses wavelets with R-trees to progressively retrieve and refine spatial data from a remote database.

Figure 3: A wavelet-based approximation

With the emergence of distributed systems such as sensor networks, aggregate query processing itself can now
also be considered as a HDS technique. For example, to process an aggregate query in sensor networks, [12] uses
a random-tree with in-network aggregation. Each node in this tree can compute an aggregate from its sub-trees,

4



such as a minimum, and then pass this information to the higher-levels of the tree along the data collection path.
The base-station, root, can then present a summary of the sensor data to the user.

Random-trees, however, are not robust. A single failure can cause significant problems (especially when a node
that is close to the root fails). To address these problems, researchers have been working on multi-path data
aggregation methods. In this scheme, multiple reports, due to the wireless coverage advantage in sensor networks,
can be sent through different routes for increasing the robustness of the data collection method. However, this
can cause deviations in certain aggregation operations, e.g., counts, as the same data is incorporated to the result
multiple times. In [13], Nath et al. introduce a sketch theory-based HDS method to address this issue. They
map aggregate functions, e.g., counts, to a set of order and duplicate insensitive synopsis generation and fusion
functions.

Data clustering forms another area of research that, when applied using data aggregates and hierarchies, can be
considered as a source of HDS techniques. For example, [15] introduces the STING system which uses a hierarchy
of cells that contain aggregate information about the individual data items. Thus, for many query types, they can
resort to these cells, rather than items, to answer queries efficiently. For queries that cannot be answered using
summary data, individual data items can still be used as a backup strategy.

KEY APPLICATIONS*
Key applications of HDS techniques are aggregate query processing and query optimization. If many queries are
interested in retrieving summary data, e.g., aggregate queries, then maintaining a hierarchical summary would
be efficient. For example, for data warehousing applications with hierarchical data, the benefits for maintaining a
hierarchical summary could be significant. Data summaries have also long been used in query optimization. For
example, an optimizer can use HDS techniques for selectivity estimation on attributes.

FUTURE DIRECTIONS
There is a significant amount of activity in using data summaries in distributed settings and especially in sensor
networks. In addition, with the emerging research directions in location-based services and VANETs, readers may
expect to see the use of spatial HDS techniques more frequently. In distributed settings, bandwidth savings on
the communication optimization front using HDS could be significant.

URL TO CODE*
Demos for many of the spatial indices that are mentioned in this article can be found at
http://www.cs.umd.edu/˜hjs/quadtree/index.html.

CROSS REFERENCE*
B+-TREES, QUADTREES, R-TREES, HISTOGRAMS, WAVELETS, SKETCHES, INDEXING, AGGRE-
GATE QUERIES, QUERY PROCESSING AND OPTIMIZATION, SPATIAL AND MULTIDIMENSIONAL
DATABASES, SENSOR NETWORKS

RECOMMENDED READING

[1] A. Aboulnaga and W. G. Aref. Window query processing in linear quadtrees. Distributed and Parallel Databases,
10(2):111–126, 2001.

[2] M. E. Ali, R. Zhang, E. Tanin, and L. Kulik. A motion-aware approach to continuous retrieval of 3d objects. In
ICDE, Cancun, Mexico, 2008.

[3] G. Antoshenkov. Query processing in DEC RDB: Major issues and future challenges. IEEE Data Engineering
Bulletin, 16(4):42–45, 1993.

5



[4] P. M. Aoki. Generalizing ”search” in generalized search trees. In ICDE, pages 380–389, Orlando, FL, 1998.
[5] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A multidimensional workload-aware histogram. SIGMOD Record,

30(2):211–222, 2001.
[6] D. Ganesan, D. Estrin, and J. Heidemann. DIMENSIONS: Why do we need a new data handling architecture for

sensor networks? In ACM Workshop on Hot Topics in Networks, Princeton, NJ, 2002.
[7] J. Gao, L. J. Guibas, J. Hershberger, and L. Zhang. Fractionally cascaded information in a sensor network. In IPSN,

pages 311–319, Berkeley, CA, 2004.
[8] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker. DIFS: A distributed index for features in

sensor networks. In IEEE Workshop on Sensor Network Protocols and Applications, Anchorage, AK, 2003.
[9] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized search trees for database systems. In VLDB, pages

562–573, Zurich, Switzerland, 1995.
[10] D. E. Knuth. Sorting and Searching, The Art of Computer Programming, volume 3. Addison Wesley Publishing,

Redwood City, CA, 1973.
[11] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range queries in sensor networks. In SenSys, pages

5–7, Los Angeles, CA, 2003.
[12] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: An acquisitional query processing system

for sensor networks. ACM Transactions on Database Systems, 30(1):122–173, 2005.
[13] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion for robust aggregation in sensor networks.

In SenSys, pages 250–262, Baltimore, MD, 2004.
[14] F. Reiss, M. Garofalakis, and J. M. Hellerstein. Compact histograms for hierarchical identifiers. In VLDB, pages

870–881, Seoul, Korea, 2006.
[15] W. Wang, J. Yang, and R. Muntz. STING: A statistical information grid approach to spatial data mining. In VLDB,

pages 186–195, Athens, Greece, 1997.

6


