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Abstract

In this paper we address and solve the problem of anti-windup augmentation for linear systems with
input and output delay. In particular, we give a formal definition of an optimal L2 gain based anti-
windup design problem in the global, local, robust and nominal cases. For each of these cases we show
that a specific anti-windup compensation structure (which is a generalization of the approach in [29]) is
capable of solving the anti-windup problem whenever this is solvable. The effectiveness of the proposed
scheme is shown on a simple example taken from the literature, in which the plant is a marginally stable
linear system.

1 Introduction

1.1 Input saturation and anti-windup

As the research activity in automatic control progresses, several mathematical tools and nonlinear control
ideas become increasingly applicable to practical control problems. One such area deals with the so-called
“anti-windup” strategy, where significant progress has been made over the past decade. Anti-windup denotes
the design of a compensator which “augments” an existing controller on a plant subject to input satura-
tion. In particular, in the anti-windup problem statement it is assumed that a controller has already been
designed disregarding the saturation effect, so that the corresponding closed-loop behaves very desirably for
small enough signals. The goal of anti-windup is then to recover as much as possible that “unconstrained”
performance (and, at the very least, stability) also for large signals, for which the saturation nonlinearity
operates in its nonlinear region.

The anti-windup design problem has been qualitatively stated already from the 1950’s both in the analog
[14] and in the digital control framework [6]. However, the arising solutions were at that time mainly
application oriented and not applicable to large classes of control systems. It was only in the 1980’s that
some design techniques applicable to large classes of control systems were formalized (see, e.g., [10, 1, 20]),
although the issue of performance characterization and improvement was still mostly unsolved. Interesting
surveys of these techniques can be found in [9, 11]. In the past decade, a great deal of attention has been
devoted to the formalization and solution of the anti-windup problem using modern control theory techniques
and several recent papers have characterized thoroughly the linear anti-windup design technique for linear
systems (see [21, 7]). Moreover, several nonlinear solutions have been given to the nonlinear anti-windup
design problem for linear plants (see, e.g., [29, 30, 2]) and to the nonlinear anti-windup problem for nonlinear
plants (see, e.g., [18, 19]).
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‡Research supported in part by ASI and MIUR through PRIN project MATRICS and FIRB project TIGER.
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1.2 Anti-windup for dead-time systems

While, on one hand, actuator saturation is a ubiquitous phenomenon which makes anti-windup useful in
any control system where a sufficiently high accuracy is needed (this typically happens in aggressive high-
performance designs), one other phenomenon that is often found in conjunction with saturation is the
presence of time delays at the input and at the output of the plant. Similar to the saturation effect, the
delay phenomenon becomes crucial when the control task is aggressive enough so that the phase roll-off may
destroy the stability (and/or performance) properties of the closed-loop system. For these saturated and
retarded systems, it is of interest to address the corresponding generalization of the anti-windup problem.
This can be intuitively seen as follows: assume that a predesigned controller (possibly including internal
delays) is available for the delayed plant without input saturation; then build an anti-windup compensator
that, when interconnected to the existing control system is capable of

1. reproducing the responses induced by that predesigned controller when signals are small enough not
to activate actuator saturation;

2. recovering the stability (and, partially, the performance) that would be otherwise lost due to the
nonlinear effects of saturation, for all other signals.

The solution to this anti-windup problem is appealing because it makes it possible to implement control laws
for delayed systems without saturation also on saturated and delayed plants. Many such tools are available
in the literature. See, e.g., the many generalizations of the Smith predictor structure, first proposed in [25].

Note that the anti-windup problem described above is different from the problem of bounded stabilization
of input delayed systems, where significant amount of work has been done, especially in recent years. (See,
for example the preliminary work in [24] and also recent contributions in [12, 13, 5, 16, 27].) Although
interesting on their own sake, bounded stabilizers for input delayed systems are not sufficient to solve the
anti-windup problem addressed here because they don’t necessarily fulfill the requirement (at item 1 above)
that the closed-loop system behaves locally as required by the given unconstrained controller, which is part
of the problem specification, rather than a degree of freedom in the design.

When focusing on the anti-windup design problem for dead-time systems, a very natural solution can
be obtained by suitably generalizing (in a straightforward way) the classical Internal Model Control (IMC)
technique for anti-windup [32], where the stability problem is fully solved for the case where the open-loop
plant is characterized by a Hurwitz matrix. However, it is known that IMC-based anti-windup designs
may lead to poor performance, which leaves space for significant improvement over this straightforward
construction. Anti-windup design for linear dead-time control systems was also addressed in [22], where a
solution to the problem is given, once again for the case where the open-loop plant is characterized by a
Hurwitz matrix and also under some additional technical assumptions. Despite the work of [22] and the IMC
extension mentioned above, very little has been done so far on anti-windup design for dead-time linear control
systems. Nevertheless, these ideas have been proven to be successful on several applications, including active
queue management in TCP networks [23] and other experiments discussed in [4]. It is also notable the work
in [27], where a static anti-windup gain is included within a saturated control design task for a dead-time
plant. In [27], the anti-windup goal is not directly addressed because the controller is not considered as a
design constraint but rather as a degree of freedom within the control system design. Nevertheless, that
underlying technique could be easily generalized for static anti-windup design whenever the unconstrained
controller is a linear system without delays.

1.3 Contribution

In this paper, we address the anti-windup design problem for dead-time control systems. The proposed
solution is applicable to any linear control system, including the case where the unconstrained controller
contains internal time delays (such as in the case where it arises from a Smith predictor design). Moreover,
a global solution is given to the problem under the (necessary) property that the plant state matrix has
eigenvalues with non positive real part, thus extending previous results to the case of poles on the imaginary
axis. As compared to the solution in [22], the approach proposed here is stronger because it holds under
weaker conditions (these conditions are actually shown to be necessary for the solvability of the problem).
Moreover, whenever the approach in [22] is applicable, it can be interpreted as a special selection among a
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family of solutions parametrized within the framework proposed here. As compared to the potential static
anti-windup solution residing in the approach of [27], note that our result provides a general solution to the
problem, whereas the results in [27] are only applicable if certain matrix inequalities are satisfied.

The paper is organized as follows. We first formalize the anti-windup design goal (which is based on
a generalization of the delay-free ideas in [29]) introducing the global, local, robust and nominal problem
statements in Section 2. Then in Section 3 we prove necessary and sufficient conditions for the solvability
of the problem and provide a general framework for the corresponding solution (whenever it exists). In
this framework, specific selections of a stabilizing signal are shown to solve the different instances of the
anti-windup problem. In Section 4 we apply our design to an example where the plant state matrix is non
Hurwitz (so that previous techniques are not applicable) and show the desirable performance induced by the
proposed anti-windup strategy.

1.4 Notation

The following definitions will be useful to clarify the notation used throughout the paper.

• Given a vector w ∈ R
n and a set S ⊂ R

n, the distance of the vector w from the set S is defined as

dist(w,S) := inf
s∈S

|w − s|.

• Given numbers a ≤ a ≤ b ≤ b and a function w : [a, b] → R
n, the L2 norm of w(·) restricted to the

interval [a, b] is defined as

‖w[a,b]‖2 :=

√

∫ b

a

|w(τ)|2dτ.

If [a, b] = [0,∞), to simplify notation we will often use ‖w‖2 in place of ‖w[0,∞)‖2. We will denote
‖w[0,∞)‖2 as the L2 norm of w(·) and, if ‖w[0,∞)‖2 <∞, we will say that w(·) ∈ L2.

• Given a constant td > 0 and a function s : [−td,∞) → R
n, then for all t ≥ 0, the functional sd(·)

is defined as sd(t) := {s(τ), τ ∈ [t − td, t]}. Moreover, for each t ≥ 0, the norm |sd(t)| is defined as
|sd(t)| := maxτ∈[t−td,t] |s(τ)|.

• Let K > 0 and γ > 0 be given. A nonlinear functional differential equation of the form

ẋ = f(xd(t), wd(t))

y = g(xd(t), wd(t))

is finite gain L2 stable from w to y if for all functions w(·) and initial conditions xd(0), the following
bound holds for all t ≥ 0

‖y[0,t]‖2 ≤ K|xd(0)| + γ‖w[−td,t]‖2.

2 Problem statement

Consider a linear time-invariant plant subject to input and output delays:

ẋ(t) = Ax(t) +Bsat(u(t− τI)) +Bdd(t) + ψx(t)
y(t) = Cx(t− τO) +Dsat(u(t− τI − τO)) +Ddd(t− τO) + ψy(t)
z(t) = Czx(t) +Dzsat(u(t− τI)) + ψz(t)

(1)

where τI > 0 is a uniform delay at the plant control input u ∈ R
m, τO > 0 is a uniform delay 1 at the plant

output measurement y ∈ R
p, z represents the performance output (without loss of generality we can assume

that this output is not delayed) and d represents a disturbance input. The three extra signals ψx, ψy, ψz can

1Note that, by the uniformity property, the two delays at the plant input and output can be lumped in a single time delay,
either at the input or at the output of the plant, therefore slightly reducing the notation in this paper. We use however this
type of notation here to parallel the notation first used in [22] and to compare our results to those therein reported.
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be stacked in a single vector Ψ representing the output of the following linear system (represented in the
Laplace domain)

Ψ(s) :=





ψx(s)
ψy(s)
ψz(s)



 := ∆(s)





x(s)
u(s)
d(s)



 =





∆xx(s) ∆ux(s) ∆dx(s)
∆xy(s) ∆uy(s) ∆dy(s)
∆xz(s) ∆uz(s) ∆dz(s)









x(s)
u(s)
d(s)



 (2)

which may be infinite dimensional (it may have internal delays) and represents unmodeled dynamics and/or
parameter uncertainties in the model (1). The system corresponding to the perturbed plant (1), (2) is
represented by the dashed box in Figure 1. We will need the following assumption for the system (1), (2).

Assumption 1 The pair (Cz, A) is detectable. 2 The system (2) is finite-gain input/output L2 stable from
(x(·), u(·), d(·)) to Ψ(·) with L2 gain equal to γ∆.

Assume that a linear controller (defined, in general, by linear functional differential equations) has been
designed for the following linear dead-time system without input saturation

ẋ(t) = Ax(t) +Bu(t− τI) +Bdd(t) + ψx(t)
y(t) = Cx(t− τO) +Du(t− τI − τO) +Ddd(t− τO) + ψy(t)
z(t) = Czx(t) +Dzu(t− τI) +Ddzd(t) + ψz(t)

(3)

and that the controller equations can be written as

ẋc(t) = f(xc,d(t), uc,d(t), rd(t))
yc(t) = g(xc,d(t), uc,d(t), rd(t)),

(4)

where f(·, ·, ·) and g(·, ·, ·) are linear functionals. 3 In particular, the controller (4) is assumed to enforce
a desirable closed-loop behavior on the unconstrained plant (3) when interconnected through the following
unconstrained interconnection equations

u(t) = yc(t), uc(t) = y(t). (5)

P

∆

C

r yc = uu yu

e−sτI e−sτO

d

Figure 1: The unconstrained closed-loop system.

The corresponding closed-loop system (3), (4), (5) is represented in Figure 1 and will be referred to as the
unconstrained closed-loop system henceforth. Moreover, its response will be called unconstrained response.
The following assumption will hold for the unconstrained closed-loop.

Assumption 2 There exists a small enough gain γ∆ > 0 such that the unconstrained closed-loop system
(3), (2), (4), (5) is well-posed (namely, unique solutions exist for all initial states and for all inputs) and
finite-gain L2 stable from the input Ψ = (ψx, ψy, ψz) to the closed-loop state and output, uniformly over all
selections of the system (2) satisfying Assumption 1.
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d

sat(·)
yr

AW

P

∆

uyc

e−sτI e−sτO

Figure 2: The anti-windup closed-loop system.

We will address in this paper the anti-windup problem arising when saturation is present at the plant
input, so that the unconstrained performance of the closed-loop (3), (2), (4), (5) is only feasible for small
enough signals. For simplicity, we will consider decentralized saturation functions, although the results
can be extended in a straightforward way to the more general class of nonlinearities characterized in [29,
Assumption 2]. Similar to the approach in [29], to properly formalize the anti-windup problem, we need to
introduce a subset U of the plant input vector space R

m, which is a strict subset of the linear region of the
saturation function, namely

∃δ > 0, s.t. u+ δ
v

|v|
∈ {w ∈ R

m : w = sat(w)}, ∀u ∈ U , v ∈ R
m. (6)

Based on this set U and following the anti-windup approach for undelayed linear plants, the main anti-windup
goal will address the design of the anti-windup compensator AW of Figure 2 with the goal of recovering as
much as possible the “response without saturation” (herein called unconstrained response) on the saturated
(and compensated) closed-loop of Figure 2 (this will be called anti-windup closed-loop system henceforth). In
the following, for any selection of the external signals r(·), d(·), given initial conditions for the plant (3) and
for the controller (4), we will denote the unconstrained closed-loop response using overlines. Moreover, given
the same initial conditions for the saturated plant (1) and the controller (4), we will denote the corresponding
anti-windup closed-loop response without overlines.

Definition 1 Given a plant (1) and a controller (4) satisfying Assumption 2, and a set U ∈ R
m satisfying

(6), an anti-windup compensator AW solves the corresponding

• robust global anti-windup problem if there exists a continuous positive nondecreasing function γ :
R≥0 → R≥0 and a (sufficiently small) L2 gain γ∆ for the unmodeled dynamics (2) such that for all
initial conditions and all external inputs, 4

‖z − z‖2 ≤ γ(‖sat(u) − u‖2); (7)

• nominal global anti-windup problem if the bound (7) holds with Ψ ≡ 0 (namely, in the absence of
unmodeled dynamics);

• robust local anti-windup problem if the bound (7) holds for small enough values of the initial conditions
of the anti-windup filter AW and of ‖sat(u) − u‖2.

◦

2This assumption is only needed to prove the necessity of the results of Theorem 1. The sufficiency statements still hold
when (Cz , A) is not detectable.

3As defined in the notation Section 1.4, the subscripts d denote the dependence of the functional on the past history of the
signal under consideration.

4For simplicity of notation, in equation (7) and throughout the proof of the paper, the L2 bounds are all given omitting the
initial conditions.
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Remark 1 Note that (7) enforces a bound on the output mismatch (z− z)(·) based on the energy spent by
the (ideal) unconstrained input response outside the saturation limits. This characterization is reasonable
because that input energy cannot be instantly recovered on the saturated control system, regardless of what
the anti-windup compensation is. Therefore, (7) successfully captures the intuitive performance recovery
goals of the anti-windup design. Note also that (7) implicitly enforces the property that all the unconstrained
trajectories that never exceed the saturation limits (so that ‖sat(u)−u‖2 = 0), will be exactly reproduced by
the anti-windup closed-loop system. Indeed, in that case, (7) implies that ‖z − z‖2 = 0, namely z(·) ≡ z(·).

◦

3 Main result

In this section we will address the anti-windup problem of Definition 1 and give necessary and sufficient
conditions for its solvability, together with a constructive solution whenever the problem is solvable. For the
solution of this problem, we will select the filter AW as the following dynamical system:

ẋaw(t) = Axaw(t) +B
(

sat(u(t)) − yc(t)
)

v1(t) = faw(xaw(t), sat(u(t)) − yc(t))

v2(t) = Cxaw(t− τI − τO) +D
(

sat(u(t− τI − τO)) − yc(t− τI − τO)
)

,

(8)

where the selection of the function faw(·, ·) will be specified later. This filter will modify the interconnection
between the plant (1) and the controller (4) through the following equations

u(t) = yc(t) + v1(t), uc(t) = y(t) − v2(t). (9)

The corresponding closed-loop system is represented in Figure 3.

P̂

C

r yc

sat(·)

d

y
P

∆

u

+

-

e−sτI e−sτO

+
+

v1

v2

+
-

e−s(τI+τO)

Figure 3: The proposed anti-windup scheme.

The effectiveness of the structure (8), (9) of the anti-windup compensator in solving the anti-windup
problem of Definition 1 is based on the fact that (at least in the case where Ψ ≡ 0) the arising closed-loop
system can be transformed into the cascade interconnection between the functional differential equation
corresponding to the unconstrained closed-loop (3), (4), (5) and an extra subsystem consisting of the filter
(8) which needs to be stabilized by suitably designing the compensation signal v1 in (9). This scheme arises
from a generalization of the scheme adopted in [29] for anti-windup design for linear undelayed systems.
Indeed, the same tools introduced in [29] for the design of the signal v1 can be also used in the framework
(8), (9). To this aim, we report in the following the result in [29, Lemma 1], which will be useful next. As
reported in [29], this lemma can be proven by combining the results in [17] and [28].

Lemma 1 For the control system

ẋaw = Axaw +B (sat(v + ϕ(t)) − ϕ(t)) ,

where (A,B) is stabilizable, and U satisfies (6),
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1. there always exists a globally Lipschitz feedback v = k(xaw) such that if ‖dist(ϕ,U)‖2 and |xaw(0)| are
sufficiently small, then xaw(·) ∈ L2 and the L2 gain from dist(ϕ(·),U) to xaw(·) is finite;

2. if all the eigenvalues of A have non-positive real part, then there exists a globally Lipschitz feedback
v = k(xaw) such that if dist(ϕ(·),U) ∈ L2, then xaw(·) ∈ L2; moreover, if A is critically stable, i.e., if
there exists P = P T > 0 such that ATP +PA ≤ 0, then the function k(·) can be taken to be the linear
function xaw 7→ k(xaw) := −BTPxaw. Finally, when A is Hurwitz, the L2 gain from dist(ϕ(·),U) to
xaw(·) is finite.

We are now ready to state our main result.

Theorem 1 Suppose Assumptions 1 and 2 hold for the plant (1), (2) and for the controller (4). Then,
according to Definition 1, the following holds

1. the local robust anti-windup problem is always solvable;

2. the global nominal anti-windup problem is solvable if and only if A has poles in the closed left half
plane;

3. the global robust anti-windup problem is solvable if and only if A is Hurwitz;

4. whenever any of the anti-windup problems is solvable, the anti-windup filter (8) with the interconnection
equations (9) and with the selection faw(xaw, sat(u)− yc) = k(xaw) according to the constructive result
of Lemma 1, is well-posed and is a solution to the problem.

Proof. Necessity. The necessity in item 2 can be proved by contraposition. Indeed, if A has poles in
the open right hand plane, the open-loop system is exponentially unstable. Well known results (see, e.g.,
[26]) state that saturated exponentially unstable plants are not globally null controllable, hence there exist
large enough initial conditions for the plant such that the response with saturation will diverge regardless
of the anti-windup action. Consequently, since by Assumption 2 the unconstrained response will always be
bounded, by the detectability property of Assumption 1, the bound (7) will not hold.

The necessity in item 3 follows by selecting ∆xx(s) = γ∆I and all the other entries of the matrix transfer
function in (2) equal to zero, where γ∆ > 0 is arbitrarily small. Then, the state matrix of the perturbed
system will be A+ γ∆I, with γ∆ > 0. Therefore, if A is not Hurwitz, this new state matrix will have poles
in the open right hand plane (regardless of how small the gain γ∆ is). Finally, the proof of the necessity can
be completed similarly to the case at item 2 proven above.

Sufficiency. The proof of the sufficiency is constructive and is based on the structure (8), (9) with faw(·, ·)
selected as faw(xaw, sat(u) − yc) = k(xaw) according to Lemma 1. Due to space constraints, we will only
address here the case where the unmodeled dynamics (2) are absent (namely, Ψ ≡ 0). The proof extends to
the robust case by small gain arguments similar to those carried out in [29].

Consider the anti-windup closed-loop (1), (4), (8), (9), write the closed-loop dynamics in the coordinates
(e(t), xc(t), xaw(t)) = (x(t) − xaw(t − τI), xc(t), xaw(t)) as follows (here, ye(t) = y(t) − v2(t); moreover, ze

and zaw are new outputs of the closed-loop system):























ė(t) = Ae(t) +Byc(t− τI) +Bdd(t)
ye(t) = Ce(t− τO) +Dyc(t− τI − τO) +Ddd(t− τO)
ze(t) = Cze(t) +Dzyc(t− τI) +Ddzd(t)
ẋc(t) = f(xc,d(t), ye,d(t), rd(t))
yc(t) = g(xc,d(t), ye,d(t), rd(t))

(10a)



























ẋaw(t) = Axaw(t) +B
(

sat(u(t)) − yc(t)
)

v1(t) = Kxaw(t) + L
(

sat(u(t)) − yc(t)
)

zaw(t) = Czxaw(t) +Dz

(

sat(u(t)) − yc(t)
)

u(t) = yc(t) + v1(t).

(10b)
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It is evident that the closed-loop (10) is a cascade interconnection of two subsystems, where (10a) coincides
exactly with the unconstrained closed-loop system (3), (4), (5). Therefore, if the initial condition of (8) is
xaw,d(0) = 0, then 5

yc(t) = u(t),∀t ≥ 0. (11)

Moreover, the additional output ze of (10a) satisfies ze(t) = z(t) for all times. Consider now the additional
output zaw of the second subsystem (10b) and notice that, since by definition e(t) = x(t)−xaw(t− τI), then
ze(t) = z(t) − zaw(t− τI) for all times. Therefore,

z(t) − z(t) = zaw(t− τI), ∀t ≥ τI , (12)

and consequently, 6

‖(z − z)‖2 = ‖zaw‖2. (13)

Since u(t) = yc(t) + k(xaw(t)), by the global Lipschitz property of the saturation function, we have for
all t ≥ 0,

|sat(u(t)) − yc(t)| ≤ |k(xaw(t))| + |sat(yc(t)) − yc(t)|.

Therefore, since by Lemma 1 k(·) is globally Lipschitz, substituting the previous bound in the third equation
of (10b), it follows that there exists γ > 0 such that for all t ≥ 0

|sat(u(t)) − yc(t)| ≤ γ(|xaw(t)| + |sat(yc(t)) − yc(t)|). (14)

Finally, the proof of the theorem is completed by applying Lemma 1 with ϕ(·) ≡ yc(·) and combining the
resulting L2 bound with equations (11), (13) and (14). •

Remark 2 The selection for v1 proposed in Lemma 1 is sufficient to solve the anti-windup problems of
Definition 1. However, from a performance perspective, alternative selections may be more desirable because
they improve the unconstrained response recovery transient. To this aim, a useful property arising from the
structure (8), (9) is that as shown in the proof of Theorem 1 (see equation (12)), regardless of the selection
of v1, the mismatch between the unconstrained and the actual performance response is given by the extra
output zaw in (10b). Therefore, v1 can be selected by only focusing on the stabilization of the (undelayed!)
subsystem (10b) and on the performance seen at this particular output zaw.

In the past years, several techniques have been proposed in the context of the undelayed anti-windup
problem to improve the corresponding transient responses. Most of these results correspond to linear matrix
inequality (LMI) formulations of convex optimization problems. Fortunately, the same approaches can be
applied also to the time delayed problem addressed here because of the cascade structure (10) induced by the
filter (8). Among these techniques, nonlinear scheduled techniques were proposed in [30] and sampled-data
techniques were proposed in [2]. Moreover, in [31] the selection of the function faw(·, ·) is optimized among
the family of linear functions:

faw(xaw, sat(u) − yc) = Kxaw + L(sat(u) − yc), (15)

where the gains K and L arise from suitable LMIs easily solvable by convex optimization. The difference
between (15) and the selection proposed in Lemma 1 (at least for the Hurwitz case) is in the presence of
the feedthrough term L, which evidently enforces an algebraic loop around the saturation. It is commonly
acknowledged (see, e.g., [21]) that this algebraic loop may significantly improve the transient performance of
the control system, especially in the MIMO case. Although the LMI-based selection of K and L proposed in
[31] guarantees that the interconnection is well-posed, the corresponding optimal solution might often lead

5In the case when xaw,d(0) 6= 0 there will be an additional term depending on the initial condition in the L2 bound (7). To
keep the discussion simple, we are omitting the initial conditions in the L2 bounds of this paper (the corresponding relations
are a straightforward generalization of the initial condition-free ones).

6Note that due to the presence of the input delay, since the plant initial conditions are assumed to be the same in the
unconstrained and in the anti-windup case, then z(t) − z(t) = 0 for all t ∈ [0, τI).
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to values of L that are very close to a non well-posed interconnection. In those cases it is useful to augment
the LMIs of [31] with an extra matrix inequality of the form

[

2(ρ− 1)W − ρX2 − ρXT
2 ρXT

2

ρX2
η − ρ

2
W

]

> 0, (16)

where ρ ∈ (0, 1) and η > ρ. Based on the results of [8], this bound will ensure that the explicit solution to

the implicit equation imposed by the algebraic loop in (8) is Lipschitz of level η

√

σM (W )

σm(W )
(where σM (·),

σm(·) denote the maximum and minimum singular value of the matrix at argument, respectively), thereby
not allowing the arising anti-windup solution to be ill-posed. ◦

Remark 3 The approach given here can be easily seen as a generalization of the construction in [22]. This
generalization allows to remove the technical Assumption (A3) in [22] (thus solving the anti-windup problem
also when this Assumption (A3) doesn’t hold), it allows to establish stability of the arising closed-loop
whenever the plant is Hurwitz and it allows, in general, to guarantee improved performance by way of the
degrees of freedom in the selection of v1.

Indeed, by suitable loop transformations and some tedious calculations, it can be shown that the anti-
windup solution proposed in [22] for dead-time plants is equivalent to using the filter (8) with the selection

v1(s) = −Dc(s)v2(s), (17)

where the matrix Dc(s) corresponds to the input-output link of the unconstrained controller. In particular,
in [22, §3], the unconstrained controller is a delay-free LTI system and Dc(s) = L is its (constant) input-
output matrix; in [22, §4], the unconstrained controller has a specific structure with an internal time delay
τ3 and Dc(s) = L3L1(I − e−sτ3L2L1)

−1 is the corresponding term 7 related to the generalized input-output
link (see [22] for details).

This re-interpretation of the scheme of [22] actually clarifies the technical Assumption (A3) therein re-
ported, which corresponds to requiring that the matrix S = A−e−s(τI+τO)B(I+e−s(τI+τO)Dc(s)D)−1Dc(s)C
has stable eigenvalues. Indeed, since the unconstrained closed-loop is stable (this is assumed in our Assump-
tion 2 and in Assumption (A2) of [22]), the stability of the equivalent cascaded structure (10) reduces to the
stability of the second subsystem (10b). When constraining v1 to be selected as in (17), a necessary (but not
sufficient because of the presence of saturation) condition for (10b) to be stable is that the system is stable
for small signals, where the saturation is not active. The corresponding equations with (17), written in the
Laplace domain, are given by

sxaw(s) − xaw(0) = Axaw(s) + e−sτIBv1(s)

v1(s) = −e−sτODc(s)Cxaw(s) − e−s(τI+τO)Dc(s)Dv1(s),

whose state matrix corresponds to the matrix S defined above.
The anti-windup solution in [22] was motivated by the goal of minimizing the mismatch between the con-

troller states in the unconstrained and anti-windup responses. When reinterpreted within the cascaded struc-
ture (10), it becomes clear that this solution is a specific selection among a family of solutions parametrized
by the signal v1. Indeed, as shown in the proof of the theorem, regardless of the selection of v1 (and by way
of the compensation signal v2), the controller states behave exactly as in the unconstrained response and
the above mentioned mismatch is always zero. One other relevant selection among these corresponds to the
IMC-based anti-windup (see, e.g., [32]) which can be easily extended to the case of dead-time linear plants
and corresponds to selecting v1 ≡ 0. Note, however, that both the IMC selection and the selection (17) of
[22] are only applicable when the matrix A in (1) is Hurwitz. The approach proposed here, instead, always
solves the anti-windup problem as long as A has poles in the closed left-hand plane.

Moreover, when A is Hurwitz, different from the selection (17), which might lead to an unstable closed-
loop in some cases, IMC-based anti-windup is always asymptotically stabilizing because the dynamics in (10b)

7Actually, in [22, §4], Dc(s) is defined as Lu := L3[I + e−sτ3L1(I − e−sτ3L2L1)−1L2]L1. However, it can be shown that
this last expression is equivalent to the more intuitive one reported above.
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correspond to the asymptotically stable dynamics of the plant. On the other hand, it is well known that
IMC anti-windup solutions often lead to poor closed-loop performance, especially when the plant contains
slow modes. Such a performance may be improved by the approach in [22], where an extra (sometimes
stabilizing) action is enforced through the nonzero selection (17) for v1.

An advantage of our approach is that the anti-windup problem is reduced to a stabilization problem
where the performance output zaw needs to be minimized in some sense. 8 The arising solution, in addition
to being stabilizing (thus recovering the stability merits of the IMC approach), would also benefit from the
degrees of freedom residing in the selection of compensation signal v1. ◦

4 Simulation example

In this section we apply the proposed anti-windup technique to a simple scalar simulation example taken
from [15, Example 4]. This example is a control system where the plant is represented by an integrator
with a 5 seconds output delay and the controller has a modified Smith predictor structure, as represented in
Figure 4. Notice that since the state matrix of the plant is not Hurwitz, then the anti-windup approach of
[22] does not provide any stability or performance guarantees. Nevertheless, the corresponding construction
can be followed, so we apply it here for comparison purposes.

kp(Tis + 1)

Tis

1

s
e−θs

kf

1

s

r(t)

e−θms

kd

d(t)

Plant

+
++

+
+

+

+

- - -

-

-

+
u(t) y(t)

Figure 4: The unconstrained controller for [15, Example 4].

For this particular example, since the plant is an integrator, then A = 0 and following the construction at
item 2 of Lemma 1, v1 can be selected as v1 = −ρxaw, where ρ is an arbitrary positive number. In particular,
the larger ρ is, the stronger the anti-windup action will be for the recovery of the unconstrained response. In
these simulations we have chosen ρ = 10, but different values for ρ could also be selected to suitably impose
the speed of convergence of the anti-windup response to the unconstrained one. To apply the technique
of [22], according to the comment in Remark 3 (see (17), we select v1 = −kp. In the simulations, we also
compare our anti-windup compensation to the response arising from equipping the closed-loop system with
the so-called “tracking anti-windup” that can be applied to the PID controller for this example (following
the rule of thumb suggested in [3], we select Tt = Ti in the scheme shown in [3]). Note that for general
controllers the tracking anti-windup scheme is not applicable, however for this example it can be used as
a comparison means. Note also that the tracking anti-windup scheme does not provide any stability or
performance guarantees.

In [15], it is shown that in the absence of saturation (input saturation is not addressed in [15]), the
unconstrained controller induces an improved response as compared to previous results. In particular, two

8This minimization, at least in the case when A is Hurwitz, can be carried out as suggested in Remark 2.
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simulations are reported therein, referred to the nominal case, and to the robust case, where a 10% error is
introduced in the delay present at the plant output. In both cases, we select the reference input r and the
disturbance input d as follows (similar selections are carried out in [15]):

r(t) =

{

0, t < 0
1, t ≥ 0,

d(t) =

{

0, t < 15
−0.05, t ≥ 15,

(18)

Here we insert a saturation with limits ±0.1 at the plant input. The unconstrained, saturated, tracking anti-
windup Park/Choi anti-windup and our anti-windup responses in the nominal case are reported in Figure 5
using bold solid, solid, dashed, dotted and bold dashed curves, respectively. As in [15], the parameters of
the plant and unconstrained controller for this simulation are selected as

θ = 5, θm = 5, kp = 0.1, Ti = 0.01, kf = 4.131, kd = 0.105.

In Figure 5, the upper plot compares the plant outputs in the five cases, while the lower plot represents the
plant input responses.
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Figure 5: Nominal responses of the unconstrained closed-loop (bold solid), the saturated closed-loop (solid),
the closed-loop with tracking anti-windup (dashed), with Park and Choi’s anti-windup (dotted) and our
anti-windup closed-loop (bold dashed) to the reference and disturbance selection (18).

Note that our anti-windup action is capable of rapidly recovering the performance lost due to input
saturation. As a matter of fact, it is seen from the lower plot of Figure 5 that the input is kept into
saturation until the output reaches the unconstrained output response (recall that there is a 5 seconds time
shift between the input profile and its effect on the output, due to the dead-time characterizing the plant).
The saturated response, on the other hand, exhibits undesired overshoots and slowly converges back to
the unconstrained response. Tracking anti-windup performs also quite poorly, for this case, although it
behaves better in the next response. In general, due to the lack of guarantees, it can be expected to lead to
unpredictable behavior. Park and Choi’s approach leads to a graceful response with slow convergence to the
desired trajectory. Since the disturbance does not cause input saturation for the unconstrained trajectory,
the anti-windup response perfectly reproduces the unconstrained response in the second part of the plot, as
formally proven in Theorem 1.
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Figure 6: Perturbed responses of the unconstrained closed-loop (bold solid), the saturated closed-loop (solid),
the closed-loop with tracking anti-windup (dashed), with Park and Choi’s anti-windup (dotted) and our anti-
windup closed-loop (bold dashed) to the reference and disturbance inputs (18).

Figure 6 represents the response of the perturbed system, as described in [15, Example 4]. For the
perturbed case, the controller parameters are selected again according to [15] and correspond to

θ = 5, θm = 5.5, kp = 0.1, Ti = 0.1, kf = 1.247, kd = 0.095.

Our anti-windup response shows once again good unconstrained response recovery properties, as compared
to the saturated response and the other anti-windup responses, thus confirming the robustness properties
guaranteed in Theorem 1.

5 Conclusions

In this paper we have formalized the L2 anti-windup problem for linear systems with input and output delays.
By suitably generalizing the approach in [29] we have given a solution to the robust, nominal, global and local
problems whenever one of these is solvable. The corresponding construction is based on the augmentation
of the original control scheme with a dynamic filter. Connections with existing results on anti-windup for
dead-time systems have been established and the performance of the proposed scheme has been successfully
tested on an example taken from the literature.

References
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[16] F. Mazenc, S. Mondié, and S.I. Niculescu. Global asymptotic stabilization for chains of integrators with
a delay in the input. IEEE Trans. Aut. Cont., 48(1):57–63, January 2003.

[17] A. Megretski. L2 BIBO output feedback stabilization with saturated control. In 13th Triennial IFAC
World Congress, pages 435–440, San Francisco, USA, 1996.

[18] F. Morabito, A.R. Teel, and L. Zaccarian. Results on anti-windup design for Euler-Lagrange systems.
In IEEE Conference on Robotics and Automation, pages 3442–7, Washington (DC), USA, May 2002.

[19] F. Morabito, A.R. Teel, and L. Zaccarian. High performance anti-windup for robot manipulators. In
European Control Conference, Cambridge (UK), September 2003.

[20] M. Morari and E. Zafiriou. Robust process control. Prentice Hall, Englewood Cliffs, NJ, 1989.

[21] E.F. Mulder, M.V. Kothare, and M. Morari. Multivariable anti-windup controller synthesis using linear
matrix inequalities. Automatica, 37(9):1407–1416, September 2001.

[22] J.K. Park, C.H. Choi, and H. Choo. Dynamic anti-windup method for a class of time-delay control
systems with input saturation. Int. J. Robust and Nonlinear Control, 10:457–488, 2000.

13



[23] K.J. Park, H. Lim, T. Basar, and C.H. Choi. Anti-windup compensator for active queue management
in TCP networks. Control Engineering Practice, 11(10):1127–1142, October 2003.

[24] J.C. Shen and F.C. Kung. Stabilization of input-delay systems with saturating actuator. Int. Jornal of
Control, 50(5):1667–1680, 1989.

[25] O.J.M. Smith. A controller to overcome dead time. ISA Journal, 6(2):28–33, February 1959.

[26] E.D. Sontag. An algebraic approach to bounded controllability of linear systems. Int. Jornal of Control,
39(1):181–188, 1984.

[27] S. Tarbouriech, J.M. Gomes da Silva Jr., and G. Garcia. Delay-dependent anti-windup loops for en-
larging the stability region of time delay systems with saturating inputs. ASME Journal of Dynamic
Systems, Measurement and Control, 125:265–267, June 2003.

[28] A.R. Teel. On L2 performance induced by feedbacks with muiltiple saturations. ESAIM: Control,
Optim. Calc. of Variations, URL: http://www.emath.fr/cocv/, 1:225–240, September 1996.

[29] A.R. Teel and N. Kapoor. The L2 anti-windup problem: Its definition and solution. In Proc. 4th ECC,
Brussels, Belgium, July 1997.

[30] L. Zaccarian and A.R. Teel. Nonlinear L2 anti-windup design: an LMI-based approach. In Nonlinear
control systems design symposium (NOLCOS), pages 1298–1303, Saint-Petersburg, Russia, July 2001.

[31] L. Zaccarian and A.R. Teel. A common framework for anti-windup, bumpless transfer and reliable
designs. Automatica (B), 38(10):1735–1744, 2002.

[32] A. Zheng, M. V. Kothare, and M. Morari. Anti-windup design for internal model control. Int. J. of
Control, 60(5):1015–1024, 1994.

14


