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Abstract. Online games and location-based services now form the potential ap-
plication domains for the P2P paradigm. In P2P systems, balancing the workload
is essential for overall performance. However, existing load balancing techniques
for P2P systems were designed for stationary data. They can produce undesirable
workload allocations for moving objects that is continuously updated. In this pa-
per, we propose a novel load balancing technique for moving object management
using a P2P network. Our technique considers the mobility of moving objects
and uses an accurate cost model to optimize the performance in the manage-
ment network, in particular for handling location updates in tandem with query
processing. In a comprehensive set of experiments, we show that our load balanc-
ing technique gives constantly better update and query performance results than
existing load balancing techniques.
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1 Introduction

Decentralized distributed systems, in particular peer-to-peer (P2P) systems, are an in-
creasingly popular approach for managing large amounts of data. These systems do
not have a single point of failure and can easily scale by adding further computing
resources. They are seen as economical as well as practical solutions in distributed
computing. For example, a police department could deploy a P2P system of hundreds
of generic, cheap low-end processing units (nodes) for a traffic monitoring system.
With similar constraints and needs, massively multi-player online games as well as
new location-based services now form the potential application domains for the P2P
paradigm. With recent research in P2P data management, managing complex data and
queries is now a reality and such new P2P applications that go beyond file sharing are
about to emerge [1].

In this paper, we consider a large set of moving objects maintained by a P2P network
of processors. A moving object data management system typically assumes that objects
either periodically report their locations or their location changes [2]. The workload of a
moving object data management system mainly consists of two parts: handling location
updates and processing queries. As it is the case for any distributed system, in a P2P



system for moving objects, balancing the workload is essential to optimize the over-
all performance. However, existing P2P load balancing techniques were designed for
stationary data and can produce undesirable workload allocations for moving objects.

We show two examples for processing updates and queries that highlight different
workload allocations. Fig.1 shows two different approaches to partition the load from
updates for two processing nodes,P1 andP2. Fig.1 (a) shows the initial state with only
one node,P1, managing the entire load (20 updates). The thick lines represent roads and
the numbers adjacent to them represent the number of location updates from objects,
e.g., cars, moving on the roads during a period of 5 minutes.
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Fig. 1. Examples of workload partitioning for updates

A traditional load balancing scheme might partition the data space as in Fig.1 (b)
for the nodesP1 andP2, which results in a perfectly balanced load forP1 andP2. The
cars on the vertical roads require 5 updates per node. The cars on the horizontal road
move from one partition to the other partition and cause two updates: a new update
message for the node entered and another update message to delete the object from
the node left. As a result, we get a total of5 + 10 + 5 + 10 = 30 updates for both
nodes, where each node handles 15 updates. However, if the data space is partitioned
as in Fig.1 (c), although the load is not balanced among the two nodes, we only get
a total load of 20 updates instead of 30 updates. This interesting example shows that a
traditional load balancing scheme can result in higher total workload than unbalanced
load partitioning that optimizes the total load with respect to the movement of objects.

Unbalanced partitioning can also improve query processing. Assume the same data
distribution as in Fig.1 (a) and suppose the rectangles shown in Fig.2 (a) represent
two-dimensional range (window) queries. A traditional load balancing scheme might
partition the space similar to the previous example leading to the partitioning as in
Fig. 2 (b). In this case, nodeP1 has to process 8 queries because the data space com-
pletely includes 3 query windows and overlaps with 5 query windows; correspondingly
nodeP2 has to process 7 queries, which leads to a load of 15 queries in total. If we par-
tition the data space as Fig.2 (c), P1 has to process 6 queries andP2 4 queries, which
leads to a total load of 10 queries, significantly less than the more balanced partitioning.
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Fig. 2.Examples of workload partitioning for range queries



These examples show that a traditional load balancing scheme can be inefficient for
moving objects if their movement is not taken into account. This inefficiency applies
to both updates and queries in dynamic spatial settings that use multiple processing
nodes. Motivated by these observations, we propose a novel load balancing technique
for moving object management in a P2P network. Our technique considers the mo-
bility of moving objects to model and minimize the average cost of handling updates
and processing queries. To optimize the overall system performance, we make a trade-
off between balancing the workload and minimizing the extra workload overheads for
crossing updates and overlapping queries. We propose to model nodes and their work-
loads using an undirected weighted graph, which allows us to use a graph partitioning
algorithm for load partitioning. We then develop an accurate cost model that estimates
the cost of handling updates and the processing of queries in order to optimize the per-
formance of the management network. Through an extensive experimental study, we
show that our spatial approach to load balancing gives constantly better update and
query performance results than existing P2P load balancing techniques.

2 Related Work

Moving object data management in centralized systems has been extensively studied
in [3,4,5,6,7]. Recently, for static spatial data, decentralized systems have been devel-
oped [1,8,9,10]. In addition, recent research also focused on moving objects in distrib-
uted settings [11,12]. None of these existing systems address load balancing issues for
moving object data management in P2P systems.

Distributed algorithms and data structures for P2P systems have become the
main research topic for large scale distributed data management since early 2000s
(e.g., [13,14]). These systems rely on distributed hash tables (DHTs). DHTs maintain
logical neighbor relationships between the nodes of a P2P system and each node main-
tains only a small set of logical neighbors for routing messages closer to the destination
nodes. Among these DHTs, the Content Addressable Network (CAN) [13] uses a space
partitioning mechanism that can be easily adapted for spatial data. We use CAN as a
base approach for large scale moving object data management.

In CAN, with a two-dimensional setting, the data space is mapped onto a[0, 1] ×
[0, 1] virtual coordinate space and is divided among the nodes in a P2P system. Thus,
the virtual coordinate space is used as an intermediate space to map the data space onto
node addresses. Data is stored as (key, value) pairs, in which the key is deterministically
mapped onto a pointp in the coordinate space and the corresponding pair is stored
at the processing node that owns the subregion containingp. The same mapping is
used for data retrieval. For two-dimensional spatial data the mapping onto the virtual
coordinate space is straightforward. For routing, each node in CAN maintains a routing
table containing the IP addresses of the nodes and the extent of the sub-regions adjacent
to its own subregion. A node routes a message towards its destination by forwarding it to
the neighbor with coordinates which is closest to the destination coordinates. A CAN-
based system is built incrementally, where a new node can randomly select an existing
node to join in the system by taking over the half of the region from the existing node.
Since CAN does not perform any explicit load balancing, a dedicated load balancing
strategy is necessary to improve the performance.



Godfrey et al. in [15] propose a load balancing strategy for P2P systems using
the concept of virtual servers. The storage and routing occurs at virtual nodes (vir-
tual servers) rather than real nodes (processing nodes) and each real node can host one
or more virtual servers. Each virtual server maintains a sub-region. Every virtual server
has its own logical address defined by its sub-region and data such as the neighbor table.
A virtual server uses a similar greedy algorithm as CAN. An overloaded node transfers
some of its virtual servers to an underloaded node. In [15] some nodes in the system act
as a load balancer. All nodes send their load information to a randomly chosen load bal-
ancing server. Based on the workload of each node, the balancers distribute the virtual
servers among the participating nodes to achieve a load balanced system. It is assumed
that the overheads for transferring virtual servers among the participating nodes is com-
monly accepted as negligible in comparison with the benefits that the system can get
from load balancing. We use the virtual server based approach for moving object data
as a starting point.

Recently, several proposals aim to address the load balancing issues for range parti-
tioned data sets and to preserve the locality of the data. Aspens et al. [16] adopt a pairing
strategy in which heavily-loaded machines are placed next to lightly-loaded machines
in the data structure to simplify data migration. Similarly, Karger and Ruhl [17] achieve
load balancing by periodically moving underloaded nodes next to overloaded nodes.
Ganesan et al.’s [18] online load balancing algorithm achieves load balancing by adjust-
ing partition boundaries of range partitioned data and moving data among participating
nodes. These techniques are designed for static non-spatial data.

It is important to note that some earlier works [19,20] in spatial database focus
on load balancing using parallel systems or a cluster of workstations. Based on the
access patterns of the data these systems distribute an index to balance the workload
for optimizing the query response time. However, none of these techniques consider the
movement patterns of objects and thus are unable to handle extra workload overheads
from moving objects.

3 Mobility-Aware Load Balancing

In this section, we propose our load balancing technique that considers the movement
of objects. We named our method as Mobility-Aware Load Balancing (MALB). Our
technique makes a tradeoff between balancing the workload and minimizing the work-
load overheads from moving objects to minimize the cost function of the system. In this
section, we first give a brief overview of modeling the workload. Then we define a cost
function for the system. Finally, we will describe our load balancing technique.

We use CAN as the underlying distributed P2P system. Fig.3 (a) shows the assign-
ment of four subregions to four processing nodes (or nodes)P1, P2, P3, andP4 in CAN.
Furthermore, we adopt the concept of virtual servers (Section2) for load balancing, i.e.,
each node maintains one or more non-contiguous subregions resulting from CAN sub-
division. Each subregion is called a virtual server or virtual node. Fig.3 (b) shows the
assignment of a set of virtual nodes{vs4, vs5}, {vs1, vs2, vs3, vs6}, {vs7, vs10, vs11},
and{vs8, vs9} representing different subregions to the nodesP1, P2, P3, andP4, re-
spectively. Note that in the virtual server approach, the load balancer does not consider
the movement of objects and queries among subregions while distributing loads. For
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example, a scenario where a large number of objects cross betweenvs4 in P1 andvs6

in P2, the above possibly highly balanced assignment shown in Fig.3 (b) can result in
poor performance due to communication overheads. MALB reduces these communica-
tion overheads by only allowing the assignment of virtual nodes from one node to the
other if the desired transition optimizes the cost given in Section3.1(see equation (1)).
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Fig.4 (a) shows a set of virtual nodes hosted at the nodeP1. Each virtual node keeps
track of its own load, its neighbors’ loads, the number of objects leaving or entering each
neighboring virtual nodes, and the overlapping queries with its neighbors. We model
the virtual nodes, their relations within a node, and the load relations with neighboring
processing nodes as a weighted graph,G = (V,E). Each vertexv ∈ V represents a
virtual node or a neighboring processing node. The weight of a vertex representing a
virtual node is the total load of updates and queries of that virtual node and corresponds
to the load of its subregion. If a vertex represents a neighboring processing node, its
weight reflects the total load obtained from all maintained virtual nodes. An edgee ∈ E
between two vertices inV indicates that the regions represented by these two vertices
share a border. Each edgee has a pair of weights(eoc, eqc): eoc represents the number
of crossing objects andeqc the number of overlapping queries.

Fig. 4 (a) shows initial assignments of four subregions to four nodesP1, P2, P3,
andP4. Five virtual nodes{vs1, vs2, vs3, vs4, vs5} hosted at the nodeP1 are shown
inside thick border lines. The vertices{v1, v2, v3, v4, v5} represent five virtual nodes of
P1 and the verticesv6, v7, andv8 represent three neighboring nodesP2, P3, andP4,
respectively, as shown in Fig.4 (b). The verticesv1 andv2 having weights 60 and 40
represent the total update and query load for the virtual nodesvs1 andvs2, respectively.



The edge between these two vertices is labeled as(20, 5), where 20 is the number of
crossing objects and 5 is the number of overlapping queries betweenvs1 andvs2. Since
each crossing object results in an update operation to each of the two virtual nodes, and
each overlapping query is also counted on both of the virtual nodes, the total load of
these two virtual nodes is60 + 40− 20− 5 = 75. Similarly, the total load of a node is
obtained by combining all loads from the virtual nodes hosted at that node.

3.1 Update and Query Costs

The performance of a moving object management system is determined by its two major
tasks: handling updates and processing queries. The performance can be measured by
the average response time for handling an updateTu and for processing a queryTq. The
system performance can be measured by the following weighted cost function:

cost = w × Tu ×Nu + (1− w)× Tq ×Nq, (1)

whereNu andNq are the total number of update requests and queries, respectively, for a
period ofT time units;w is a weight between 0 and 1 that adjusts the relative importance
of the two operations in the system. In certain applications, immediate precise location
information about the objects may be important requiring a higher weight for the update
response time. A higher priority for an immediate prompt answer of a query, needs a
higher weight for the query response time.

The goal of our load balancing scheme is to distribute the workload among the nodes
in a P2P network such that the cost function (1) is minimized. To calculate the value of
(1) for a given workload partitioning, we need to calculateTu andTq (Section4).

3.2 Algorithm

In this section, we describe an algorithm, namedRegionAdjustment (Algorithm 1),
that every node runs to trade its load by transferring some of its virtual nodes to a neigh-
boring node. If there are multiple neighbors of a node, the node selects the neighbor that
result in the highest performance improvement using the cost function. Note that we do
not use any explicit load balancing servers. Instead, every node acts as its own load
balancing server using only local information.

A node constructs and updates its load interaction graphG = (V, E) periodically.
Let V1 andV2 be the two initial partitions ofV . V1 is a set of vertices representing a
set of virtual nodes of that node andV2 is a set with a single vertex for the selected
neighboring node. Algorithm1 refines the initial partitions and returns two new parti-
tions that minimizes the cost in equation (1). The cost function is minimal forV1 and
V2 when their load is equal and they have no crossing objects and overlapping queries.
The algorithm determines the vertices to be migrated fromV1 to V2.

Algorithm 1 pair-wise adjusts the load of virtual nodes between two neighboring
nodes by estimating a local approximation of the global cost function equation (1). We
show an example run of the algorithm in the workload scenario given in Fig.4. Suppose
nodeP1 runs the algorithm to adjust its regions with a neighborP2. Initially, the algo-
rithm creates two partitionsV1 andV2, whereV1 = {v1, v2, v3, v4, v5} represents the



Algorithm 1 : RegionAdjustment

Let X be the set of border vertices betweenV1 andV2;1.1

Let Y be an empty set of vertices;1.2

improving = true;1.3

Let initcost be the value of cost using equation (1) for the initial partitions;1.4

mincost = initcost;1.5

while improving do1.6

improving = false;1.7

while X is not emptydo1.8

for each border vertexx ∈ X do1.9

Let cost[x] be the value from equation (1) for the partitions assumingx is1.10

transferred to the other partition;

Let v be a vertex inX, such thatcost[v] = minx∈X cost[x];1.11

Transfer vertexv from the current partition to the other partition;1.12

if cost[v] < mincost then1.13

improving = true;1.14

mincost = cost[v];1.15

Confirm the vertex migration from the current partition to the other;1.16

Clear setY ;1.17

else1.18

Put vertexv in a temporary setY ;1.19

Removev from X and setvisited flag forv;1.20

UpdateX by adding non-visited new border vertices toX and by removing1.21

non-border vertices fromX;

for each vertexy ∈ Y do1.22

Transfer the vertexy from the current partition to the other;1.23

Clearvisited flag for all the vertices;1.24

PopulateX with border vertices excluding the vertices inY for the next iteration;1.25

set of virtual nodes ofP1 and the setV2 = {v6} corresponds to the neighboring node
P2. In this scenario,X contains the border vertices{v4, v5}, i.e., the set of vertices
that shares a border with a vertex in the other partition. Initially, the workload of nodes
P1 andP2 are 160 and 70, respectively, and the crossing objects and the overlapping
queries between these two nodes are(20 + 5) and(5 + 1). The workload of these two
nodes can be calculated from the two sets of verticesV1 andV2. The response time for
each of the 25 crossing updates is determined by the sum of the required update time
in the two participating nodes. The response time for each of the 6 overlapping queries
is determined by the maximum response time of both nodes. Again, the response time
of all other non-crossing updates and non-overlapping queries only depends upon the
service time of the corresponding node. Using these workload conditions, the algorithm
determines the cost using equation(1) asinitcost and determines the initialmincost.

The algorithm calculates the cost for each of the vertices inX in Line 1.9 and 1.10.
The cost of a border vertex is the cost in equation(1) for the modified partitions if
the vertex migrates to the other partition. Ifv5 migrates fromV1 to V2, the load ofV1



andV2 would be 123 and 95, respectively, with 9 crossing updates and 4 overlapping
queries. Assume the cost forv5, cost[v5], is the minimal cost for all candidate vertices.
If cost[v5] is less than the previous valuemincost, then we expect that the migration
of v5 from V1 to V2 reduces the overall weighted cost function. Therefore,v5 migrates
from V1 to V2 and we update the cost variables in lines 1.14–1.17. This process contin-
ues as long as it minimizes the cost function. This algorithm aims to balance the load
while minimizing the overhead for crossing updates and overlapping queries.

In summary, the outer loop refines the two initial partitions (lines 1.6–1.25). The
inner loop (lines 1.8–1.21) checks for each border vertex if its migration minimizes the
cost function. To avoid local minima in Algorithm1, vertices can temporarily move
from one partition to the other (lines 1.18–1.19) even if this move does not immediately
optimize the cost. If the algorithm does not find any minima, these vertices are put back
(lines 1.22–1.23). Then, the variables are re-set for the next iteration of the outer loop
(lines 1.24–1.25). The algorithm stops if no vertex is found whose migration further
minimizes the cost.

Our balancing scheme considers both periodic and emergency load balancing mea-
sures. Each node periodically wakes up after a time periodtp and runs Algorithm1
to balance its load with its neighbors. A carefully chosen value oftp can balance two
extreme conditions: a small value can lead to oscillations among participating nodes,
and a high value may result in an imbalanced system. To avoid emergencies such as
a sudden burst of traffic load, each node ensures that its load does not become higher
than some thresholdkn in comparison with the load of its neighbors. A node locks all of
its neighbors before running Algorithm1 to avoid inconsistencies that may arise from
concurrent load adjustment procedures among neighbors.

The sole use of local load balancing measures cannot guarantee an optimal load bal-
ance among all nodes, specially at dynamic load conditions (e.g., large traffic load for a
city center in the morning hours). However, in a P2P system, an all-to-all communica-
tion based global load balancing scheme may be problematic in itself. Thus, we adopt a
scheme from [18] where the system maintains a skip-graph data structure built on load
conditions of the nodes, and can find the nodes with a maximum or minimum load in
O(log n) time. Then, an overloaded node can share the load with the minimum loaded
node if the load of the overloaded node iskg (a threshold value) times higher than the
minimum load. Similarly, an underloaded node can share the load with the maximum
loaded node. If a new node joins the system or an existing node changes its position to
split an overloaded node, the serving node for this request splits its virtual nodes into
two sets of virtual nodes. It then retains a set of virtual nodes and gives the other set to
the requester. TheSplit procedure is very similar to Algorithm1. In this paper we do
not consider the costs for transferring virtual nodes among the participating processing
nodes because this cost is negligible in comparison to total workload for handling large
updates and processing queries for a period of time.

4 Cost Model

In algorithm RegionAdjustment, we need to calculate the cost function (1) given a work-
load partitioning. To calculate the value of (1), in this section, we derive a model to



estimateTu andTq based on the system knowledge of updates, queries, and the service
rate of the processing nodes for a period ofT time units.

When update or query requests arrive at a high rate, these requests are queued up in
different nodes in the form of messages. In our system, a message is an operation that
can be served in one node, while a request may consist of (or create) several messages.
A request (update or query) may need to travel several nodes for the desired objective in
a P2P system. For example, a range query request that spans over four nodes generates
four messages (one message per node). Similarly, an update request may generate two
messages (a delete message to the leaving node and an insert message to the entering
node) when an object crosses the border of two nodes. A new update or a query message
in a node has to wait until all the pending messages are served by the node. We assume
that the objects in a node are maintained in a in-memory structure (disk-based structures
are not suitable for a very high update rate) so that an update or query message can
be processed in a very short amount of time, which is much faster than the queuing
time of the message. Therefore, the response time of a message is actually the average
queuing time; and the workload is proportional to the number of messages. Given this
assumption, we can derive the average response time of a message in a nodei as follows.

Let λui andλqi
be the update and query message arrival rates, respectively, at node

i. The total arrival rate at nodei is λi = λui + λqi . Let the service rate of nodei beµi,
that is, nodei can serve messages at the rateµi and assumeµi > λi. A node can be
seen as aM/M/1 queue [21] (whereM stands for “Markovian”, implying exponential
distribution for service times or inter-arrival times). According to Little’s law [22], the
average queue length (Q) and Average Queueing Time (AQT) of nodei are given by
the following equations:

Qi =
λi

µi

1− λi

µi

(2)

AQTi =
Qi

λi
(3)

According to the analysis given in the previous paragraph, the average response time of
a message in nodei is also given by (3).

During a period ofT time units,λui × T update messages (including update mes-
sages created due to objects crossing nodes) arrive and the average response time of a
message isAQTi, so the total time to process the update messages isλui ×T ×AQTi.
If there aren nodes in the P2P system and the update request rate of the whole system
is γ (the actual update requests from data sources), then there areγ×T update requests.
So the average service time for an update requestTus is given by:

Tus =
∑n

k=1(λui × T ×AQTi)
γ × T

=
∑n

k=1(λui ×AQTi)
γ

(4)

However, objects that cross the borders of nodes cause communication overheads
from extra update messages. Assume an object crosses the border of a node with a
probabilityp (i.e., the number of objects that crosses the border / the total number of
objects) and the average communication time between two nodes isTc. Then average
communication overhead of an update requestTuc is Tuc = p× Tc.



By adding the service time and the communication time of an update request, we
get the average response time of an update request as follows:

Tu = Tus + Tuc (5)

Similarly, a query may create several messages for all the intersected nodes by the
query. Every intersected node processes its query message and return the answer to the
query originating node. The query originating node combines the answers from all the
intersected nodes to obtain the answer for the query. Therefore, the response time of the
query is the maximum of the response times of all the messages created by the request.

In our system, the total geographic space is normalized into a[0, 1]× [0, 1] coordi-
nate space and is partitioned amongn participating nodes. A window queryq of size
w × h whose top-left corner is at(x, y), may intersect 1 ton nodes depending on the
location and the size of the query. Let functionf(qx,y) return the number of nodesk
that q intersects. Therebyq createsk query messages and the response time of these
query messages areRT1, RT2, ..., RTk, respectively, fromk participating nodes. Then
the response time ofq is max{RT1, RT2, ..., RTk}. The other cost involved forq is
the communication overheadTcj→i

from a source nodej (query originating node) to a
destination nodei. Thus, the response time to the queryq, that intersectsf(qx,y) many
nodes can be defined as:

g(x, y, q) = max
1≤i≤f(qx,y)

[Tcj→i + RTi(Qi, qx,y)] (6)

Given a query sizew × h, if we sum up the response time of queries of all possible
query locations in the data space and divide the sum by the total number of queries, we
find the average response time of the queries for query sizew × h as follows:

Tq =
1

(1− w)× (1− h)

∫ 1−w

0

∫ 1−h

0

g(x, y, q)dxdy (7)

We have derived bothTu and Tq. SubstituteTu and Tq in function 1 by 5 and
7, respectively. We can calculate the cost for a given workload partitioning given the
information on crossing objects, update rate, query rate, service rate, etc. However, as
in a P2P network each node only has information about its own load and the load of its
neighbors, we can only locally calculate the cost and optimize the performance.

5 Experimental Study

We compare the performance of our load balancing algorithm MALB with the virtual
server (VS) load balancing technique from [15] on an experimental setup for location-
based services.

5.1 Experimental Setup

We use both synthetic and real road networks as shown in Fig.5. The synthetic road
networks are constructed by connecting a large number of small, grid-like, road net-
works, modeling a set of suburbs connected to each other with freeways. A larger em-
bedded grid is also used as a metropolitan city center. The real road network is from



(a) Synthetic (b) Real

Fig. 5. Road networks

the city of Stockton in San Joaquin County, CA. Again, the density of the network is
more at the city center in comparison to the other areas. The movements of the objects
within the road networks are generated by the Network-based Generator of Moving
Objects [23]. We have used J-Sim [24] to develop our simulation environment, and also
used BRITE [25] topology generation tool to create a communication network topol-
ogy. Each of our nodes are connected with its neighbors through high bandwidth lines
(2Gbps). We build the network in an incremental fashion, where each node contacts an
existing node to join the system. A summary of experiment parameters (default para-
meters are shown in bold) are given in Tab.1. We run each simulation multiple times
and give the averages in our results. As we shall see, simple CAN cannot scale well for
a skewed load distribution, we present the performance of our technique in comparison
to the VS load balancing technique.

Parameter Value
Road network data Synthetic, Real
No. of nodes 100
Update arrival rate (per sec.) (λu) 4K, 6K, 8K, 10K, 15K
Query arrival rate (per sec.) (λq) 200,400, 800, 1600
Service rate in a node (per sec.) (µ) 400
No. of crossing updates in % of all updates5, 15,25, 35, 45
Query size in % of whole data space 1, 5, 10, 20
Average no. of virtual nodes per node 8
Periodic load balance timeout (sec.) 10

Emergency load balance parameters kn = 2, kg = 4

Table 1.Summary of parameters for the experiments

5.2 Evaluation of the Cost Model

We have measured the accuracy of our cost model given in equation (1) using a two node
setting. We have chosen a two node setting as our algorithm works on individual nodes
and only uses the local neighborhood information available to that node to calculate
the cost. For various arrival and service rates, we first calculate the value of the cost



function (1), Fest. Then we run the experiments to find the experimental values, the
actual costFexp. Finally, we obtain the accuracy of the cost model by using|Fest−Fexp|

Fest
,

that is, the relative error, as the metric. The accuracy of the cost function depends on
how well we can estimate the average update response time (AURT) in equation (5) and
the average query response time (AQRT) in equation (7). We plot these two values as
functions of different arrival rates in Fig.6 (a) and6 (b), respectively. We found that the
deviation of the cost function from experimental values is always less than 10%.
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5.3 Scalability

Fig. 7 shows that the AURT increases with an increase in update arrival rate and CAN
cannot sustain its performance with the increasing load. The graph also shows that the
improvements from our approach over the VS remains constant up to an arrival rate of
6000. The improvement increases with the increase in the update arrival rate (up to 28%
from the VS approach). The reason for this is, more updates would mean that there are
more crossings of objects in the system. In this case, the VS load balancing needs to
handle more load due to overhead crossings. Our technique continues to scale better by
reducing the overhead crossings from updates.
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5.4 Effect ofw

We measure the value of the cost function defined in (1) by varying the weight,w. As
w increases, the value of the cost function increases as we put more weight on updates
and the number of updates is much more than the number of queries in the system
(Fig. 8). We get a reduced average response time for location updates ifw = 1.0 and,
interestingly, also a good query performance. As we reduce the updates between regions
this also reduces the total load in the system leading to good query performances.
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5.5 Effect of the Number of Region Crossing Object Updates

In this experiment we study the relative performance of the various techniques as the
number of crossings among neighboring regions is varied from 5% to 45%. The AURT
and AQRT with varying crossing updates are shown in Fig.9. In Fig. 9 (a), we set
w = 1.0 because we want to optimize the update performance in the system. Here the
x-axis represents the percentage of crossing updates with respect to the total number
of updates and the y-axis shows the average response time for an update. The results
show that as the number of crossings is increased from 5 to 45 percent, our approach
outperforms VS load balancing technique by a large margin, up to 40%. Since the extra
workload overheads increase with the increase of crossing updates in the system, and
traditional load balancing techniques (e.g., VS) are not aware of these overheads, the
performance of the system degrades sharply with larger crossings. On the contrary,
MALB reduces crossing overheads while balancing the workload, and thus perform
much better than VS. Similarly, Fig.9 (b) shows the comparison of two load balancing
techniques over queries. This figure shows that even for a small number of crossings
(i.e., 5%), the improvement is 19%, and as we reach to 45% the improvement becomes
equal to 36%.

5.6 Effect of Query Size

We have also run experiments by varying the query sizes. Fig.10 (a) shows that the
AQRT increases with an increase in the query size because larger queries overlap with
more nodes and thereby generate more load for the system. MALB performs 35% better
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than the VS approach for 5%, whereas the improvement is only approximately 20%
when the query size is 20%. By using a pair-wise only local decision making method
we can find better load balancing solutions for smaller query sizes (i.e., 5% -10%). Also,
we see that in the case of update performance as shown in Fig.10(b), the improvement
remains almost constant over the VS approach while the query size varies.
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5.7 Effect of Update to Query Ratio

We vary the update to query ratio from 5 to 40. We keep the update rate constant (8000)
while varying the query rate. Fig.11 (a) shows that our system achieves high perfor-
mance gains for queries when the update to query ratio is small. As the number of
queries increases, MALB can optimize more on the query performance. Fig.11 (b)
shows that the performance gain for updates does not vary as much with the increas-
ing number of queries in the system. Therefore, our technique can achieve high query
performance while still being very efficient for updates.

5.8 Experiments on a Real Road Network

We have run our experiments on a real city road network Stockton in San Joaquin
County, CA. We use 32 nodes to share the load for this small setting where the update
and query arrival rates are 2000 and 200, respectively. The rest of the parameters are
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same as in the previous experiments. This setting presents a challenge for our local
load balancing algorithm as the city has a dense center with many small roads, only a
few highways, and no suburbs (Fig.5 (b)). Thus, local decisions on the center have a
smaller impact on the global load balance. However, we still see in Fig.12 that MALB
outperforms the VS approach and the gains can be up to 20%.
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6 Conclusions and Future Work

In this paper, we proposed a novel mobility-aware load balancing (MALB) technique
for moving object management in a P2P system. MALB considers the movement
patterns of objects and achieves better performance than traditional load balancing
schemes, which were designed for stationary data. In addition, we optimized the perfor-
mance of handling updates in tandem with the processing of queries. Through experi-
ments, we show that our load balancing scheme results in constantly better update and
query performance results than existing load balancing techniques and the improvement
is up to 40%. We show that we can find better load partitions that reduce communica-
tion and processing overheads by reducing object updates and queries that span multiple
processors. However, accessing information available only at the neighbors can lead to
suboptimal results in comparison to a global optimization strategy. Yet, it is not prac-
tical to devise a trivially centralized load balancer for a large-scale P2P system. As a
direction for future work, we plan to build on our existing pair-wise load balancing
scheme to include clustering-based techniques.
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