
Privacy-Aware Collection of Aggregate Spatial Data

Abstract

Privacy concerns can be a major barrier to collecting aggregate data from the public.
Recent research proposes negative surveys that collect negative data, which is comple-
mentary to the true data. This opens a new direction for privacy-aware data collection.
However, the existing approach cannot avoid certain errors when applied to many spatial
data collection tasks. The errors can make the data unusable in many real scenarios.
We propose Gaussian negative surveys. We modulate data collection based on Gaussian
distribution. The collected data can be used to compute accurate spatial distribution of
participants and can be used to accurately answer range aggregate queries. Our approach
avoids the errors that can occur with the existing approach. Our experiments show that
we achieve an excellent balance between privacy and accuracy.

Keywords: Spatio-temporal Databases, Privacy, Aggregate Query, Negative Surveys,
Geographic Information System

1. Introduction

Collecting aggregate data from users is important to many applications. A typical
data collection shows a number of categories to participants and requires each participant
to select one category. Such a data collection system normally maintains aggregate
information, e.g., total number of participants, for each category. It is well known that
privacy concerns of participants have a strong impact on data collection, especially when
the participants need to answer sensitive questions [1, 2]. The effects of privacy concerns
can be magnified when spatial data is collected due to the fact that spatial information
usually relates to the physical presence of people. Failure to protect spatial privacy can
result in serious harm, including physical assault, to individuals [3]. This can explain
the fact that spatial privacy draws increasingly more attention from the public [4]. As
the perceived privacy is a deciding factor for the participation in data collection [5],
many participants may intentionally provide false data, e.g., report categories that does
not apply to them, and may even refuse to provide any data [6]. Consequently, the
collected data may contain significant errors in certain categories. In addition, the data
may become more unusable when answering range aggregate queries as errors can lead
to more unexpected results or hide problems of the data due to errors cancelling each
other.

Although the quality of the collected data can be improved using background knowl-
edge [7], we are interested in collecting high quality data in the first place. To achieve this,
one needs to minimize the effects of the privacy concerns during data collection. Recent
research proposes negative surveys [8], which are a type of privacy-aware data collection.
Negative surveys collect negative data [9–11], which is complementary to the true data.
Preprint submitted to Elsevier March 1, 2011



Researchers guarantee a strong privacy protection by encouraging participants to report
categories that do not apply to them. These categories are called negative categories.
In contrast to negative surveys, we call the traditional data collections that collect true
data positive surveys.

We envisage a simplified scenario that is used throughout the paper: a transportation
authority wishes to know the number of passengers who arrive at a central station from
other stations on a railway route. In this example, there are seven stations where a
passenger can get on a train (Figure 1). Aggregate data is maintained for each station.

2
0
3

1
5
1

2
4
9

1
0
0

1
9
2 2
2
8

1
5
3

1 S2 S3 S4 S5 S6 S7S

Q

Figure 1: Responses to a public survey. S1, . . . , S7 are seven stations on a route to a central station.
The numbers in the bars are the counts of participants from the corresponding stations. Q is the range
of the query.

The query range Q shown in the example covers three adjacent stations, S3, S4, and
S5. The true answer to the query is 541. We compare two types of data collections
in Figure 2. Assume that a participant starts a trip from station S4. The participant
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Figure 2: Comparison between a positive survey and a negative survey. S1, . . . , S7 are the same stations
as in Figure 1.

has to report S4 in a positive survey. However, in a negative survey the participant
reports any station but S4. One only knows that the reported station, for example S2,
is not the actual station where the participant started the trip in a negative survey. In
this example, there are 6 possible stations, which safeguards the participant’s location
privacy.

We call the existing approach of collecting negative data Uniform Negative Surveys
(UNSs) [8] because each category, except the true category, has an equal probability to be
selected by participants. As the reported counts can be vastly different to the true counts,
UNSs apply a technique to reconstruct the true data from the negative data. We detail
the data reconstruction technique in Section 3.1. UNSs provide an accurate estimation
of the true data if the ratio of participants to categories is high. Using the previous
scenario of surveying passengers, we simulate a data collection with 10000 participants.
We can observe that the estimated data from UNS are close to the true data (Figure 3).
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Figure 3: True data vs. estimated data from an UNS with 10000 participants. S1, . . . , S7 are the same
stations as in Figure 1.

UNSs are not immune to errors during data reconstruction. We found that this
problem is particularly severe when the ratio of participants to categories is low. For
example, Figure 4 compares the true counts and the reconstructed counts from an UNS
using the previous scenario of collecting aggregate data from passengers. The results
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Figure 4: True data vs. estimated data from an UNS with 100 participants. S1, . . . , S7 are the same
stations as in Figure 1.

are from a simulation with 100 participants. As the chart shows, the reconstructed data
significantly deviate from the true data. When the data from adjacent categories are
summed up for answering range aggregate queries, errors in individual categories may
offset each other, if some of them cause over-counting while others cause under-counting.
This may be desirable for an individual query but may lead to more significant problems
in the future as it relies on erroneous data. For example, other queries may not show
the same behavior leading to user confusion. Also, in many situations, the offset does
not happen or the offset is insignificant compared to the answer. For example, using
the data in Figure 4, if the query range covers S2, S3 and S4, errors in those categories
do not offset each other as all of them are lower than the true counts in corresponding
categories. We can observe from Figure 4 that there are three categories with negative
counts after reconstruction. The negative counts are unavoidable as shown in the original
work on negative surveys. Those counts, which are wrong, further decrease the use of
negative surveys. Thus, we propose GNSs, a method that does not generate negative
counts.

In this paper, we propose Gaussian Negative Surveys (GNSs). Different to UNSs, the
3



reported categories are not uniformly chosen in GNSs. Instead, negative categories that
are close to the true category are more likely to be selected than the negative categories far
from the true category. Our work is focused on surveying geo-spatial data, which often
shows strong correlation between adjacent locations in two-dimensional environments.
One should not confuse the Gaussian distribution used by GNSs with the underlying
distribution of the phenomena being surveyed, which does not have to follow Gaussian
distribution. Our experimental results show the high accuracy levels achieved by GNSs
for real geo-spatial data. We should also note that GNSs are applied to discrete categories
because public surveys normally collect the data based on spatial decomposition with a
certain resolution.

Our technique is particularly useful when aggregate spatial data is collected. Data
collections involving spatial data may have hundreds or thousands of categories, each of
which represents a certain location or area. The success of our approach lies in the fact
that GNSs retain the correlation between adjacent categories in collected data because
a majority of participants are expected to report the categories that are close to their
true categories. As a range aggregate query normally covers a number of categories,
a large portion of the reported counts within the query range would come from the
participants who are actually in the range. Thus, the reported data can be used to
approximate the true data in the query range. We should note that the participants can
still achieve a high level of privacy protection when the data collection is modulated as
above. This is because a category can be reported by participants from a number of
nearby categories with similar probabilities. Consequently, similar to UNSs, it is still
difficult for an adversary to derive the true category of a participant in GNSs. Our
experimental results (Section 6) show that GNSs can achieve a high level of privacy
while providing accurate answers to queries.

The contributions of this paper are:

• We develop GNSs for collecting aggregate data while protecting individuals’ pri-
vacy. GNSs are particularly suitable for collecting spatial data. GNSs are also
significantly better than UNSs in answering range aggregate queries.

• We define a privacy metric for individuals in data collection.

• We analyze the factors that affect the privacy level and the accuracy level of GNSs.

• We compare GNSs with UNSs and a common data perturbation technique, Uniform
Retention Replacement Perturbations [12], through comprehensive experiments. Our
results show that GNSs achieve high privacy levels similar to the existing approaches
but are significantly more accurate in solving queries.

The rest of the paper is organized as follows. Section 2 presents the related work.
Section 3 details UNSs and gives our analysis of the errors in UNSs. We present GNSs in
Section 4. Privacy and accuracy metrics are introduced in Section 5. The experimental
results are shown in Section 6. We conclude our paper in Section 7.

2. Related Work

2.1. Privacy Protection in Statistical Databases
Our work is related to privacy protection in statistical databases. Adam et al. [13]

categorize the privacy-preserving approaches for statistical databases: conceptual frame-
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work, query restriction, data perturbation and output perturbation. Conceptual frame-
works address the security issues by defining the rules for constructing a database, such
as avoiding the insertion of individual entities and building multi-dimensional tables with
aggregated information. Query restriction protects the privacy by limiting the queries
issued to a database. For example, successive queries may be blocked if new queries
are highly overlapping with the existing query. Data perturbation protects the original
data by modifying the original data or masking the original data [14, 15]. Different to
data perturbation, output perturbation modifies the answer to a query when the query
is solved based on original data. For example, the inclusion and exclusion of an entity in
the answer to a query can be determined by a given probability. Negative surveys belong
to data perturbation as the reported data is not the true data. Data perturbation can be
further divided into randomization, swapping, generalization and encryption.

Randomization approaches distort the original data by adding a random value to the
true value [12, 16, 17]. The randomizing parameter used for the distortion follows a
certain distribution. Data swapping breaks the linkage between attributes by reordering
a data matrix [18, 19]. Although the data is changed, it is still suitable for answering
certain aggregate queries [20]. Data generalization builds a hierarchy of the summarized
information [21, 22]. Information with the finest granularity is mapped to the lowest
level in the hierarchy. Values in a higher level are generalized from a lower level. Data
generalization techniques are suitable for achieving a certain level of anonymity. There
are also techniques for solving queries using encrypted data without decryption. For
example, Ge et al. proposed an approach to perform SUM and AVG queries on cipher
text [23]. Another approach proposes a method to preserve the order of original values
in encrypted data [24].

It is important to note that these approaches cannot avoid the collection of true data.
For example, the randomization approaches allow that a certain percentage of the data
is true. Our approach takes a different route from them as GNSs prohibit the collection
of true data in the first place. This leads to a significantly stronger privacy protection
for the participants. Compared to many of the approaches, GNSs are also substantially
easier to implement as data reconstruction and encryption are not needed.

2.2. Spatial Data Access Methods
Research on aggregate spatial data is also highly related to our work. The work in this

area follows two directions. The first direction focuses on hierarchical data structures,
such as aR-tree [25], CRB-tree [26] and aP-tree [27]. Objects are sorted by their exact
values, e.g., coordinates, in the lowest level of a hierarchy. Aggregate information, e.g.,
count of objects, is maintained at different levels of the hierarchy. The advantage of
these approaches lies in the fact that data in child nodes does not need to be accessed
when the spatial ranges of their parent nodes are contained in the query range. The
second direction focuses on histogram-based techniques [28–32]. For example, Euler
histograms provide an efficient way to answering range aggregate queries on point objects
and rectangular objects [33, 34]. Many of the histogram-based approaches provide certain
level of privacy protection as identities of participants are not required. GNSs provide
an additional layer of privacy protection as participants do not report true categories in
the first place.
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2.3. Protection of Location Privacy
There is a body of work that concentrates on privacy protection in collecting and using

spatial data. Shilton [35] investigates the privacy issues where the collection of location
data involves the participation of individuals. The research highlights that there will be a
higher level of privacy when participants can take control of their data, e.g., decide what
can be collected and who can see the data. One recent paper stresses the importance
of the balance between location privacy and the accuracy of the aggregated data [36].
When the precision of the collected data is high, e.g., the exact home addresses of pa-
tients are collected, the accuracy of the aggregated data is also high but location privacy
is at its lowest level. Papadopoulos et al. [37] propose an approach to protect the location
privacy of users who send k Nearest Neighbor (kNN) queries. The goal is to ensure that
the original queries are processed in such a way that an adversary cannot distinguish the
query location from other locations. Onsrud et al. [38] and Yeung and Hall [39] suggest
that appropriate policies and education are vital to protecting individuals’ privacy in
spatial databases. Xu et al. [40] reveal that privacy intervention approaches, including
compensation, industry self-regulation, and government regulation, have an impact on
the perceived privacy in location-based services. Spatial cloaking adjusts the resolution
of location information such that an individual cannot be distinguished from a number
of other individuals [41, 42]. Obfuscation-based techniques degrade the quality of spatial
information by maintaining a certain level of inaccuracy, imprecision or vagueness of spa-
tial data [43, 44]. A technique similar to randomization methods for statistical databases
has been utilized in studying spatial distribution of diseases [45]. Geographic masking
protects location privacy by adding noise to geographic information [46]. Another recent
research shows the use of transformed trajectories of moving objects that protects the
privacy of individuals [47]. Mukherjee et al. [48] use perturbation and transformation
to protect privacy in collecting spatial information. However, there is a lack of research
that investigates the effects of location privacy protection techniques on answering range
aggregate queries, which are a common way to use spatial data. In our work, we not
only measure the privacy levels achieved by participants, but also the performance of our
approach in answering range aggregate queries.

3. Preliminaries

3.1. Data Collection and Reconstruction in Uniform Negative Surveys
In UNSs, participants are shown mutually exclusive categories. For a participant,

there is exactly one category, which is called the positive category ; other categories are
called the negative categories [8]. A participant randomly reports a negative category
during data collection. The counts of participants for each category are maintained
without knowing the true categories for the participants. An important assumption of
UNSs is that the reported category is uniformly selected from the negative categories.
Taking our previous example of collecting aggregate data from passengers (Figure 1),
there are 7 categories in the questionnaire. That means 6 out of the 7 categories are
negative categories for any participant. Each negative category has an equal chance, i.e.,
1
6 , to be selected by a participant.

For a category j, the estimated count ej can be calculated by finding the difference
between the total number n of participants and an estimated number e′j of participants,
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who do not belong to the category j, i.e., ej = n − e′j . e′j can be obtained as follows.
In a data collection of c categories, the chance that a participant from category i reports
category j is 1

c−1 . On average, out of c − 1 participants, one count goes to category j.
Assume that there are rj participants who report category j, one can calculate e′j as
e′j = (c− 1) · rj . Hence, ej is given as

ej = n− (c− 1) · rj . (1)

3.2. Magnification of Errors
The original work on negative surveys assumes that UNSs can work well as long as

participants report negative categories based on a perfectly uniform distribution. How-
ever, the original work on UNSs overlooked a particular type of errors during data re-
construction. As shown in the previous work on negative surveys [8] and our example
(Figure 4), UNSs may give highly inaccurate statistics. We argue that the magnifica-
tion of certain errors during data reconstruction can significantly affect the accuracy of
UNSs. Let us denote the number of categories as c and the true count for category i as ti.
Theoretically, the number of participants who belong to category i but report category
j is ti

c−1 , which is normally a real number. As counting is based on integers, the actual
number is rounded from the original value. Hence, the actual number is either b ti

c−1c or
d ti

c−1e. The gap between the rounded value and the original value, which is ti

c−1 − b ti

c−1c
or d ti

c−1e − ti

c−1 , causes errors. We consider such errors as unavoidable.
Due to the reconstruction technique (Formula 1), the errors are magnified by a factor

of c− 1. For category j, the magnified errors caused by the participants from category i
is either

Eri,j = (c− 1) · ( ti
c− 1

− b ti
c− 1

c)
or

Eri,j = (c− 1) · ( ti
c− 1

− d ti
c− 1

e).

As ti

c−1 − b ti

c−1c is between [0, 1) and ti

c−1 − d ti

c−1e is between (−1, 0], the upper/lower
bound of Eri,j is ±(c− 1). The total magnified errors at category j, Erj , is:

Erj =
∑

i∈Sj

Eri,j ,

where Sj = {1, . . . , c} \ {j}. Although Eri,j from a different category i might offset
each other to a certain extent when some cause over-counting while others cause under-
counting, in practice, the chance that errors are canceled each other out is very slim
or it is not known whether such cancellations can be really usable. In the worst case,
all Eri,j cause over-counting or under-counting. As there are c − 1 categories in set
Sj , the upper/lower bound of Erj is ±(c − 1)2. We should note that the errors can be
relatively insignificant when there are a high number of participants per category, e.g.,
Figure 3 compared with Figure 4. This is because when a category contains a large
number of participants, the errors may be equal to a small percentage of the true count.
However, it is usually unrealistic to have a particularly high number of participants in
a data collection. In general, data collections, e.g., public surveys, are done to achieve
the opposite, i.e., estimating the behavior of a larger population from a small sample.
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Taking our previous example of counting passengers at railway stations (Section 1), the
number of participants is usually limited to a few hundred passengers during a regular
period of data collection. It is also unrealistic to assume that there are always a low
number of categories in a data collection. For example, a survey related to geographic
information may have hundreds or thousands of categories, e.g., localities or stations in
a city.

4. Gaussian Negative Surveys

We call our approach Gaussian negative surveys because the probabilities for selecting
negative categories follow a Gaussian distribution centered at the true category. Due to
this characteristic, the majority of true counts for a category is spread into the categories
that are close to the category. Using the same example of collecting aggregate data from
passengers (Figure 1), we show the probabilities that participants in positive category i
report negative category j in Figure 5, where i and j correspond to station Si and station
Sj respectively. Note that some bars cannot be seen as the probabilities matching to
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Figure 5: Probability that a participant in positive category i reports negative category j.
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Figure 6: True counts vs. collected counts from a GNS with 100 participants. S1, . . . , S7 are the same
stations as in Figure 1.

them are zero. Figure 5 shows that the probability of reporting a negative category
decreases when the negative category is further away from the positive category. Taking
the example shown in Figure 1, the percentage of participants who belong to S4 and
report station Sj is 9%, 16.7%, 24.3%, 0%, 24.3%, 16.7% and 9% when j varies from
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Table 1: Probabilities sampled from density function of Gaussian distribution f(j; i, σ2) with σ = 2.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7
i = 1 19.9% 17.6% 12.1% 6.5% 2.7% 0.9% 0.2%
i = 2 17.6% 19.9% 17.6% 12.1% 6.5% 2.7% 0.9%
i = 3 12.1% 17.6% 19.9% 17.6% 12.1% 6.5% 2.7%
i = 4 6.5% 12.1% 17.6% 19.9% 17.6% 12.1% 6.5%
i = 5 2.7% 6.5% 12.1% 17.6% 19.9% 17.6% 12.1%
i = 6 0.9% 2.7% 6.5% 12.1% 17.6% 19.9% 17.6%
i = 7 0.2% 0.9% 2.7% 6.5% 12.1% 17.6% 19.9%

1 to 7. Similarly, a category is more likely to be reported by participants from nearby
categories than far away categories. Taking the same example in Figure 1, the percentage
of participants who belong to station Si and report station S4 are 16.3%, 21.1%, 25.7%,
0%, 25.7%, 21.1% and 16.3% when i varies from 1 to 7. Let us assume that the true counts
of participants in seven categories are 5, 15, 14, 20, 16, 15 and 15. Figure 6 compares
the true data and the collected data using GNS for 100 participants. Compared with the
performance of UNSs for the same setting (Figure 4), GNSs give a significantly better
estimation of the true statistic.

We use the collected counts in GNSs to solve aggregate queries without data recon-
struction as in UNSs. GNSs’ answers to aggregate queries are usually close to the true
answers due to two reasons. First, as true counts are clustered around positive cate-
gories, a major portion of the true counts within a query range are likely to be covered
by the range. Second, although no counts are reported to positive categories, the miss-
ing counts for the positive categories are partially offset by the reported counts from
other categories. We should note that GNSs may not give accurate answers if the true
counts in adjacent categories are vastly different to each other. However, such situations
rarely happen for spatial scenarios. An important observation of spatial information is
the first law of geography [49]: everything is related to everything else, but near things
are more related than distant things. One often expects a strong correlation of spatial
data between adjacent categories. For example, the counts of patients in adjacent street
blocks during an epidemic are usually close to each other. Hence, GNSs are unlikely
to cause significant errors in approximating the spatial distribution. This makes GNSs
particularly suitable for collecting aggregate spatial data.

We formulate the selection of negative categories as follows. We denote f(j; i, σ2) as
the continuous probability density function for a Gaussian distribution, which is centered
at a positive category i with a standard deviation σ. We use the function sampled at j
as the probability that participants in category i report category j. Table 1 shows the
sampled probabilities based on the previous example of collecting aggregate data about
passengers from 7 stations.

Since negative surveys require that participants do not report positive categories,
the probability of reporting positive category i is zero. Therefore, the probabilities for
selecting negative categories need to be adjusted such that the sum of the adjusted
probabilities is 1 (or 100% using Table 2’s notation). Assuming Si = {1, . . . , c} \ {i}, the
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Table 2: Adjusted probabilities Pri,j .

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7
i = 1 0% 44% 30.2% 16.2% 6.8% 2.3% 0.5%
i = 2 30.7% 0% 30.7% 21.1% 11.3% 4.7% 1.5%
i = 3 17.8% 25.8% 0% 25.8% 17.8% 9.6% 3.2%
i = 4 9% 16.7% 24.3% 0% 24.3% 16.7% 9%
i = 5 3.2% 9.6% 17.8% 25.8% 0% 25.8% 17.8%
i = 6 1.5% 4.7% 11.3% 21.1% 30.7% 0% 30.7%
i = 7 0.5% 2.3% 6.8% 16.2% 30.2% 44% 0%

Table 3: Number of participants reporting a certain category. The last row shows rj calculated from
Formula 3 with j varies from 1 to 7. Each rj is the sum of ti · Pri,j with i varies from 1 to 7, which are
also shown in the table.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7
t1 · Pr1,j 0 2 1 1 0 0 0
t2 · Pr2,j 5 0 5 3 2 1 0
t3 · Pr3,j 2 4 0 4 2 1 0
t4 · Pr4,j 2 3 5 0 5 3 2
t5 · Pr5,j 0 2 3 4 0 4 3
t6 · Pr6,j 0 1 2 3 5 0 5
t7 · Pr7,j 0 0 1 2 5 7 0

rj 9 12 17 17 19 16 10

adjusted probability that participants in positive category i report negative category j,
Pri,j , is computed as

Pri,j =





f(j; i, σ2)∑
k∈Si

f(k; i, σ2)
i 6= j,

0 i = j.

(2)

Based on the sampled probabilities shown in Table 1, we show the adjusted proba-
bilities Pri,j in Table 2. When a GNS is modulated based on the adjusted probabilities,
the total number of participants who report category j, rj , is

rj =
c∑

i=1

ti · Pri,j , (3)

where ti is the true count for category i. Based on the previous example in Figure 1, we
show rj and the intermediate values for computing rj in Table 3.

Let g(a,b) denote the answer to an aggregate query with the query range from category
a to category b. The GNS’s answer to the query is
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Table 4: Answers to aggregate queries. In the table, (i, j) denotes the range of a query that asks for the
total counts from category i to category j. We use g(i,j) to denote the answer of GNSs to the query. We
use t(i,j) to denote the true answer to the query. Parameter s is the query size in terms of the number
of categories in a query range. For example, when s = 3, an aggregate query covers three consecutive
categories, i.e., the query range could be (1, 3), (2, 4), etc.

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

t(1,1) = 5 t(1,2) = 20 t(1,3) = 34 t(1,4) = 54 t(1,5) = 70 t(1,6) = 85 t(1,7) = 100
t(2,2) = 15 t(2,3) = 29 t(2,4) = 49 t(2,5) = 65 t(2,6) = 80 t(2,7) = 95
t(3,3) = 14 t(3,4) = 34 t(3,5) = 50 t(3,6) = 65 t(3,7) = 80
t(4,4) = 20 t(4,5) = 36 t(4,6) = 51 t(4,7) = 66
t(5,5) = 16 t(5,6) = 31 t(5,7) = 46
t(6,6) = 15 t(6,7) = 30
t(7,7) = 15

g(1,1) = 9 g(1,2) = 21 g(1,3) = 38 g(1,4) = 55 g(1,5) = 74 g(1,6) = 90 g(1,7) = 100
g(2,2) = 12 g(2,3) = 29 g(2,4) = 46 g(2,5) = 65 g(2,6) = 81 g(2,7) = 91
g(3,3) = 17 g(3,4) = 34 g(3,5) = 53 g(3,6) = 69 g(3,7) = 79
g(4,4) = 17 g(4,5) = 36 g(4,6) = 52 g(4,7) = 62
g(5,5) = 19 g(5,6) = 35 g(5,7) = 45
g(6,6) = 16 g(6,7) = 26
g(7,7) = 10

g(a,b) =
b∑

j=a

rj . (4)

Based on the previous example, we compare the true answers and GNS’s answers to
aggregate queries in Table 4, which shows that GNSs give a good approximation of the
true answers.

Accuracy levels achieved by GNSs are affected by two factors: the shape of the dis-
tribution for selecting negative categories and the true counts near the boundary of the
query range. When the distribution is highly clustered around the true category, i.e.,
the standard deviation of the distribution is low, a majority of the participants in a
query range are highly likely to report categories within the range. In this situation,
miscounting mainly comes from the participants who are near the boundary of the query
range. Under-counting happens when participants within the query range report cate-
gories outside the range. Over-counting happens when participants outside the query
range report categories within the query range. The two types of miscounting may offset
each other to a certain extent. We should note that the privacy level can be adversely
affected when the distribution is highly clustered around the true category. Hence, one
needs to adjust the distribution to achieve a good balance between accuracy and privacy.
Our experimental results show that GNSs can achieve a high accuracy level and a high
privacy level at the same time. The relationship between the two factors and the answers
to range aggregate queries are presented in Theorem 1.

Theorem 1. Let (a, b) be the range of a range aggregate query that asks for the cumula-
tive count from category ‘a’ to category ‘b’. Let t(a,b) be the true answer to the query and
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g(a,b) be the answer given by a GNS. Let ti be the true count for category i. Let σ be the

standard deviation for the GNS. We have limσ→0

g(a,b)

t(a,b)
= 1 +

(ta−1 − ta) + (tb+1 − tb)
2 · t(a,b)

.

Our theorem shows why GNSs can perform well for spatial data. As the spatial distribu-
tion of participants usually shows a consistent trend within a certain distance, the value of
(ta−1 − ta) and (tb+1 − tb) are usually small. Different to these values, t(a,b) is less likely
to be small because range aggregate queries often cover a large number of categories,
which may contain a considerable number of participants. Hence, (ta−1−ta)+(tb+1−tb)

2·t(a,b)
is

usually low and answer of GNSs is usually close to the true answer.

Proof of Theorem 1. For a positive category i, we assume that the probability den-
sity function of Gaussian distribution is f(x; i, σ2). We also assume that there are c
categories. We define A = {1, . . . , c} \ {i− 1, i, i + 1}.

limσ→0 Pri,i+1 = limσ→0
f(i + 1; i, σ2)∑

x∈A f(x; i, σ2) + f(i + 1; i, σ2) + f(i− 1; i, σ2)

=
f(i + 1; i, σ2)

f(i + 1; i, σ2) + f(i− 1; i, σ2)
.

= 0.5

Let ti,j be the number of participants who belong to category i but report category
j. We get

lim
σ→0

ti,i+1 = lim
σ→0

ti · Pri,i+1 =
1
2
ti.

Similarly, we can prove that

lim
σ→0

ti,i−1 =
1
2
ti.

Hence, the true count of a category is distributed evenly in two adjacent categories when
σ is very small. That is,

lim
σ→0

gi =
1
2
ti−1 +

1
2
ti+1

We can deduct that

limσ→0 g(a,b) =
∑b

i=a
1
2 (ti−1 + ti+1)

= 1
2 · (ta−1 + ta+1 + ta + ta+2 + ta+1 + ta+3 + . . . + tb−3 + tb−1

+tb−2 + tb + tb−1 + tb+1)

= 1
2 · (ta−1 + tb+1)− 1

2 (ta + tb) + t(a,b)

Hence,

lim
σ→0

g(a,b)

t(a,b)
= 1 +

(ta−1 − ta) + (tb+1 − tb)
2 · t(a,b)

.
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Table 5: A table randomly generated for a participant.

Your True Answer 1 2 3 4 5 6 7

You Could Report
2 5 1 3 7 7 6
3 1 4 5 4 5 5
4 3 2 6 6 4 4

Although GNSs can be applied to many types of data, the technique is particularly
suitable for geo-spatial data because a common characteristic of geo-spatial data is the
strong correlation between categories. Due to the correlation, counts in adjacent cate-
gories do not change significantly. Different to UNSs, GNSs can show the trend of changes
across a potentially large number of categories in geo-spatial data. We conducted com-
prehensive experiments on synthetic and real geo-spatial data. The results highlight the
advantages of GNSs in surveying this type of data.

4.1. Implementing GNSs
One essential characteristic of GNSs is that participants report different categories

with different probabilities. We present a method to control the probabilities in real data
collections.

The method can be implemented in an electronic device, e.g., a tablet computer.
Upon joining a survey, a participant is shown a table on the screen of the device. The
table is randomly generated in real-time. The table shows all positive categories, each
of which is attached with a subset of negative categories. The participant can report
any of the given negative categories corresponding to her positive category. To enhance
the trust of the system, one can add a feedback component to the system. That is, if
a participant is not satisfied with the given selection, she is allowed to re-initiate the
table-generating process until she is satisfied.

For a positive category i, the subset of negative categories are generated based on
Pri,j , which is the probability that participants from category i report category j. For
example, if Pr3,4 is 0.4, then category 4 has a 40% chance to appear in the subset
for positive category 3. We should note that the system will ensure that all negative
categories in a subset are distinct to each other. Let us see an example based on the
scenario of surveying passengers described in the first section. As shown in Table 5, a
participant who belongs to category 3 could report category 1, 2 or 4. For scenarios
where there is no electronic device to generate the table in real-time, a surveyor can
apply the idea to a paper-based guidance. That is, the surveyor generates and prints a
sufficient number of tables before the survey.

4.2. Controlling Privacy
We present two approaches to controlling the privacy levels of GNSs. Our first ap-

proach controls privacy by customizing the implementation of GNSs. As shown in Sec-
tion 4.1, a participant is given a subset of negative categories for each positive category.
The size of the subset affects the level of perceived privacy. Participants would feel that
privacy is at the lowest level if there is only one negative category for a positive category.
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This is because reporting a negative category would let an adversary find out the posi-
tive category if the adversary knows the one-to-one mapping between the two types of
categories. When there is a higher number of negative categories attached to a positive
category, there would be a higher level of perceived privacy. Therefore, surveyors can
control the privacy level by changing the size of the subset of negative categories attached
to a positive category.

Different to the first approach, the second approach controls privacy by determining
the systemic parameters of surveys. To quantify the effects of the systemic parameters,
we adapt the concept of k-anonymity [50]. In our case, k-anonymity means that a
participant, who reports category i, cannot be distinguished from other k−1 participants
who also report category i. By adjusting certain settings in a GNS, one can control the
degree of k-anonymity, and thus control the privacy level of GNS. Assume that there
are c categories and n participants. We denote the k-anonymity for category j as kaj .
We also denote the standard deviation used in Gaussian distribution as σ. As we do
not know the actual counts of participants in each category, we assume that the true
counts are uniformly distributed in the categories. Hence, there are n

c participants in
each category. For any category i that is not equal to j, the number of participants who
are in category i but report category j is Pri,j · n

c . We have the following formula.

kaj =
∑

i 6=j

Pri,j · n

c

Surveyors of GNSs can control the range of k-anonymity by applying different combina-
tions of c, n and σ. Let us see an example based on the previous scenario of surveying
passengers (see Section 1) where c is 7. Assume that the surveyor sets σ to 2. Table 2
shows the probabilities Pri,j under these settings. When there are 100 participants, i.e.,
n = 100, kaj will be 9, 15, 17, 18, 17, 15 and 9, when j varies from 1 to 7. Hence, the
surveyor controls the k-anonymity between 9 and 18. In extreme case, when σ is large,
the shape of the Gaussian distribution is close to the uniform distribution. In that case,
the k-anonymity level will be either 14 or 15 in our example and thus approximately be
constant.

5. Measuring Privacy and Accuracy

5.1. Privacy
We define a measure of privacy in GNSs. We do not measure the actual privacy level

achieved by individuals based on k-anonymity. Anonymity-based metrics evaluate the
privacy levels when people can report true sensitive information but want to be indis-
tinguishable from others. Survey participants, however, usually want to hide sensitive
information in the first place. We define a metric that estimates the privacy levels of an
individual without knowing the true data. We measure privacy based on the probability
that a positive category is derived from a reported category. If the true category has a
high probability to be derived, the privacy of the participant is at high risk. Otherwise,
the privacy is well protected. In our experiments, we calculate the average privacy level
gained by all participants using this measure.

Let us consider how a positive category can be derived from a reported category.
Assuming there are c categories, a participant who reports category j belongs to one
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of the categories in set Sj = {1, . . . , c} \ {j}. As the true statistic is unknown, a data
collector has to assume that the true counts are uniformly distributed in c categories.
Let Pri,j denotes the probability that participants in category i report category j. The
probability that a participant actually belongs to category i is

Pri,j∑
k∈Sj

Prk,j
.

We define the privacy level based on this probability:

Privacyi,j = 1− Pri,j∑
k∈Sj

Prk,j
. (5)

Let us see an example based on the probabilities shown in Figure 5. Assume that a
participant in category 3 reports category 1. Since Prk,1 is 30.7%, 17.6%, 9%, 3.2%,
1.6% and 0.5% when k varies from 2 to 7, the privacy level of the participant is

1− 0.176
0.307 + 0.176 + 0.09 + 0.032 + 0.016 + 0.005

= 72%.

5.2. Accuracy
We measure accuracy level from three aspects. First, we use the standard Root Mean

Square Error (RMSE) to measure the absolute value of errors. The previous work, UNSs,
uses a customized metric based on RMSE [8]. For the ith query in q queries, ei denotes
the estimated answer from negative surveys and ti denotes the true answer to the query.
RMSE is defined as:

RMSE =

√∑q
i=1(ei − ti)2

q
. (6)

Second, we measure Relative Accuracy (RA) based on the ratio of error to the true
answer. We denote the true answer as t and the answer given by negative surveys as n.
Formula 7 presents our definition of RA. This measurement shows the relative significance
of errors. For example, let us assume that a true answer is 10000 and the answer given
by a negative survey is 9500. Although the negative survey has an error of 500, the error
is not significant compared to the true count, i.e., RA = 95%.

RA =





1− |n− t|
t

when |n− t| <= t,

0 when |n− t| > t.

(7)

The above two metrics are for evaluating the accuracy of answers to range aggregate
queries. In our experiments, we also measure the similarity between the true spatial
distribution and the collected spatial distribution using Kolmogorov-Smirnov test (KS-
test) [51, 52]. Different to RMSE and RA, we consider all categories for KS-tests, not
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only the categories in the query range. KS-test gives D-value, which is a normalized
distance between two distributions. The range of D-value is between 0 and 1. A small
D-value means two distributions are close to each other. For example, the D-value for
the two distributions in Figure 4 is 0.4286 while the D-value for the two distributions in
Figure 6 is 0.2857.

6. Experiments

We compare our proposed approach, GNSs, with the existing approach of negative
surveys, UNSs. We also compare GNSs with a common data perturbation technique,
Retention Replacement Perturbations [12]. This approach works as follows. During
a survey, a random value is generated for each participant. If the value is below a
pre-determined retention threshold, the true category of the participant is collected.
Otherwise, one of the categories (including the true category) is randomly selected based
on an uniform distribution. Similar to UNSs, the collected data needs to be put through a
reconstruction process before solving queries. Due to the use of uniform distribution, we
call this approach Uniform Retention Replacement Perturbations (URRPs). The original
work on URRPs shows that a lower retention threshold leads to a higher privacy level.
As privacy is of priority in our research, we set the retention threshold to a very low
value, 0.01. As shown in the experimental results, this setting allows URRPs to achieve
high privacy levels similar to UNSs.

We conduct experiments in one dimensional and two dimensional settings. The one
dimensional settings simulate data collections that are similar to our example of collecting
aggregate data about passengers on a route (Figure 1). The two dimensional settings
simulate data collections in which the number of categories is high, such as surveys of
patients in a country by region. Besides the synthetic spatial data, we also evaluate
all approaches using a set of real 2D data. We use various settings through out the
experiments. For each setting, we run the same tests for 100 times and average the
results. In each run, we first generate a true data set. We then generate the collected
data based on the true data set. For each of the surveys, we evaluate the similarity
between the true distribution and the collected distribution using KS-tests. The average
privacy levels are also calculated. In addition, we process 100 range aggregate queries
using true data and the collected data from the two negative surveys. The size and
position of the query ranges are randomly determined using an uniform distribution.
Based on the answers to the queries, RMSE and the averaged RA are calculated. Table 6
presents the values of experimental parameters. There are two types of settings, one is
default settings, another is alternative settings. Each experiment varies one of the four
parameters based on the alternative settings while keeping the other three parameters
to the default settings. The parameters are defined as follows.

• Number of Categories: This is the number of stations on a route (Figure 1). For
two-dimensional settings, this parameter is the number of cells in a grid partitioning
of the space.

• Standard Deviation of GNSs: This is the parameter σ used in Formula 2. It
determines the shape of the Gaussian distribution in GNSs. A low value means
that most participants would select negative categories that are close to the true
categories, and vice versa.
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Table 6: Experimental settings.

Default Settings Alternative Settings

Number of Categories 20 (1D), 20× 20 (2D) 5 - 35 (1D), 5× 5 - 35× 35 (2D)

Standard Deviation of GNSs 2 0.5 - 3.5

Query Size 25% 5% - 45%

Number of Participants 1000 400 - 1600

• Query Size: This is measured as the ratio between the number of categories in
query range to the total number of categories.

• Number of Participants: This is the total number of participants in a data
collection. We should note that this parameter is fixed for real 2D datasets.

6.1. Synthetic One Dimensional Datasets
For one dimensional settings, the true counts are generated from one of two com-

mon distributions: Gaussian distribution and uniform distribution. We set the standard
deviation of Gaussian distribution to one fifth of the number of categories. This is for
simulating common scenarios where counts of participants do not change dramatically
and remain constant across adjacent geographic areas. When the true distribution is
Gaussian, we label the results from UNSs, GNSs and URRPs as UNS(G), GNS(G) and
URRP(G), respectively. When the true distribution is uniform, we label the results from
UNSs, GNSs and URRPs as UNS(U), GNS(U) and URRP(U), respectively.

6.1.1. Number of Categories
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Figure 7: Effects of the number of categories in synthetic one dimensional settings.
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We observe the advantages of GNS over UNS with the increase in the number of
categories (Figure 7). All approches achieve 80% and higher privacy levels when there
are 15 or more categories. GNS’s RMSE decreases with the growth of categories as more
categories usually lead to a smaller count in each category. On the contrary, UNS’s
RMSE rises because the magnification of errors during reconstruction is proportional to
the number of categories. GNS’s accuracy level surpasses UNS when there are 10 or
more categories. When there are less than 10 categories, the difference of counts between
adjacent categories is relatively significant in GNS. We also observe that the query results
of GNS are constantly more accurate than URRP, whose relative accuracy is never higher
than 12.3%.

6.1.2. Standard Deviation of GNSs
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Figure 8: Effects of the standard deviation of GNSs in synthetic one dimensional settings.

The shape of Gaussian distribution used by GNS is determined by the standard de-
viation. A small value of standard deviation leads to a narrow distribution around the
positive category, and vice versa. As expected, the privacy level of GNS is affected by
this parameter (Figure 8). When the standard deviation increases, participants select
negative categories from a wider range, which improves the privacy levels. GNS’s rela-
tive accuracy decreases slowly when the standard deviation increases as the true counts
become less likely to be distributed near the positive category. However, the results
demonstrate that we can increase GNS’s privacy level to 90.6% while maintaining accu-
racy level above 81.2%. The common data perturbation technique, URRP, achieves high
privacy levels similar to UNS but are not usable due to poor accuracy levels in solving
queries. Based on D-values, we also observe that GNS can approximate the original
distribution well, no matter it is Gaussian or uniform. URRP and UNS cannot give close
approximation of the original distribution, regardless of the shape of the distribution.
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6.1.3. Query Size
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Figure 9: Effects of the query size in synthetic one dimensional settings.

Figure 9 shows that GNS’s RMSE is lower than UNS and URRP. GNS also achieves a
significantly higher RA than both other approaches. The RA of all approaches increases
with the growth of query size. For example, GNS’s RA increases from 87.3% to 96.9%
when the original data is uniformly distributed. This indicates that the offset of errors
from adjacent categories has more significant effects on the results when more categories
are involved. Again, the results show that GNS is the only approach that can achieve
high privacy levels and high accuracy levels at the same time.

6.1.4. Number of Participants
For all approaches, RMSE increases when there are more participants (Figure 10).

GNS’s RMSE grows at the slowest pace among all approaches. The relative accuracy of
UNS and URRP increases with the growth of participants because the errors become less
significant compared to large counts in query results. GNS’s relative accuracy is higher
than UNS and URRP by more than 37% and 76%, respectively.

6.2. Synthetic Two Dimensional Datasets
Our two dimensional settings simulate data collections in which the number of cate-

gories can be quite high. We use the Network-based Generator of Moving Objects [53]
to randomly create locations of participants in a part of the road network of the State
of Victoria, Australia. We control parameters of the generator such that the number
of participants is high in an area where the density of road network is also high, and
vice versa. This leads to a realistic distribution of participants. In real data collections,
the locations could be home addresses, vehicle positions, etc. We then divide the geo-
graphical area into an n × n grid. Each grid cell is regarded as a category. In UNSs, a
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Figure 10: Effects of the number of participants in synthetic one dimensional settings.

participant randomly selects a negative category with a probability of 1
n2−1 . In GNSs,

the probability of selecting a negative category is calculated in the same way as in one
dimensional settings, but is based on the number of hops between a true cell and a se-
lected cell. For example, a positive category (a grid cell) may be surrounded by up to 8
one-hop negative categories, each of which has an equal probability to be selected. The
larger the number of hops, the lower the probability. We also implement URRPs in this
experiment. We define the range of a query as a rectangular region, which covers one or
more cells.

6.2.1. Number of Categories
Figure 11 shows the high privacy levels achieved by GNS. The accuracy levels of GNS

are significantly better than UNS and URRP. This can be observed from the charts for
RMSE, RA and D-value. For example, GNS’s relative accuracy is between 87.3% and
94.8% while the other two stay below 10% in most cases. Results on relative accuracy
show that UNS are unsuitable for large scale data collections if there are a high number
of categories and a limited number of participants. URRP also performs poorly in such
situations.

6.2.2. Standard Deviation of GNSs
Figure 12 shows that GNS’s privacy level rises with the increment of standard devi-

ation as participants can select negative categories from a wider range. Even when the
standard deviation is low, GNS still achieves a 86.7% privacy level. Compared with the
results for one dimensional settings, GNS’s privacy level is higher for the same standard
deviation because there are a substantially larger number of categories to choose from in
two dimensional settings. We also observe the significant advantage of GNS over UNS
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Figure 11: Effects of the number of categories in synthetic 2D settings.
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Figure 12: Effects of the standard deviation of GNSs in synthetic 2D settings.
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and URRP in terms of accuracy. For example, GNS’s D-value is never higher than 0.22
while both UNS and URRP stay at 0.54.

6.2.3. Query Size
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Figure 13: Effects of the query size in synthetic 2D settings.

For any query size, the RMSE of GNS is significantly lower than UNS and URRP
(Figure 13). RA of all approaches increases with the growth of query size. GNS’s RA is
always higher than UNS and URRP by approximately 80%. As shown by the D-values,
GNS always shows a more accurate spatial distribution of participants than UNS and
URRP.

6.2.4. Number of Participants
Similar to the results from one dimensional settings, Figure 14 shows that GNS is

better than other approaches by a large margin in terms of accuracy levels. The number
of participants does not affect the high privacy levels of all approaches. Again, the results
show that GNS achieves a better balance between privacy and accuracy than UNS and
URRP.

6.3. Real Two Dimensional Datasets
In this section, we use a real 2D dataset to test GNSs. We use a dataset that con-

tains the geo-locations of General Practices Surgeries conducted in England during De-
cember, 2006 (http://data.gov.uk/dataset/location_of_general_practices_gps_
-_surgeries). There are 10,201 locations in the dataset. We compute the minimal
bounding rectangle of all locations and use each location as the true position of a par-
ticipant. We then create categories based on a grid in the region as we did in previous
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Figure 14: Effects of the number of participants in synthetic 2D settings.

experiments. The true locations of participants are mapped to categories (grid cells).
We then generate negative data and compare the answers from the true data and the
negative data.

6.3.1. Number of Categories
Figure 15 shows that all three approaches achieve high privacy levels, above 95%.

Similar to what we observed in the experiment on synthetic datasets, the accuracy of
GNS is better than UNS and URRP in most cases. For example, GNS’s RMSE decreases
from 2169 to 403 while UNS’s RMSE increases from 1155 to 54499. The relative accuracy
of GNS is always above 72.7% and increases when there are more categories. At the same
time, UNS’s relative accuracy drops sharply (82.5% to 3.6%) while URRP stays between
(37% and 45%). GNS is the only approach that constantly achieves high privacy levels
and high accuracy levels.

6.3.2. Standard Deviation of GNSs
Figure 16 shows that GNS’s privacy level catches up with UNS when the standard

deviation is 2 or higher. GNS’s RMSE is lower by several orders of magnitude than UNS.
GNS is also constantly more accurate than URRP in the answers to queries. For example,
GNS’s relative accuracy ranges from 82.2% to 95.8% while URRP stays around 38%.
Based on the D-values, we also observe that GNS shows a more accurate distribution of
original data than other approaches when its standard deviation is below 3.

6.3.3. Query Size
When we change the query size, we also observe similar results as in synthetic data

(Figure 17). The privacy levels of three approaches are indistinguishable from each other.
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Figure 15: Effects of the number of categories in real 2D settings.
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Figure 16: Effects of the standard deviation of GNSs in real 2D settings.
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Figure 17: Effects of the query size in real 2D settings.

GNS shows significant advantage in RMSE and relative accuracy over UNS and URRP.
For example, GNS achieves 91.6% accuracy level while URRP only reaches 51.8% and
UNS is 15.9% when the query size is 45% of the whole area. The D-values of GNS are a
bit higher than those in synthetic data due to the high randomness in real data. But they
are still constantly lower than UNS and URRP (0.4 versus 0.5). Again, the results show
that GNS is the only approach that can achieve high privacy levels and high accuracy
levels at the same time.

7. Conclusion

This paper shows that the existing approach for negative surveys, i.e., Uniform Neg-
ative Surveys (UNSs), works fine for data collection with a small number of categories
but with the increase of the number of categories, the collected data becomes unusable.
The effects of the errors are particularly significant when UNSs are used for collecting
aggregate spatial data. In this work, we focus on collecting statistical spatial data, al-
though for certain applications, detailed personal data might be more important than
such aggregated data. We propose Gaussian Negative Surveys (GNSs). The novelty
of GNSs lies in three aspects. First, GNSs maintain the correlation between adjacent
categories by using Gaussian distribution rather than uniform distribution as in UNSs.
Second, the data collected by GNSs can be used to solve queries without reconstruction,
which is mandatory in UNSs. Third, we overcome the limit of survey scale in UNSs,
which are only usable when there are a small number of categories. Our experimental
results show that GNSs can scale in a significantly better way than UNSs. For example,
GNS’s RMSE can be lower than UNS’s RMSE by several orders of magnitude when
there are a number of categories. While UNSs inherently achieve a high privacy level,
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the privacy level achieved by GNSs is close to UNSs. We also observe that GNSs are
significantly more accurate than a common data perturbation technique, URRPs, when
both of them achieve similar high privacy levels. The Gaussian distributions of GNSs
used in our experiments are multi-variation Gaussian distributions in one dimensional
and two dimensional settings. The aim of future study is to apply the same approach to
spatial data with a higher number of dimensions, e.g., 3D geo-spatial data or 2D data
with another temporal dimension.
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