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Monitoring queries are fundamental for Wireless Sensor Networks (WSNs) that collect data for physical
phenomena. In this work we address three key characteristics of monitoring queries. First, a monitoring
query can be selective, i.e., it requests readings only from parts of a WSN. Second, a monitoring query can
be continuous, i.e., it draws sensor readings for long periods of time. Finally, since physical phenomena
are spatially correlated, a monitoring query selects spatially co-located nodes. In our earlier work, we
proposed the Pocket Driven Trajectories (PDT) algorithm; a selectivity-aware data collection technique
that tailors data collection paths for a monitoring query based on the spatial layout of selected nodes.
In this work, we extend the basic PDT algorithm with an adaptive behavior. We show that the enhanced
PDT algorithm is ideal for real world WSNs due to its two major strengths; the PDT algorithm is local, i.e.,
it does not require any global information about node locations or network connectivity. Furthermore,
the PDT algorithm efficiently adapts its data collection paths over the lifetime of a query as changes in
the spatial layout of selected nodes occur. Using extensive simulations, we show that in terms of energy
efficiency the PDT algorithm clearly outperforms well-known WSN data collection algorithms.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Recent advances in hardware miniaturization and wireless
communications have given rise to a new class of networked sys-
tems known as Wireless Sensor Networks (WSNs). These systems
are empowered by a large number of self-contained sensor nodes,
each smaller than a human palm, providing an unprecedented
capability to sense and monitor the physical world. The low cost
of the sensor nodes establishes an economy of scale that makes
it possible to deploy these nodes in large numbers over vast areas.
WSNs are finding applications in diverse fields such as volcanic
activity monitoring, tsunami detection, and ecological monitoring
(NASA Volcano Sensorweb, 2007; Secure CITI, 2006; Tolle et al.,
2005). As in other large computing environments, the success of
a WSN is tied to its sustainability, i.e., the ability of the system to
maintain itself over time. Typically, the main constraint for a sen-
sor node is its power. In a large WSN deployment, it is often not
viable to change the batteries of the nodes. Therefore, minimizing
power consumption is a prime objective common to all WSN oper-
ations, including sensing, data processing, and communication.

Monitoring of physical phenomena is one of the main areas of
application for WSNs. In such applications, a database-oriented
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view of WSNs has proven to be useful. According to this view, a
WSN is considered as a distributed data source where the sensed
values generated by a set of WSN nodes form the rows of a relation
split across all nodes in the set (Madden, Franklin, Hellerstein, &
Hong, 2003; Yao and Gehrke, 2003). The database-oriented view
motivates the design of WSN data acquisition regimes targeted at
two fundamental aims. First, similar to classical database systems,
a WSN database should provide SQL-like abstractions so that nodes
can be easily programmed for data sensing and collection. Second,
the data collection process should minimize the overall energy
expenditure. Research into current sensor hardware has shown
that the energy consumption of a sensor node is a function of its
communication workload (Pottie & Kaiser, 2000). For a data acqui-
sition system, this insight motivates the optimization of the com-
munication process either by involving a smaller number of
nodes, or by establishing efficient communication paths between
the sensor nodes and the base station. In this paper, we consider
these two techniques in tandem, and argue that certain distinct
features of monitoring queries can be exploited to achieve higher
levels of energy efficiency.

1.1. Characteristics of monitoring queries

We define a monitoring query as a continuous data collection
task that requests sensed values from nodes fulfilling selection
criteria based on certain physical conditions. For instance, queries
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that monitor herd movements in a farm would report the sensed
values only from the nodes that have recently sensed animal
movements. The following are key aspects of monitoring
queries:

� Monitoring queries are selective: typically, a WSN can cover an
area much larger than the area of interest at any given point
in time. For instance, in the herd monitoring example presented
above, although nodes are present all over the farm, the herd
may only be found within a limited area. We argue that for
energy efficient optimization of such queries, the data collection
task should be selectivity-aware.

� Monitoring queries are continuous: a monitoring task, by design,
is expected to query readings from sensor nodes over an
extended period of time. The mainstream WSN database sys-
tems have realized the need for continuous queries and provide
SQL clauses to define such queries. For instance, the Cougar
database system provides DURATION and EVERY clauses (Yao &
Gehrke, 2003), which specify the lifetime of a query and the rate
of the query answers, respectively.

� Monitoring queries select spatially correlated nodes: physical phe-
nomena are characterized by their spatial correlation; hence,
when monitoring a physical phenomenon, sensor nodes at prox-
imal locations tend to have similar values. Therefore, this spatial
correlation, coupled with the notion of selectivity, results in
clustered or pocketed node participation. For instance, if a node
is selected by a query based on its sensed temperature value,
there is a high probability that neighboring nodes will also be
selected by the same query.

1.2. Our contributions

In this work, we present an adaptive location-based data collec-
tion algorithm, Pocket Driven Trajectories (PDT), which optimizes
the monitoring queries by exploiting their key characteristics.
The PDT algorithm first discovers the set of pockets of selected
nodes for a given query. It then aligns a data collection tree to
the spatially optimal path connecting these pockets. This path min-
imizes the use of non-selected nodes in the data collection tree and
consequently optimizes the overall energy efficiency of the data
collection process. The PDT algorithm is localized; i.e., no computa-
tion in the algorithm requires any global information such as node
connectivity or locations. Moreover, the PDT algorithm is adaptive;
i.e., it continuously adapts the data collection tree to changing
node participation. The PDT algorithm does incur set-up and tree
adjustment costs; however, due to the continuous nature of the
monitoring queries, these costs can be amortized over the lifetime
of the query.

A basic version of the PDT algorithm was presented in one of
our earlier works (Umer, Kulik, & Tanin, 2006). The basic version
establishes the strength of selectivity-awareness in the optimiza-
tion of monitoring queries. However, it does not adapt to changing
node participation and environmental conditions. The basic ver-
sion is thus limited in its potential applications. In this paper, we
extend and improve our previous work by introducing adaptability
into the algorithm and analyze the performance for various dy-
namic situations.
1.3. Organization

The remainder of this paper is organized as follows. In Section 2
we review related research and position our work in the context
of the WSN literature. Section 3 presents the formal underpinnings
of our algorithm, including a discussion of its adaptability and
costs. Section 4 details the experiments and discusses the
results of the simulation-based analysis of our algorithm. Finally,
Section 5 presents the conclusions and discusses possible future
directions.
2. Related work

Data collection has been an active research topic in the WSN
community. As shown in Fig. 1, we identify three major trends in
WSN data collection research: Systems, Testbeds, and Algorithmic.
Systems research has been mainly led by data collection systems
such as Directed diffusion (Intanagonwiwat, Govindan, Estrin,
Heidemann, & Silva, 2003), TinyDB (Madden et al., 2003), and Cou-
gar (Yao & Gehrke, 2002). The main motivation behind these sys-
tems is to simplify the users’ access to a WSN by providing
abstractions at the communication, routing, and node program-
ming levels. Although these systems are based on a number of data
collection algorithms, new applications and evolving requirements
have generated a constant need for better algorithms. This need
has thus motivated the algorithmic research in the WSN domain.
Since our work also falls under the category of algorithmic re-
search, we discuss this category in detail below.
2.1. In-network data aggregation

In-network data aggregation was one of the first data collection
optimization approaches proposed for WSNs (Bonfils & Bonnet,
2003; Considine, Li, Kollios, & Byers, 2004; Madden, Franklin, Hel-
lerstein, & Hong, 2002; Nath, Gibbons, Seshan, Anderson, 2004). In-
network aggregation algorithms exploit the fact that a sensor node
consumes less energy for information processing than for informa-
tion communication. These techniques establish multi-hop data
collection paths in a network where a node first aggregates the
incoming packets of the nodes in communication range and com-
municates only the aggregated information to the next node. Some
in-network aggregation techniques, such as TAG (Tiny AGgrega-
tion) (Madden et al., 2002, 2005), randomly create the data collec-
tion path and use it to compute all aggregate queries. In contrast,
several recent approaches propose to tailor the data collection
paths specifically to a group of similar queries (Bonfils and Bonnet,
2003; Pattem et al., 2004; Sharaf, Beaver, Labrinidis, & Chrysanthis,
2004). A data collection path can be tree-based or multi-path
(graph) based (Bawa, Gionis, Garcia-Molina, Motwani, 2004; Nath
et al., 2004). Interested readers are referred to (Umer et al., 2006)
for a detailed review of major in-network data aggregation
schemes.
2.2. Suppression-based data collection

Similar to data aggregation, suppression-based methods also at-
tempt to reduce the amount of data required to be reported to the
base station. As a spatial suppression method, clustered in-net-
work aggregation exploits the spatial correlation of sensor readings
to preserve energy (Pattem et al., 2004; Xu, Heidemann, & Estrin,
2001; Yoon & Shahabi, 2005). Data suppression can also be
achieved by approximating physical phenomena using statistical
models (Chu, Deshpande, Hellerstein, & Hong, 2006; Deshpande,
Guestrin, Madden, Hellerstein, & Homg, 2004). For instance, the
BBQ framework uses a statistical model along with live data
acquisition so that a large number of queries can be answered
locally by the base station (Deshpande, Guestrin, Madden, Heller-
stein, & Homg, 2004). Similarly, Ken (Chu, Deshpande, Hellerstein,
& Hong, 2006) proposed a dynamic probabilistic model for WSN
data.



Fig. 1. A classification of recent works in the WSN data collection domain (see Section 2 for detailed references). Boxed items represent the classes under which our work
falls.

M. Umer et al. / Computers, Environment and Urban Systems 33 (2009) 79–89 81
2.3. Data collection algorithms for selective queries

Our selectivity-aware query optimization scheme minimizes
the use of non-selected parts of a WSN to achieve overall energy
efficiency. In general, this problem is an instance of the well known
minimum Steiner tree problem (MSTP) of graph theory (Robins &
Zelikovsky, 2000). In a graph, the MSTP seeks a minimum path tree
spanning only a subset of nodes (terminal nodes) in the graph
while minimizing the inclusion of non-terminal nodes. The MSTP
is known to be NP-hard and has been widely discussed in the liter-
ature (Oliveira & Pardalos, 2005).

In the WSN domain, Krishnamachari, Estrin, and Wicker (2002)
reported the use of an MSTP approximation algorithm that was
proposed earlier by Takahashi and Matsuyama (1980). The main
disadvantage of their work, and of most MSTP heuristics in general,
is the global and static nature of heuristics, in that they assume the
availability of global network knowledge and its stability. In a
WSN, these assumptions are not practical since nodes have limited
capability and WSNs are prone to node failures. In this work, we
propose an MSTP heuristic that is both localized and adaptive in
nature, and hence is better suited to large scale WSNs.

3. An adaptive selectivity-aware data collection algorithm

One could argue that a simple yet optimal data collection strat-
egy could be to use only the selected nodes while routing the query
results back to the base station. Such a path minimizes the unnec-
essary forwarding of results by non-selected nodes en-route from a
selected node to the base station. However, using only the selected
nodes in the data collection path is not possible due to the commu-
nication limitations of the individual nodes. Any attempt at a sim-
plistic solution like this would quickly result in a disconnected
network. Hence, the need for a certain number of non-selected
nodes in the data collection path cannot be eliminated. As noted
in Section 2, this problem can be directly mapped to the minimum
Steiner tree problem (MSTP). Considering the limitations of the
known MSTP heuristics, we propose the Pocket Driven Trajectories
(PDT) algorithm, which is a localized and adaptive MSTP heuristic
for establishing data collection paths in response to monitoring
queries.

3.1. Algorithm overview

An overview of the main steps of the PDT algorithm is given
below:

Establishing a random query tree: the base station initiates a
query broadcast followed by each node, resulting in the forma-
tion of a random query tree.
Pocket discovery by locationaggregation: during the first sampling
period each selected node piggybacks its location information
with the required data. Each internal node performs spatial
aggregation of the location information it receives from its child
nodes and forwards the aggregated data to its parent. By the
end of the first sampling period, the base station receives a
set of spatial aggregates, each representing a pocket of selected
nodes.
Establishing the initial data collectionpaths: the base station com-
putes the shortest path, referred to here as the PDT, that con-
nects all the pockets with itself. The base station broadcasts
the PDT information.
Adapting the PDT: during each successive sampling period, loca-
tion aggregation is performed alongside data collection using
the PDT so that the changes to the original pockets can be mon-
itored. The base station computes and broadcasts a new PDT as
soon as the old pockets shift or vanish and new pockets emerge.



Fig. 2. The computation of the PDT for a selective participation scenario.
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In the following subsections, we briefly discuss each of the
above steps and analyze the cost and benefits of our data collection
scheme.

3.1.1. Establishing the initial PDT
3.1.1.1. System model. We assume that a WSN with n nodes is rep-
resented by a connected unit disk graph G ¼ ðV ; EÞ, where V is the
set of sensor nodes, and E is the set of direct communication links
between node pairs. Each query Q issued by a base station S selects
a subset T of V. Furthermore, a pocket is a cluster of proximal nodes
selected by Q.

Step 1. Establishing a random query tree: the data collection pro-
cess is started by the base station, which broadcasts the
query Q to all nodes in its communication range. Each of
the receiving nodes chooses the base station as its parent
node and rebroadcasts Q, reaching the nodes located fur-
ther away. Each node that receives Q sets the sender node
as its parent and rebroadcasts Q. It also discards any fur-
ther transmissions of Q that it may receive from other
nodes in its communication range. In a connected WSN,
this process is guaranteed to reach every node in the net-
work and is self-terminating, i.e., it automatically stops as
soon as every node has received and rebroadcasted the
query. It is possible to approximate the amount of time
required by the tree creation process using application-
specific knowledge about the network size, deployment
area, and data rate. This approximation allows a user to
specify the sampling period of a query such that none of
the nodes start sending its data until the entire network
has received the query.

Step 2. Pocket discovery by location aggregation: in the first sam-
pling period of the query Q, the leaf nodes selected by Q
start the data collection phase by sensing and reporting
the requested sensor readings to their parent nodes.
Along with the sensed readings, the leaf nodes also pig-
gyback their location information in the same data
packet. Each node v receives this data from one or more
of its child nodes and combines the location information
in a set, kv . It then performs location aggregation as fol-
lows. First, it identifies each item of the location informa-
tion set as atomic information (belonging to a single
node) or aggregated information (belonging to a set of
proximal nodes). Second, it aggregates the atomic loca-
tions by computing an axis-aligned minimum bounding
rectangle (MBR) for all atomic locations that are within
a certain threshold distance, e (which we set equivalent
to the communication radius of the nodes for simplicity).
Finally, it attempts to further aggregate the location
information set by merging the newly aggregated loca-
tion information with the aggregates reported by its
child nodes.After applying the location aggregation, each
internal node forwards the aggregated information to its
parent node, where the process is repeated. Eventually,
the base station receives and aggregates the location
information. We refer to the final set of MBRs in the
aggregated location information of the base station as
pockets.

Step 3. PDT Computation: at the end of the first sampling period,
the base station uses the discovered set of pockets to
compute the PDT. Representing itself and each pocket as
a node, the base station creates an MBR-based representa-
tion of node participation as a complete graph G0. Each
edge of G0 carries a weight equivalent to the geographic
distance between the corresponding nodes. The base
station then creates a minimum spanning tree MST 0 for
G0. We refer to MST 0 as the PDT for data collection from
the pockets discovered so far. For the MBR-based repre-
sentation of node participation, MST 0 minimizes the
length of the data collection tree that connects all pockets
with the base station.Using MST 0, the PDT information, P,
can be encoded as follows: P comprises of a series of loca-
tion tuples, where (i) each location in a tuple corresponds
to either the base station location or the center point of
one of the pockets, and (ii) the location tuple corresponds
to an edge in MST 0.

Step 4. PDT Broadcast and establishment: after successful compu-
tation of the PDT information, P, the base station starts
to establish it as the new data collection path. It broad-
casts P to its direct children. A node that receives the
PDT information decides to join the PDT based on its
query selection status and the distance from the PDT.
All nodes that decide to join the trajectory switch their
current parent to the sender of the PDT information
and rebroadcast the PDT information. The process stops
automatically after each joining node switches its parent
and broadcasts the PDT information. The successive for-
warding and parent switches lead to a new data collec-
tion tree that is aligned with the PDT.Fig. 2 illustrates
the above steps of the PDT-based data collection scheme.
In Fig. 2a, the black circle represents the base station
while the shaded circles represent the nodes currently
selected by a query. An MBR-based approximation of a
pocket may include some non-selected nodes, as shown
by the unshaded circles in pockets 1 and 2 in the exam-
ple in Fig. 2a. Algorithm 1 outlines the PDT setup method
for an arbitrary node v. A detailed formal construction of
these steps can be found in our earlier work (Umer et al.,
2006).
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3.1.2. Adapting the PDT
A continuous query can consist of a large number of sampling

periods. Even if the change per period is small, the node selection
can change significantly during the lifetime of a query. In the con-
text of such queries, we categorize changes in sensor readings into
two major types: changes in the values of selected attributes and
changes in the values of predicate attributes. In order to adapt
the PDT to changes during a continuous query, it is important to
understand the respective impact of each of these change catego-
ries. Consider the monitoring queries given in Table 1. Query 1 rep-
resents a case where changes occur only in the values of selected
attributes; Query 2 represents the case where changes can occur



Table 1
Example queries to demonstrate the impact of change in sensor readings.

Query 1 Query 2 Query 3

SELECT AVG (Humidity) SELECT MAX (Altitude) SELECT AVG (Humidity)
FROM Sensors FROM Sensors FROM Sensors
WHERE Location WHERE Temperature WHERE Temperature
BETWEEN ((0,0), (10,10)) BETWEEN (31,40) BETWEEN (31,40)
SAMPLE PERIOD 60 min SAMPLE PERIOD 60 min SAMPLE PERIOD 60 min
FOR 48 h FOR 48 h FOR 48 h
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due to variations in the predicate attributes’ values; Query 3 repre-
sents a hybrid case where changes could arise from variations in
either or both the selected and the predicate attributes.

Changes in the selected attributes do not have a spatial effect on
the execution of a query. For instance, Query 1 always draws its
sample from a specific set of sensors with no spatial change
throughout the query’s lifetime. Temporal suppression (Silberstein,
Braynard, & Yang, 2006) and adjustments to the sampling period
can be used to improve the query execution efficiency in this case.
Such methods can be used in tandem with the PDT algorithm.

Adapting to changes in predicate attributes presents a major
challenge for our approach. This type of change can have dramatic
spatial effects on pocket layout during the lifetime of a query. For
example, for Queries 2 and 3, the set of participating nodes can
continuously change, resulting in new spatial configurations for
the pockets. The goal of adaptivity in the PDT algorithm is to
recompute and maintain energy efficient data collection paths in
the face of changing spatial pocket layouts.

We propose the following mechanism to efficiently adapt the
PDT algorithm to changes in the set of selected nodes. As soon as
a new node finds itself to be fulfilling the query predicate, it sends
its data from the random query tree established during the first
sampling period to its parent. Each internal node maintains a sep-
arate count for its child nodes that have sent their data using the
random query tree as well as a count for the ones that have used
the PDT. These counts are propagated and incremented as the data
move up towards the base station. Once the base station receives
the data for the current sampling period, it determines the ratio
of the number of nodes using the random tree to the number of
nodes using the PDT. As soon as this ratio reaches a threshold va-
lue, the base station updates the PDT by using its current location
information set kS and broadcasts this updated PDT information.
This information is then forwarded by internal nodes in the net-
work, as in the PDT setup phase.

3.2. Communication overheads

The extra message load generated during the PDT information
broadcast phase can be significant, and it is a function of the num-
ber of nodes that decide to join the PDT. However, in return the use
of the PDT reduces the number of non-selected intermediate nodes
in the query tree. Therefore, the overall energy usage is still ex-
pected to be less, as the PDT setup (and refresh) costs can be amor-
tized over a number of sampling periods. Assume that a random
tree-based algorithm establishes a query tree that uses R nodes
to collect the data from R0 � R selected nodes. For the same query,
the PDT algorithm provides a k% improvement in node usage, and
hence uses P nodes, where P ¼ R� R� k

100. Furthermore, assume
that the node participation remains fixed during the next e sam-
pling periods. Each node generates a single message per sampling
period. Therefore, the total cost of the random tree method in
terms of the number of messages generated will be Mr ¼ e� R,
while the cost of the PDT will be Mp ¼ ðe� PÞ þ P. The extra P mes-
sages in the latter case are generated during the PDT setup phase.
Setting Mr ¼ Mp and solving for e leads to e ¼ 1�k

k , i.e., the minimum
number of sampling periods required by the PDT algorithm to
amortize the extra setup cost and break even with the random tree
method. We show in Section 4 that the typical reduction in node
usage between the PDT algorithm and a random query tree-based
algorithm for selective queries is 30%. Thus, in such cases, the PDT
algorithm requires only 2.3 sampling periods to break even with its
setup costs, and any samples drawn afterwards increase the bene-
fit. However, if the reduction in node usage per sampling period is
small or the number of samples between successive PDT refreshes
is small, the setup and update costs may outweigh the benefits of
using the PDT.

4. Experimental evaluation

In this section, we compare the performance of the PDT algo-
rithm with that of other major data collection schemes. In addition
to the PDT algorithm, we implement two well-known data collec-
tion algorithms: Tiny Aggregation (TAG) and Static Clustering (SC).
In order to compare the data collection schemes with the optimal
data collection tree, i.e., the minimum Steiner tree, we implement a
global Steiner tree approximation algorithm that was proposed by
Kou, Markowsky, and Berman (1981) (henceforth referred to as
KMB). The KMB algorithm allows us to compute a Steiner tree that
has been shown to achieve a mean efficiency that is worse by no
more than 5% compared to the optimal Steiner tree (Oliveira &
Pardalos, 2005; Doar & Leslie, 1993). The KMB algorithm is applied
centrally, i.e., it is assumed that the base station has complete
knowledge of the network graph. KMB forms a benchmark for
our comparisons.

4.1. Evaluation parameters

We first lay out the evaluation parameters that we use to ana-
lyze the impact of the spatial and temporal characteristics of mon-
itoring queries.

4.1.1. Query selectivity
The PDT algorithm is primarily designed for continuous selec-

tive queries. Therefore, the primary parameter that we consider
for its evaluation is query selectivity. We define the selectivity of
a query as the ratio of the number of selected nodes to the total
number of nodes in a WSN.

4.1.2. Average change in node participation
We define the average change in a monitoring query as the

average change in the node selection in successive sampling peri-
ods. Formally, if Ti is the set of selected nodes during sampling per-
iod i, then we compute the change in node participation between
periods i and iþ 1 as

ci;iþ1 ¼
jTi n Tiþ1j þ jTiþ1 n Tij

jTi [ Tiþ1j
:

Intuitively, ci;iþ1 is the ratio of the total number of nodes that change
their selection status between sampling periods i and iþ 1, to the
total number of selected nodes in both sampling periods. The aver-
age change in node selection for e sampling periods is then defined
as

ĉ ¼
Pe�1

i¼1 ci;iþ1

e� 1
:

4.1.3. Cost of data collection algorithms
We use the total data transmission (in MBs) as an indication of

energy usage, and hence as the basic metric for the cost compari-
son of the aggregation algorithms. The level of data transmission
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can be related to the energy expenditure by a simple function, such
as e ¼ rs þ dsx, where e is the total amount of energy consumed by
sending a message with x bytes of content, and rs and ds represent
per-message and per-byte communication costs, respectively (Sil-
berstein, Braynard, & Yang, 2006).

4.2. Results

In order to present a thorough comparative analysis, we design
the following experiments. In Section 4.2.1, we analyze the impact
of different levels of query selectivity on the PDT algorithm and
compare it with other major data collection schemes. In Section
4.2.2, we simulate the case where the change in attribute values re-
sults in a continuously changing set of selected nodes while the
query selectivity remains approximately the same. Finally, also in
Section 4.2.2, we simulate queries where both the query selectivity
and the set of selected nodes vary during each sampling period.

4.2.1. Impact of query selectivity
In this set of experiments, we investigate the impact of query

selectivity on four different aggregation schemes: PDT, SC, TAG,
and KMB. In the first experiment, presented in Fig. 3, we decrease
the selectivity of an aggregate query and hence increase the num-
ber of selected nodes in 1% increments from 2% to 10% of the total
nodes in the network. As shown in the deployment snapshot in
Fig. 3a, the selected nodes are spatially clustered. In each instance
in this experiment, we compute the average of a sensed attribute
while running the query for 100 sampling durations. The network
consists of 750 nodes deployed randomly in a 75 m2 region, while
the communication radius of all nodes is set at 5 m. To capture the
impact of selectivity independent of other attributes, we assume
that there is no change in the node participation over the query
Fig. 3. The performance of aggregation techniques
lifetime. Fig. 3b shows the mean value of the number of bytes
transmitted by each algorithm at each selectivity level (the average
of five runs is used to find the mean value). Fig. 3c shows the re-
sults of a similar experiment where we increase the number of se-
lected nodes from 10% to 60% in discrete increments of 10% per
step.

Fig. 3b shows that the PDT algorithm clearly outperforms the
TAG and SC based data collection schemes, and is closest to the
lower bound established by KMB. In cases where 2% to 10% of
the nodes are selected by a query, the PDT algorithm is, on average,
41% more energy efficient than TAG and 37% more energy efficient
than SC. In addition, the PDT algorithm is only 21% less efficient
than the approximated lower bound established by the KMB algo-
rithm, whereas TAG and SC are 72% and 67% less efficient, respec-
tively. Similarly, the trend in Fig. 3c shows that the PDT algorithm
remains energy efficient even in queries with low selectivity, but
its advantage decreases as the selectivity decreases. When 10% of
the nodes are selected, the PDT algorithm requires 30% fewer data
transmissions than TAG and 31% fewer than SC; however at the
selectivity level of 60% this advantage reduces to 4% and 5% for
TAG and SC, respectively. The decrease in efficiency results from
the fact that with the increase in the number of nodes selected
by a query, the benefit of spatial correlations diminishes, and hence
all schemes tend to use nearly the same number of nodes. This ef-
fect can also be observed from the fact that at the 60% selectivity
level, the PDT algorithm is just 3% less efficient than the KMB lower
bound.

4.2.2. Impact of change in node participation
4.2.2.1. Moving pockets withfixed overall selectivity. The experiments
in Section 4.2.1 show the performance gain of the PDT algorithm
over other data collection techniques in selective queries.
for varying levels of partial node participation.
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However, in these experiments, the set of selected nodes remained
fixed over the query lifetime. In this section, we relax this assump-
tion and analyze the cost and adaptability of the PDT algorithm in
selective queries where the query selectivity remains fixed but the
set of selected nodes changes. This change can be considered as a
periodic shift in the node participation correlated with a changing
physical phenomenon. Queries similar to Queries 2 and 3 in Table 1
can lead to such changes in the set of selected nodes.

In this experiment, we simulate a herd-monitoring query using
real world animal tracking data from the Starkey Project database
(Kie et al., 2005; Starkey Project, 2006). In order to use the recorded
Fig. 5. Average node participation on different days in the cattle mov

Fig. 4. Intermediate spatial layout of the node participation in the cattle movement mo
movement monitoring query. The base station is represented by the black circle.
Starkey data, we assume the presence of a randomly deployed,
connected WSN in the Starkey forest area (8000� 14;000 m2).
For this experiment, we configure an 850 node network where
the communication and sensing radius of each node is set at
600 m. In this experiment, the base station issues an aggregate
query to monitor the movement of cattle on a continuous basis.
Fig. 4 shows the network deployment and participation snapshots
during different sampling periods of the above query.

The charts in Fig. 5 show the node usage by the PDT, TAG, and
KMB algorithms with the value of D set to four days and the value
of d set to 60 min. On average, the PDT algorithm generates 9.25%
ement monitoring experiment with sampling period d = 60 min.

nitoring experiment. Large circles represents the sensors participating in the cattle



Fig. 6. Analyzing the performance of algorithms during different days and with respect to decreases in sampling frequency.

M. Umer et al. / Computers, Environment and Urban Systems 33 (2009) 79–89 87
more data than the minimum bound of KMB, while TAG is clearly
much more expensive, as it generates 35.3% more data on average.

Fig. 6 shows that the performance of the PDT algorithm, despite
its localized nature, is similar to that of the globally approximated
KMB. In the query with a sampling period of 60 min (Fig. 6a), the
PDT algorithm is just 8.2% more expensive than KMB, while for
the same experiment TAG is 44.8% more expensive. For a 60 min
sampling period, the PDT algorithm generates 25.2% less data than
TAG. The average change per sampling period in this experiment is
12.6% while the average overall node participation is 8%, which
varies within a range of �1% of the total nodes. For the query for
the same duration but with a sampling period of 120 min, the
PDT algorithm becomes 10.7% more expensive than KMB, while
the query lifetime and node participation stay the same. The aver-
age change per sampling period, however, increases slightly as a
result of a longer sampling period. Fig. 6b summarizes the perfor-
mance of each algorithm during three separate day ranges. On
average, PDT generates 9.25% more data than the minimum bound
of KMB, while TAG is clearly much more expensive, as it generates
35.3% more data on average.

The decrease in the performance of the PDT algorithm between
experiments with short and long sampling periods can be ex-
plained by the fact that in a long running query, the cost of estab-
lishing and refreshing the optimized data collection path through
PDT is amortized over the number of sampling periods that pass
between successive PDT establishment phases. With shorter sam-
pling periods, queries poll the WSN more frequently and hence be-
come ideal candidates for savings. On the contrary, a scheme that
uses extra nodes during each sampling period, such as TAG, be-
comes more and more expensive. However, the performance gain
Fig. 7. The performance of aggregation te
drops with the decrease in sampling frequency as the setup and
maintenance cost cannot be amortized as effectively.

4.2.2.2. Moving pockets with variable selectivity. The Starkey data set
provides good insight into the performance of the PDT algorithm in
a realistic setting by relaxing the assumption of a static node par-
ticipation set. However, in the simulated phenomenon in the
experiments above, the query selectivity, i.e., the number of se-
lected nodes, is assumed to be fixed. In the next experiment, we re-
lax this assumption. We model this experiment on the naturally
occurring phenomenon of change in shadow lengths during the
day. The predicate in the monitoring query is formulated such that
the nodes falling inside a shaded area qualify to participate in the
query. In order to keep the results comparable, we retain the net-
work dimensions, number of nodes, communication range, sam-
pling period and query lifetime from the previous experiment.
We assume the presence of several ground objects and simulate
the shadows by the relative position of objects with respect to
the sun during different times of a day.

In this simulation, the number of selected nodes decreases with
the decrease in shadow lengths and reaches a minimum at around
midday, after which the shadow lengths start to increase again,
thus increasing the number of selected nodes. Figs. 7 and 8 show
the average node usage and overall data transmission by TAG,
the PDT algorithm, and KMB during queries with 60 and 120 min
sampling periods. In the first experiment (Fig. 7a), the ratio of se-
lected nodes to the total nodes in the network falls from 7% to
1% during the first half of the query lifetime, and rises again to
7% during the second half. The average change in selected nodes
per sampling period is 6.5%. In this experiment, TAG is 43.8% more
chniques in the shadow experiment.



Fig. 8. Performance of algorithms with respect to increasing sampling periods in
the shadow experiment.
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expensive than the lower bound established by the KMB algorithm,
while the PDT algorithm is 13.2% more expensive. In this experi-
ment, the PDT algorithm is 20.8% cheaper than TAG. In the second
experiment (Fig. 7b), we increase the sampling period from 60 to
120 min, while retaining other parameters. As a result, the change
per sampling period increases to 13.4%. We see a deterioration in
the performance of the PDT algorithm. In this experiment, the
PDT algorithm is just 3.7% cheaper than TAG. This result is ex-
pected, as a decrease in sampling frequency means that the cost
of establishing the PDT algorithm cannot be amortized as effec-
tively. Furthermore, a higher rate of change per sampling period
results in frequent abandonment of the data collection paths estab-
lished by the PDT algorithm.

4.3. Summary of results

Our experiments establish that the PDT algorithm can achieve
performance that is closer to the centralized approximation of
the minimal Steiner tree than other major data collection schemes.
However, the cost of achieving this performance is an important
factor that must be considered before prescribing the PDT algo-
rithm fit for use for all queries. The experiments show that for
low selectivity queries, the PDT algorithm yields significant perfor-
mance gains if the query requires frequent sampling over a long
lifetime. If the query does not involve a large number of samples,
the cost of the PDT algorithm setup and refresh phases can become
considerably higher compared to the accumulated savings per
sampling period.

Changes in node participation over the lifetime of a monitoring
query leads to pocket movement with either fixed or variable
selectivity. Our experiments show that the PDT algorithm adapts
to the changing node participation in both cases. We observed that
in some natural phenomena, even though the node participation
changes over time, the change does not lead to a significant differ-
ence in the layout of the data collection paths. This helps in delay-
ing the PDT algorithm refresh phase, as the initial data collection
paths remain useful for several sampling periods. However, the
PDT algorithm struggles to adapt to a rapid increase in node partic-
ipation, as there are not enough sampling periods between succes-
sive refresh phases.

5. Conclusions and future work

Selective queries are required for effective monitoring of phys-
ical phenomena using WSNs. In this paper, we presented the PDT
algorithm, a data collection method for long running selective que-
ries. Using extensive simulations, we showed that the PDT
algorithm is not only more energy efficient than other major data
collection schemes, but, more importantly it is also similar to a
well-known approximation of the global optimum, i.e., the
minimum Steiner tree. The PDT algorithm discovers pockets of
selected nodes using purely local information and approximates
a minimum Steiner tree for data collection from these pockets.
We showed that this can lead to significant energy savings
in various kinds of selective queries. The PDT algorithm can also
adapt to changing environmental conditions in an efficient
manner.

There are several research directions that we plan to follow in
our future studies. First, it is important to study the latency in-
curred by the PDT algorithm by increasing the data collection path
while decreasing the energy consumption. Second, we aim to im-
prove our PDT algorithm by a guided query multicast phase as op-
posed to the query broadcast reported in this paper. Our work can
be viewed as a method to discover restricted regions inside which
a query tree maximizes the use of selected nodes. Once such pock-
ets are discovered, many data collection schemes can then be used
inside them. This paper reports only the application of a random
tree-based data collection inside a pocket. In the future, we plan
to investigate the efficiency of other methods for data collection in-
side a pocket, including spatio-temporal and model-based data
suppression strategies.
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