
Onnon-local stabilityproperties of extremumseeking control
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Abstract

In this paper, we consider several extremum seeking schemes and show under appropriate conditions that these schemes achieve
extremum seeking from an arbitrarily large domain of initial conditions if the parameters in the controller are appropriately
adjusted. This non-local stability result is proved by showing semi-global practical stability of the closed-loop system with
respect to the design parameters. We show that reducing the size of the parameters typically slows down the convergence rate
of the extremum seeking controllers and enlarges the domain of the attraction. Our results provide guidelines on how to tune
the controller parameters in order to achieve extremum seeking. Simulation examples illustrate our results.

1 Introduction

In many control applications the reference-to-output
map has an extremum and the control objective is to
regulate the output close to this extremum. For in-
stance, consider the system:

ẋ = f(x, u), y = h(x), (1)

and suppose that there exists a unique x∗ such that
y∗ = h(x∗) is the extremum of the map h(·). Due to un-
certainty, it is often reasonable to assume that neither
x∗ nor h(·) are precisely known to the control designer.
The main objective in extremum seeking control is to
force the solutions of the closed loop system to even-
tually converge to x∗ and to do so without any precise
knowledge about x∗ or h(·). Extremum seeking control
is an old topic that was first investigated in the early
1950’s under the names of “extremum regulation” [12,14]
and “automatic optimization” [9–11]. Most results in the
1950’s and 1960’s focused on finding the optimal value
of a static mapping and stability issues were largely ig-
nored. It was not until the year 2000 that stability of
an extremum seeking feedback scheme was proved rig-
orously in [6]. This sparked a new interest in the area
and generated numerous new results and applications
[4,3,7,6,16,17,27–29].

The analysis in [6] was based on classical singular per-
turbations and averaging results and a local stability re-
sult was demonstrated. Results in [6] do not character-
ize the achieved domain of attraction. However, in most

1 This research is supported by the Australian Research
Council under the Discovery Grant DP0344784.

engineering applications it is very useful to obtain an
estimate of the domain of attraction or prove global or
non-local stability in cases when this is possible.

The main purpose of this paper is to prove non-local sta-
bility properties of several extremum seeking controllers
that are closely related to the ones considered in [6].
In other words, our results include explicit statements
about the achieved domain of attraction for the closed
loop. Moreover, we show under appropriate condi-
tions that the considered extremum seeking controllers
achieve semi-global practical stability of the closed loop
system. In other words, given an arbitrarily large set of
initial conditions B∆ and an arbitrarily small neighbor-
hood Bν of the state x∗ where the output achieves its
extremum y∗ = h(x∗), it is possible to adjust the con-
troller parameters so that all solutions starting from the
set B∆ eventually converge to Bν . At the same time we
show that reducing the parameters in the controller re-
duces the speed of convergence of the algorithm and this
poses a tradeoff that the designer needs to resolve when
tuning the controller. To the best of our knowledge this
is the first proof of non-local and semi-global practical
stability properties of extremum seeking controllers in
[6] with explicit bounds on convergence speed. Non-
local stability results for a different class of extremum
seeking controllers can be found in [27].

Several extremum seeking schemes are discussed. First,
we investigate stability of a first order extremum seeking
scheme, where the extremum seeking controller consists
of an integrator and an appropriate excitation signal.
This simplified extremum seeking scheme is of interest
in its own right and we are not aware of whether it has
already appeared in the literature. We show how to tune
the controller parameters in order to achieve semi-global
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practical stability of the closed loop. This is done by
showing that appropriate tuning of the controller leads
to a desired separation of the two time scales in the
closed loop system. The stability proof is simpler for
this scheme and it lends itself to a novel interpretation
of its operation via gradient optimization algorithms.
Second, we consider several higher order variations of
the first order extremum seeking controller, such as the
scheme discussed in [6], by including various low-pass
and high-pass filters. We show that all these schemes
achieve semi-global practical stability in appropriately
chosen parameters and provide guidelines for tuning the
controller parameters. Our results are illustrated via two
simulation examples.

It is worthwhile to note that our proof technique is novel
(different from [6]) and is partly based on Lyapunov
techniques and recent new developments in the theory
of averaging [13,25,26] and singular perturbations [1,24]
that are tailored for analysis of semi-global practical sta-
bility of systems that exhibit time scale separation. We
do adopt, however, the same idea of time scale separa-
tions as in [6] that naturally leads to the use of singular
perturbations and averaging techniques.

The paper is organized as follows. In Section 2 we present
preliminaries, followed by the problem formulation in
Section 3. The main results are stated in Section 4. Pos-
sible extensions are discussed in Section 5. An example
with simulations is given in Section 6 and conclusions
are presented in Section 7. Proofs as well as some auxil-
iary results are presented in the Appendices.

2 Preliminaries

The set of real numbers is denoted as R. The continuous
function β : R≥0 × R≥0 → R≥0 is of class KL if it is
nondecreasing in its first argument and converging to
zero in its second argument. Given a measurable function
x, we define its L∞ norm ‖ · ‖ = ess supt≥0 |x(t)|. A
vector function f(x, ε) ∈ Rn is said to be O(ε) if for any
compact set D if there exist positive constants k and ε∗
such that |f(x, ε)| ≤ kε, for all ε ∈ (0, ε∗], x ∈ D, where
| · | is the Euclidean norm.

We will consider a parameterized family of systems:

ẋ = f(t,x, ε) , (2)

where x ∈ Rn, t ∈ R≥0 and ε ∈ R`
>0 are respectively the

state of the system, the time variable and the parameter
vector. The stability of the system (2) can depend in an
intricate way on the parameters. In order to illustrate
this and to motivate our Definition 1, we consider next
two typical examples.

Example 1 Consider the linear parameterized system:

ẋ = −ε1ε2(1− ε1ε2)x (3)

where ε1 and ε2 are positive. It is easy to see that the
system (3) is stable if and only if 0 < ε1ε2 < 1 and the
shaded region in Fig. 1A is the stability region for the
system in the parameter space. Our proof techniques will
be based on the results in averaging and singular pertur-
bations that will require all parameters to be sufficiently
small. Hence, our main concern will be how stability of
the system depends on sufficiently small parameters. The
system (3) is stable for all ε1, ε2 ∈ (0, 1).
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Fig. 1. A. Stability region in parameter space for the system
(3); B. Stability region in parameter space for the system (5)

This is a favorable situation that we will refer to as 2

“stability uniform in small (ε1, ε2)”. Uniform stability
means that we can fix a small “box” around the origin
in the parameter space and the system is stable for all
parameters in this box. Note that if we reduce the box,
i.e. ε1, ε2 ∈ (0,

√
2

2 ), then the trajectories of the system
satisfy the following transient bound:

|x(t)| ≤ e−
ε1ε2

2 t|x(0)| ∀t ≥ 0 . (4)

Hence, the rate of convergence depends on the product of
all parameters. Consider now a different example:

ẋ = −ε1(ε2 − ε1)x . (5)

This example is stable whenever ε2 > ε1 and this stability
region in parameter space in Fig. 1B is shaded. In this
case, we can see that we can not fit a small ”box” around
the origin in the parameter space that will be completely
contained in the stability region. To distinguish this case
from the previous one we will just say that this system is
“stable uniformly in small ε1” (actually, we can also say
that the system is “stable uniformly in small ε2” but we
will show later that the order in which parameters need
to be tuned will be fixed in our proofs and this fact further
motivates the terminology we are using). Moreover, if
ε2 > 2ε1, the trajectories of (5) satisfy (4).

It is obvious that if there are 3 parameters, the situation
is already much more complex since for any fixed value
of one of the parameters, we can have different combi-
nations of the above two cases for the remaining two

2 In the sequel we will omit the word “small” from the
definition of stability uniform in parameters.
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parameters. The next definition captures situations in
the above examples and applies to arbitrary nonlinear
multi-parameter systems (2).

Definition 1 The system (2) with parameter ε is said
to be semi-globally practically asymptotically (SPA) sta-
ble, uniformly in (ε1, . . . , εj), j ∈ {1, . . . , `}, if there ex-
ists β ∈ KL such that the following holds. For each
pair of strictly positive real numbers (∆, ν), there ex-
ist real numbers ε∗k = ε∗k(∆, ν) > 0, k = 1, 2, . . . , j and
for each fixed εk ∈ (0, ε∗k), k = 1, 2, . . . , j there exist
εi = εi(ε1, ε2, . . . , εi−1,∆, ν), with i = j + 1, j + 2, . . . , `,
such that the solutions of (2) with the so constructed pa-
rameters ε = (ε1, . . . , ε`) satisfy:

|x(t)| ≤ β(|x0|, (ε1 · ε2 · · · · · ε`)(t− t0)) + ν, (6)

for all t ≥ t0 ≥ 0, x(t0) = x0 with |x0| ≤ ∆. If we have
that j = `, then we say that the system is SPA stable,
uniformly in ε.

Note that in Definition 1 we can construct a small “box”
around the origin for the parameters εk, k = 1, 2, . . . , j
so that the stability property holds uniformly for all pa-
rameters in this box, whereas at the same time we can
not do so for the parameters εk, k = j + 1, . . . , l. Some-
times we abuse terminology and refer to (ε1 · · · ε`) in the
estimate (6) as the “convergence speed” (although the
real convergence speed depends also on the function β).

Remark 1 Definition 1 is tailored to families of systems
that depend on several parameters. We will show that the
closed loop system with an extremum seeking controller
has the form (2) where εi, i = 1, 2, 3 (i.e. l = 3) are design
parameters that will be introduced and defined later. Typ-
ically, reducing the parameters εi will increase the size of
the domain of attraction (larger ∆) and reduce the size of
the set to which trajectories ultimately converge (smaller
ν) but this will involve a penalty on the convergence rate:
the smaller the εi, the slower the convergence rate is (see
(6)). Although the relation between the size of the tun-
ing parameters εi and the speed of convergence was men-
tioned in [7], the theoretical analysis of the relationship
between the convergence speed and domain of attraction
was not discussed in [6,7]. Definition 1 gives a clear pic-
ture of the relationship between the domain of attraction
and the convergence rate of the closed loop system that
all considered extremum seeking schemes will yield.

Remark 2 SPA stability in Definition 1 is more general
from the one in the conference version of this paper [22,
Definition 1]. Using the terminology of our Definition 1,
we can say that [22, Definition 1] corresponds to SPA sta-
bility uniform in ε1, which is a weak property. We prove
in this paper several results under different assumptions
that will yield SPA stability of the closed loop uniform in
different parameters (Theorems 1, 2, 3, 4). In particu-
lar, our Theorems 1 and 2 contain stronger results than

those in [22] since we prove uniformity of SPA stability
with respect to all parameters ε = (ε1, . . . , ε`).

3 Problem Formulation

Consider the single-input-single-output (SISO) nonlin-
ear model (1), where f : Rn ×R → Rn and h : Rn → R
are continuously differentiable 3 . x is the measurable
state, u is the input and y is the output. Consider a fam-
ily of control laws of the following form:

u = α(x, θ), (7)

where θ ∈ R is a scalar parameter. The closed-loop sys-
tem (1) with (7) is then

ẋ = f(x, α(x, θ)). (8)

The requirement that θ is scalar and that (1), (7) is SISO
is to simplify presentation. Multidimensional parameter
situations with stronger Assumptions on the system (1)
can be tackled and are left for future work. The following
assumption is the same as [6, Assumption 2.1].

Assumption 1 There exists a function l : R → Rn

such that

f(x, α(x, θ)) = 0, if and only if x = l(θ). (9)

Assumption 2 is a natural extension of [6, Assumption
2.2] to prove non-local stability.

Assumption 2 For each θ ∈ R, the equilibrium x =
l(θ) of the system (8) is globally asymptotically stable,
uniformly in θ.

Assumption 3 Denoting Q(·) = h ◦ l(·), there exists a
unique θ∗ maximizing Q(·) and, the following holds 4 :

Q′(θ∗) = 0 Q′′(θ∗) < 0 (10)
Q′(θ∗ + ζ)ζ < 0 ∀ζ 6= 0 . (11)

Assumption 4 We have that (10) holds and there exists
αQ ∈ K∞ such that:

Q′(θ∗ + ζ)ζ ≤ −αQ(|ζ|) ∀ζ ∈ R (12)

Remark 3 Assumption 3 is a stronger version of [6,
Assumption 2.3], where it was assumed that there exists
θ∗ ∈ R such that (10) holds. Using conditions (10), only
local stability properties of the extremum seeking scheme

3 In the sequel, all functions are assumed to be sufficiently
smooth (all derivatives that we need are continuous).
4 Without loss of generality we assume that the extremum
is a maximum.

3



were analyzed in [6]. We use the stronger conditions (10)
and (11) in Assumption 3 or (10) and (12) in Assumption
4 in order to obtain stronger (non-local) stability proper-
ties of the extremum seeking scheme. These assumptions
appear natural in the context of non-local results. We will
comment in the next section on how our proof techniques
can be used to further relax Assumptions 3 and 4 and still
achieve extremum seeking.

4 Main results

The main results are stated in this section. All proofs
are found in Appendix A. This Section consists of two
parts. In the first part we investigate stability of a first
order extremum seeking scheme consisting of an inte-
grator and an appropriate excitation signal. This sim-
plified scheme appears to be novel and it lends itself to
an interesting new interpretation of extremum seeking
(via gradient descent optimization algorithms). In the
second part we consider stability of several higher order
extremum seeking schemes.

4.1 First order extremum seeking scheme

Consider the first order extremum seeking scheme, as
shown in Fig.2, with the following dynamics
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Fig. 2. The simplest peak seeking feedback scheme

ẋ = f(x, α(x, θ̂ + a sin(ωt)))
˙̂
θ = kh(x)b sin(ωt), (13)

where (k, a, b, ω) are tuning parameters. Introduce the
change of the coordinates, x̃ = x−x∗, θ̃ = θ̂−θ∗ and note
that the point (x∗, θ∗) is in general not an equilibrium
point of the system (13). Nevertheless, we show that the
system in new coordinates is SPA stable, which ensures

extremum seeking. The system in new coordinates takes
the form:

˙̃x = f(x̃ + x∗, α(x̃ + x∗, θ̃ + θ∗ + a sin(ωt)))
˙̃
θ = kh(x̃ + x∗)b sin(ωt). (14)

We introduce 5 : k
4
= ωδK, σ

4
= ωt, where ω and δ are

small parameters, K > 0 is fixed. The system equations
expanded in time σ are:

ω
dx̃
dσ

= f(x̃ + x∗, α(x̃ + x∗, θ̃ + θ∗ + a sin(σ)))

dθ̃

dσ
= δKh(x̃ + x∗)b sin(σ). (15)

Note that the system (15) has the form (2) where the
parameter vector is defined as ε := [a b δ ω]T . For sim-
plicity of presentation we let b = a and 6

ε := [a2 δ ω]T . (16)

The system (15) has a two-time-scale structure and our
first main result is proved by applying the singular per-
turbations and averaging methods (see the Appendix A).

Theorem 1 Suppose that Assumptions 1, 2 and 3 hold.
Then, the system (14) (when b = a) with parameter ε in
(16) is SPA stable, uniformly in (a2, δ).

Remark 4 Note that since h(·) is continuous, then for
any ν > 0, there exists ν1 > 0 such that

|x̃| ≤ ν1 =⇒ |h(x̃ + x∗)− y∗| ≤ ν . (17)

Theorem 1 can be interpreted as follows. For any (∆, ν)

we can adjust ε so that for all |z| ≤ ∆, where z
4
= |(x̃, θ̃)|,

we have that lim sup
t→∞

|y(t)− y∗| ≤ ν. In other words, the

output of the system can be regulated arbitrarily close to
the extremum value y∗ from an arbitrarily large set of
initial conditions by adjusting the parameters ε in the
controller. In particular, the parameters ε are chosen so
that Definition 1 holds with (∆, ν1) and ν1 is defined in
(17).

Remark 5 Compared with the extremum seeking
scheme in [6], the proposed extremum seeking scheme in
Fig. 2 is simpler, containing only an integrator (with-
out low-pass and high-pass filters that are used in [6]).
Higher order schemes with low-pass and/or high-pass
filters are considered in the next section.

5 There is no loss of generality in assuming that K = 1. We
considered the general case of K > 0 in order to make the
connection to higher order schemes in the next section more
apparent.
6 Note that this is effectively the same as letting ε =
[a a δ ω]T (see Definition 1).
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Remark 6 Theorem 1 is a stronger result than [6, The-
orem 1] since we prove SPA stability, as opposed to lo-
cal stability in [6]. However, our results are stated un-
der stronger assumptions (Assumptions 1-3) than those
in [6]. Assumptions 1-3 appear to be natural when non-
local stability is investigated. Moreover, we note that it
is not crucial in Assumptions 1 – 3 that all conditions
hold globally. For instance, instead of requiring (11) in
Assumption 3, we can assume:

Q′(θ∗ + ζ)ζ < 0 ∀ζ ∈ D , ζ 6= 0 , (18)

where D is a bounded neighborhood of θ∗. We note that
these conditions are not very restrictive, whereas their
global version is (Assumptions 2 and 3). Indeed, if the
maximum is isolated and all functions are sufficiently
smooth, we can conclude that the condition (10) implies
that there exists a set D satisfying (18). Similarly, we
could assume only local stability in Assumption 2. If all
of our assumptions were regional (as opposed to global)
we could still state SPA stability with respect to the given
bounded region.

Remark 7 In the convergence speed analysis of the ex-
tremum seeking scheme, the “worst case” convergence
speed is considered. That is, the convergence speed of
the overall system depends on the convergence speed of
the slowest sub-system. The first order extremum seek-
ing controller (14), according to Theorem 1, yields the
following stability bound:

|z(t)| ≤ β(|z(t0)|, (a2δω)(t− t0)) + ν,

= β

(
|z(t0)|, (a2k)

(t− t0)
K

)
+ ν, (19)

for all t ≥ t0 ≥ 0 and |z(t0)| ≤ ∆, where z
4
= |(x̃, θ̃)|

and k, K were defined befor. Since K > 0 is fixed, the
parameter a2·k affects convergence speed. The smaller a2·
k, the slower the convergence and the larger the domain
of attraction.

Remark 8 The proof of Theorem 1 in the Appendix A
provides an interesting insight into the way the extremum
seeking controller operates. The parameter ω is used to
separate time scales between the plant (boundary layer)
and the extremum seeking controller (reduced system),
where the plant states are fast and they quickly die out 7 .
Using the singular perturbation method, we obtain that
the reduced system in the variable “θr” in time “σ = ωt”
is time varying and it has the form:

dθr

dσ
= KaδQ(θ∗ + θr + a sin(σ)) sin(σ) , (20)

7 Because of Assumption 2.

for which we introduce an “averaged” system:

dθav

dσ
=

K

2
a2δQ′(θ∗ + θav) . (21)

Hence, the averaged system (21) can be regarded as the
“gradient system” whose globally asymptotically stable
equilibrium θ∗ corresponds to the global maximum 8 of
the unknown map Q. By combining the idea from [5,
Section 10.4] and [18, Section 3.9], we introduce a change
of coordinates

θr(σ) = w(σ) + Kδaq(σ,w(σ), a), (22)

where q will be defined in (47) in Appendix A. In the new
coordinates we show

dw

dσ
=

Ka2δ

2
Q′(θ∗ + w) + O(a3δ) + O(a2δ2) + O(a3δ2).(23)

It is then obvious from (23) that reducing parameters a
and δ reduces the mismatch between the averaged system
(21) and the reduced system (20) and guarantees SPA
stability of the reduced system.

Remark 9 As indicated in Remark 8, first order ex-
tremum seeking scheme works on average as a “gradient
search” method. Both the excitation signal and the inte-
grator are necessary to achieve this. The excitation sig-
nal a sin(ωt) is added to system (1) to get probing while
the multiplication (modulation) of output and the exci-
tation signal extracts the gradient of the unknown map-
ping Q(·). The role of the integrator is to get on average
the steepest decent along the gradient of Q(·). Hence, the
first order scheme is the simplest controller structure that
achieves extremum seeking.

Remark 10 Note that we did not prove SPA stability,
uniform in the whole vector ε in Theorem 1 for system
(14) with parameter ε. The stability properties is not
uniform in ω. The result in Theorem 1 is still stronger
than those in [22] where the SPA stability is only uniform
in a2.

In the rest of this section we investigate two situations
where SPA stability, uniform in ε, can be obtained un-
der stronger conditions than those used in Theorem 1.
First, we consider a static mapping without plant dy-
namics and then we consider the general case with plant
dynamics but we use stronger assumptions.

Suppose that there is no plant dynamics and the refer-
ence to output map is static y = h(u), as in [9–12,14].
In this case, the closed loop system in new coordinates
θ̃ = θ − θ∗ becomes:

˙̃
θ = Kδh(θ∗ + θ̃ + a sin(t)) a sin(t) . (24)

8 Because of our Assumption 3.
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Note that in this case we do not need the parameter ω
and we let k = Kδ where K > 0 is arbitrary but fixed.
Hence, in this case ε := (a2, δ). Moreover, we do not need
Assumptions 1 and 2 and we use Assumption 3 where Q
is replaced by h. Then, from the proof of Theorem 1 in
Appendix A we directly get the following:

Corollary 1 Suppose that Assumption 3 holds with
Q(·) = h(·). Then, the system (24) with parameter
ε := (a2, δ) is SPA stable, uniformly in ε.

Next we will prove SPA stability for general systems,
uniform in ε under stronger conditions. In particular, we
will use Assumption 4 and Assumption 5 that will be
stated below after some auxiliary results are presented.
To this end, we first rewrite (15) to simplify the notation:

ω
dx̃
dσ

= f̃(x̃, θ̃ + a sin(σ))

dθ̃

dσ
= δKh̃(x̃) a sin(σ) , (25)

where f̃(x, θ) := f(x+x∗, α(x+x∗, θ∗+θ)) and h̃(x) :=
h(x + x∗). Then, we introduce “boundary layer” using
x̄ := x̃− l(θ∗ + θ̃ + a sin(σ)) =: x̃− l̃(θ̃ + a sin(σ)) and
rewrite (25) back in original time scale “t” as follows:

˙̄x = f̃(x̄ + l̃(θ̃ + a sin(σ)), θ̃ + a sin(σ)) + ωa∆1 (26)
˙̃
θ = aδKh̃ ◦ l̃(θ̃ + a sin(σ)) sin(σ) + aδ∆2, (27)

where

∆1 := l̃′(θ̃ + a sin(σ))
[
δKh̃(x̄ + l̃(θ̃ + a sin(σ))) sin(σ)

+ cos(σ)
]
, (28)

∆2 := K
[
h̃(x̄ + l̃(θ̃ + a sin(σ)))

−h̃ ◦ l̃(θ̃ + a sin(σ))
]
sin(σ).

We consider the system (26), (27) as a feedback con-
nection of two systems. We first show that under our
assumptions, we can conclude that the two systems
are input to state stable 9 (ISS) in an appropriate sense
and their gains are parameter dependent. Then, we will
state Assumption 5 that will allow us to prove our next
main result (Theorem 2) using the small gain theorem
(Lemma 2) stated in the Appendix B.

Proposition 1 Suppose that Assumption 4 holds. Then,
there exist β1 ∈ KL and for any ∆1 > ν1 > 0 and
ω∗ > 0 there exist γθ

1 , γθ
2 ∈ K∞, a∗ > 0 and δ∗ > 0

such that for all a ∈ (0, a∗), δ ∈ (0, δ∗), ω ∈ (0, ω∗) and

9 For more details on ISS, refer to [19].

max{|θ̃0|, ||x̄||} ≤ ∆1, with θ̃0 := θ̃(t0) we have that the
solutions of the subsystem (27) satisfy:

|θ̃(t)| ≤max
{

β1(|θ̃0|, (a2δω)(t− t0)), γ1
ε(||x̄||), ν1

}
,(29)

for all t ≥ t0 ≥ 0, where

γ1
ε(s) := γθ

1

(
1
a
γθ
2(s)

)
.

Proposition 2 Suppose that Assumptions 1 and 2 hold.
Then, there exist β2 ∈ KL and for any positive ∆2, ν2,
a∗ and δ∗ there exist γz

1 , γz
2 ∈ K∞ and ω∗ > 0, such

that for all a ∈ (0, a∗), δ ∈ (0, δ∗) ω ∈ (0, ω∗) and
max{|x̄0|, ||θ̃||} ≤ ∆, with x̄0 := x̄(t0), we have that the
solutions of the subsystem (26) satisfy:

|x̄(t)| ≤max
{

β2(|x̄0|, t− t0), γ2
ε(||θ̃||), ν2

}
, (30)

for all t ≥ t0 ≥ 0, where

γ2
ε(s) := γz

1 (ωaγz
2 (s)) .

Remark 11 Note that the ISS gains γ1
ε and γ2

ε in Propo-
sitions 1 and 2 depend on a and ω. Moreover, the gain
γ1
ε increases to infinity as a is reduced to zero. Typically,

this behavior leads to lack of stability in the interconnec-
tion. However, in this case, it is possible to counteract
this increase of γ1

ε through the decrease of γ2
ε as γ2

ε de-
creases to zero as a decreases. Moreover, it is sometimes
possible to achieve this in a manner that will guarantee
SPA stability, uniform in ε, of the system via Theorem
2 in the appendix. A condition that is needed for this to
hold is summarized in the next assumption.

Assumption 5 Let the gains γ1
ε, γ2

ε come from Propo-
sitions 2 and 1. Assume that there exists γ ∈ K∞ such
that for any 0 < s1 < s2 there exist ω∗ and a∗ such that
for all ω ∈ (0, ω∗), a ∈ (0, a∗) and s ∈ [s1, s2] we have
that the following small gain conditions hold:

γ1
ε ◦ γ2

ε(s) ≤ γ(s) < s, γ2
ε ◦ γ1

ε(s) ≤ γ(s) < s. (31)

Remark 12 Note that the conditions (31) do not im-
ply each other, as can be easily seen from the case when
γθ
2 ◦ γz

1 (s) = sq, q > 1 and γz
2 ◦ γθ

1(s) = sp, p > 1
in which case the conditions (31) become respectively
γθ
1

(
ωaq−1 (γz

2 (s))q)
< s and γz

1

(
ωa1−p

(
γθ
2(s)

)p)
< s. It

is obvious, that in the first case we can choose ω and a
independent of each other so that the first condition in
(31) holds, whereas it is impossible to do so for the second
condition in (31). This also illustrates that conditions of
Assumption 5 may not hold for some gains.

Remark 13 We note that if all the gains γθ
1 , γθ

2 , γz
1 , γz

2
are linear then Assumption 5 holds. In particular, the
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small gain conditions (31) become independent of a and
can be achieved by reducing ω only.

Our second main result is stated next:

Theorem 2 Suppose that Assumptions 1, 2, 4 and 5
hold. Then, the closed-loop system (14) (when b = a)
with parameter ε = (a2 δ ω)T is SPA stable, uniformly
in ε.

Remark 14 Note that the conditions in Assumption 5
and Remark 12 shed light on the result proved in Theorem
1. Indeed, Remark 12 illustrates that it is not possible to
always satisfy the conditions of Assumption 5 uniformly
in small a and ω. However, if we were interested in prov-
ing a weaker stability property, i.e. SPA stability uniform
in (a2, δ), then for any fixed a we can always find ω∗ > 0
such that for all ω ∈ (0, ω∗) we have that the small gain
conditions in Assumption 5 hold. Then, we can use the
same steps as in proof of Theorem 2 to conclude that the
system is SPA stable uniform in (a2, δ) that we proved in
Theorem 1 under weaker conditions.

It is an open question whether there is a genuine gap
between Theorems 1 and 2, that is whether there exists
an example satisfying all conditions of Theorem 1 but not
conditions of Theorem 2 that is not SPA stable uniformly
in ε.

4.2 Higher order extremum seeking schemes

Higher order schemes have been considered in the liter-
ature where the first order controller from the previous
section is augmented with low-pass and/or high-pass fil-
ters [6]. From the analysis in the previous subsection we
can see that such filters are not needed to achieve ex-
tremum seeking. However, we show that the same tech-
niques can be used to prove SPA stability of these higher
order schemes. An outcome of this analysis is a result on
SPA stability of an extremum seeking controller that was
considered in [6]. We note that our analysis in the previ-
ous section relies on the results on second order averag-
ing for periodic systems [18, Section 3.9] and the analysis
in the previous section is greatly simplified for the scalar
extremum seeking scheme. This analysis is more compli-
cated for higher order systems of this section. Hence, for
space reasons we state and prove in this section weaker
results that are easier to prove (SPA stability uniform
in a2). Results in this section have appeared in the con-
ference version of this paper [22].

Consider the extremum seeking controller given in Fig.
3, when WL(s) = ωl

s+ωl
and WH(s) = 1. The extremum

seeking controller contains an integrator and a low pass
filter. The low-pass filter is useful when we need to filter
out high frequency measurement noise in the system.
Moreover, tuning the filter parameter ωl may lead to a
possible improvement in the transient response. When

)(

)),(,(

xhy

xxfx

=
= θθθθαααα&

)(sWLs
k

x+
ξξξξθθθθ̂

yθθθθ

ηηηη−−−−y

)sin( ta ωωωω

)(sWH

Fig. 3. A peak seeking feedback scheme with a low-pass filter
(LF) and a high pass filter (HF)

ωh = 0, the following equations describe the closed loop
system in Fig. 3 :

ẋ = f(x, α(x, θ̂ + a sin(ωt)))
˙̂
θ = k ξ

ξ̇ =−ωlξ + ωlh(x)a sin(ωt). (32)

Introduce the change of the coordinates, x̃ = x − x∗,
θ̃ = θ̂ − θ∗, ξ̃ = ξ. The system in new coordinates takes
the following form:

˙̃x = f(x̃ + x∗, α(x̃ + x∗, θ̃ + θ∗ + a sin(ωt)))
˙̃
θ = k ξ̃
˙̃
ξ =−ωl [ξ̃ − h(x̃ + x∗) a sin(ωt)] . (33)

Fix ωL,K ∈ R>0 and define

ωl
4
= ω δ ωL; k

4
= ω δ K , (34)

where δ and ω are small parameters. We introduce the
new time “σ = ω t” and obtain:

ω
dx̃
dσ

= f(x̃ + x∗, α(x̃ + x∗, θ̃ + θ∗ + a sin(σ)))

dθ̃

dσ
= δ K ξ̃

dξ̃

dσ
=−δ ωL [ξ̃ − h(x̃ + x∗) a sin(σ)] . (35)

Note that the system (35) has the form (2) where the pa-
rameter vector is defined as before ε := [a2 δ ω]T . This
system exhibits the same two time-scale structure as the
system in the previous section. The main difference is
that the slow system is in this case second order system
instead of the scalar system in the previous section. Nev-
ertheless, one can prove the same results that we proved

7



for the scalar scheme. For space reasons, we only state
counterparts of Theorem 1 for higher order schemes and
sketch proofs of these results in the last section.

Theorem 3 Suppose that Assumptions 1, 2 and 3 hold.
Then, the closed-loop system (33) with parameter ε is
SPA stable, uniformly in a2.

We now turn to the extremum seeking scheme in Fig. 3
investigated in [6], where WL(s) = ωl

s+ωl
and WH(s) =

s
s+ωh

:

ẋ = f(x, α(x, θ̂ + a sin(ω t))
˙̂
θ = k ξ

ξ̇ =−ωlξ + ωl(y − η)a sin(ωt)
η̇ =−ωhη + ωhy , (36)

where besides (34), we also use ωh
4
= ω δ ωH for some

fixed ωH > 0. Note that the system (36) also has the
form (2) where the parameter vector is defined as ε :=
[a2 δ ω]T . We can prove the following result:

Theorem 4 Suppose that Assumptions 1, 2 and 3 hold.
Then, the closed-loop system (36) with parameter ε =
(a2 δ ω)T is SPA stable, uniformly in a2.

Remark 15 The key issue for higher order schemes is
the parametrization of filter coefficients with ω and δ to
get an appropriate time scale separation. With an appro-
priate parametrization of an arbitrary causal stable fil-
ter N(s)

D(s) we can get a desired time scale separation that
can be used to prove that the extremum seeking controller
achieves SPA stability.

Remark 16 Note that we considered only stability and it
is an interesting question how different schemes compare
to each other from a performance point of view. However,
this question is outside the scope of this paper.

5 Possible Extensions

We briefly comment on possible extensions of our results
and indicate how our techniques may be useful to ana-
lyze these important issues. First, we note that the sta-
bility results in [27] that were given for a different class
of extremum seekers were derived under more general
conditions than what we use: multi-parameter case was
considered, non-smooth output to reference maps could
be treated and results were applicable to infinite dimen-
sional systems. Addressing stability for the class of ex-
tremum seekers considered in this paper under each of
these relaxed conditions would be very important and is
left for further research. We discuss in more detail two
other important questions for which our techniques seem
to be well suited: (i) passing through local extrema to
achieve global optimization; (ii) excitation signal design.

]
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1
x 10

5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−80

−60

−40

−20

0

20

40

60
y=−x4+80/3x3+2x2−80x+1, x∈[−2 2]

y=−x4+80/3x3+2x2−80x+1, x∈[−10 30]

Fig. 4. Nonlinear mapping h(x)

5.1 Passing Through Local Extrema

It has been observed by different researchers and practi-
tioners 10 that extremum seeking controllers sometimes
have the ability to pass through a local extremum in
order to converge to a global extremum. For example,
sometimes if the amplitude a of the excitation signal
is sufficiently large, then it is possible to pass through
a local extremum. In other words, the extremum seek-
ing controllers were observed to converge to the global
extremum even when our Assumption 3 does not hold.
The obvious question is whether one can provide general
proofs of convergence when our Assumption 3 does not
hold. While this phenomenon has been observed in sim-
ulations, no theoretical analysis was proposed to date.
This issue is related to the technique of simulated an-
nealing where global optimization is achieved through
an appropriate design and tuning of the optimization al-
gorithm. We show next by way of an example that our
non-local proof techniques are suited for addressing this
question. We will address this issue in more generality
in our future work.

Consider the following static mapping (no dynamics)

y = h(x) = −x4 +
80
3

x3 + 2x2 − 80x + 1,

with the first order extremum seeking controller to ob-
tain the closed loop system (we use K = 1):

θ̇ = δh(θ + a sin(t)) a sin(t).

For simplicity, we assume that h(·) is known in order to
carry out the analysis. As seen from Fig. 4, the output
mapping has one global maximum x∗ = 20, one local
maximum at x = −1 and one local minimum at x = 1.

10 The authors would like to thank anonymous reviewers for
pointing out this issue which motivated us to consider it
more closely.
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Denoting θ̃ = θ − 20, in new coordinates, we have

˙̃
θ = δh(θ̃ + 20 + a sin(t)) a sin(t)

4
= aδh̃(θ̃, t), (37)

Obviously, h(θ̃ + 20) reaches its local maximum at θ̃ =
−21 and global maximum at θ̃ = 0. Hence, our Assump-
tion 3 does not hold. Next, we average the right hand
side of (37) and introduce an averaged system 11

dθav

dt

4
= δa

1
2π

2π∫

0

h̃(θav, t)dt = δa2fav(θav, a). (38)

where fav(θav, a) = 1
2 [4θ3

av + 160θ2
av + 1596θav +

3a2θav + 40a2]. Introduce a quadratic Lyapunov func-
tion V (θav) := 1

2θ2
av and consider the sign of its deriva-

tive along solutions of the average system for different
values of a.

If a = 0.1 we have V̇ < 0, for all θav ∈ S0.1, where
S0.1 = (−∞,−20.998) ∪ (−19.001,−0.0002) ∪ (0,+∞).
A closer inspection reveals that all trajectories start-
ing in the set (−∞,−19.001) converge to the point
θav = −20.998 that is in the vicinity of the local ex-
tremum. On the other hand, all trajectories starting
in the set (−19.001,−0.0002) ∪ (0, +∞) converge to
the set [−0.0002, 0] that is in the vicinity of the global
extremum θav = 0.

Suppose now that a = 2.1. Then, V̇ < 0 for all θav ∈
S2.1, where S2.1 = (−∞,−0.11) ∪ (0, +∞). Hence, we
can conclude that all trajectories of the average system
converge to the set [−0.11, 0] that is in the vicinity of
the global extremum. We note that by reducing δ we
can make the actual system behave in approximately the
same manner as the average system. Hence, by increas-
ing a and reducing δ we could show analytically that we
achieve global extremum seeking, i.e. if θ̃(0) < −21 we
have that θ̃(t) → [−0.11, 0] - the extremum seeking con-
troller passes through the local extremum. Simulations
support these theoretical findings that were made pos-
sible using our non-local stability analysis.

Finally, we remark that if a time-varying amplitude a is
employed so that a(0) is sufficiently large and a(t) → 0
sufficiently slowly, similar to the idea of simulated an-
nealing, the global maximum value would be obtained by
the extremum seeking system. This will complicate the
analysis since it appears that we will need to introduce
another (slowest) time scale for the evolution equation
of a(·). Our techniques are suitable for addressing this
issue in its full generality and this is a topic of future
research.

11 Note that this average system is different from the one
used in the proofs of Theorems 1 and 2 where the a4 terms
were ignored.

5.2 Excitation Signal Design

We note that our proof techniques can be used to prove
the same results when the sinusoidal excitation signal
v(t) = a sin(ωt) is replaced by an arbitrary symmetric
periodic signal, such as sawtooth or square wave signals.
A natural question arises: is it possible to show that
some excitation signals are better in some sense than
other excitation signals? In particular, is it possible to
improve convergence or robustness of the closed loop by
designing the excitation signal? The answer to both of
these questions is affirmative and they can be treated
using the same methodology that we have developed in
this paper. We address these questions in a follow up
paper [23] that is currently under preparation.

6 Simulation Example

We simulate several different extremum seeking schemes
to illustrate SPA stability (e.g. reducing the tuning pa-
rameters would slow down the convergence speed of the
system and increase the domain of attraction) for a sys-
tem with a unique global maximum. Consider the sys-
tem:

ẋ =−x + u2 + 4u; y = −(x + 4)2 . (39)

The initial condition is chosen as x(0) = 2. It is obvious
that when x = −4, y reaches its global maximum y∗ = 0.
Let control input u = θ, we have θ∗ = −2, x∗ = −4 and
y∗ = 0. The initial value of x(0) is far away from the
desired one x∗ = −4.0.

(a) The first order scheme. Let θ̂(0) = 0. By choosing
a = 0.3, δ = 0.5(K = 4) and ω = 0.5, the perfor-
mance of the first order scheme is shown in Fig. 5 where
|z| = |(x̃, θ̃)|, where x̃ and θ̃ are the same as in Equation
(14). It can be seen that, the state z converges to the
neighborhood of the origin. The output also converges to
the vicinity of the extremum value. We increase a such
that a = 0.6 while keeping δ = 0.5 and ω = 0.5. From
the result of Theorem 1, increasing a will get a fast con-
vergent speed, while the domain of the attraction would
be smaller. It can be seen clearly from Fig. 5 that, though
both y(t) and |z| converge very fast, it converges to a
much larger neighborhood of the optimal values.

Now, we fix a = 0.3 and ω = 0.5, first let δ = 0.25, as seen
from Fig. 6, the state z converges to the neighborhood
of the origin. The output also converges to the vicinity
of the extremum value. Similarly, we increase δ to be
0.75, the performance of the extremum seeking scheme
is shown in Fig. 6. The convergence speed of latter one
is much faster. However, when we further increase δ, for
example, any δ ≥ 1.40, unstable performance can be
observed.
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Fig. 5. The performance of the simplest extremum seeking
scheme
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Fig. 6. The performance of the simplest extremum seeking
scheme

By choosing a = 0.3, δ = 0.5 and ω = 0.1, the perfor-
mance of the first order scheme is shown in Fig. 7. It
can be seen that, the state z converges to the neighbor-
hood of origin. The output also slowly converges to the
vicinity of the extremum value. If we increase ω such
that ω = 0.5 while keeping a = 0.5 and δ = 0.5, we
can see from Fig. 6 that, though both y(t) and |z| con-
verge very fast, they converge to a larger neighborhood
of the desired one compared with the performance when
a smaller ω (ω = 0.1) is employed.
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Fig. 7. The performance of the simplest extremum seeking
scheme
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Fig. 8. The comparison between two extremum seeking
schemes

(b) Comparison of the first and higher order schemes

In the simulation, two extremum seeking schemes (in
Fig. 2 and Fig. 3) are compared with same dynamics
(39). We fix the parameters a = 0.3, k = 0.2 (δ =
0.1,K = 4) and ω = 0.5 for both schemes.

In the extremum seeking scheme with a low-pass filter,
let ωL = 10 such that ωl = 0.5 = ω, ξ(0) = 2 while keep-
ing other parameters the same as the first order scheme,
the performances of two extremum seeking schemes are
shown in Fig. 8, where |z| 4= |(x− x∗, θ − θ∗, ξ)|. It can
be seen clearly that, the steady-state of the two schemes
are comparable.

7 Conclusion

We presented non-local stability results for several ex-
tremum seeking controllers. We use a novel proof tech-
nique that is based on recent results in averaging and sin-
gular perturbations. Our definition of semi-global prac-
tical stability appears to be novel in this context and it
shows a tradeoff between the domain of attraction and
the speed of convergence: reducing the tuning parame-
ters in the controller typically enlarges the domain of at-
traction, while it slows down the speed of convergence.
Simulations illustrate that this semi-global practical sta-
bility is indeed achieved for the considered extremum
seeking schemes.
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Appendix A

Proof of Theorem 1: The system (15) is in the standard
singular perturbation form, where the singular pertur-
bation parameter is ω. To obtain the fast and slow sys-
tems, we set ω = 0 and “freeze” x̃ at its “equilibrium”,
x̃ = l(θ∗ + θ̃ + a · sin(σ)) − x∗ to obtain the reduced
system in variable θr in the time scale σ = ωt:

dθr

dσ
= KδQ(θ∗ + θr + a sin(σ))a sin(σ). (40)

Applying the Taylor series expansion (c.f. [2]):

Q(θ∗ + θ + a · sin(σ)) =
[
f1(σ, θ) + af2(σ, θ) + a2R

]
,(41)

where 12

f1(σ, θ)
4
= Q(θ∗ + θ), f2(σ, θ)

4
= Q′(θ∗ + θ) sin(σ), (42)

and R = R(σ, θ) contains higher order terms in sin(σ).
Next, we introduce the average system:

dθav

dσ
= Kaδfav(θav) = Ka2δ

1
2
Q′(θ∗ + θav), (43)

where, using (42) and u(t, θ) :=
∫ t

0
f1(τ, θ)dτ −

1
2π

∫ 2π

0

∫ t

0
f1(τ, θ)dτdt, we defined (see [18, Section 3.9]):

fav(θ, a) :=
1
2π

2π∫

0

[
∂f1

∂θ
(τ, θ)u(t, θ) + af2(τ, θ)

]
dτ

=
a

2
Q′(θ∗ + θ) . (44)

12 We suppressed the dependance of all functions on θ∗ since
it is constant.
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Note that Assumption 3 guarantees that the average
system (43) is globally asymptotically stable. Indeed, we
can use the Lyapunov function V (θav) = 1

2θ2
av to see

that since we have along solutions of (43) that:

dV

dσ
= θav

dθav

dσ
=

1
2
Ka2Q′(θ∗ + θav)θav < 0, (45)

where Q′(θ∗+θav)θav is negative definite in θav because
of (11) in Assumption 3.

Next, we show that the same Lyapunov function can
be used to prove that the reduced system (40) is SPA
stable, uniformly in (a2, δ). The uniformity in (a2, δ) can
be shown in the new coordinates w, which is defined as

θr(σ) = w(σ) + Kaδq(σ,w(σ), a), (46)

where, using (42) and (44), we define:

q(σ,w, a) :=

σ∫

0

[f1(τ, w) + af2(τ, w)− afav(w)]dτ. (47)

Since the integrand in (47) is periodic and has zero mean,
the function q is periodic in σ. Hence, q is bounded for
all σ and

∂q

∂σ
= f1(σ,w) + af2(σ,w)− afav(w) (48)

∂q

∂w
=

σ∫

0

[
∂f1

∂w
(τ, w) + a

∂f2

∂w
(τ, w)− a

∂fav

∂w
(w)

]
dτ,

are periodic in t and bounded. Differentiating (46) with
respect to σ we obtain 13 :

dθr

dσ
=

dw

dσ
+ Kaδ

[
∂q

∂σ
+

∂q

∂w
· dw

dσ

]
.

and by substituting this into (40) and then using (46)
and (48) we obtain:

dw

dσ

[
1 + Kaδ

∂q

∂w

]
=−Kaδ

∂q

∂σ
+ Kaδ [f1(σ,w + Kaδq)

+af2(σ,w + Kaδq) + a2R
]

= Ka2δfav(w) + Ka3δR (49)
+Kaδ [f1(σ,w + Kaδq)− f1(σ,w)]
+Ka2δ [f2(σ,w + Kaδq)− f2(σ,w)] .

Note that by adjusting a and δ we can make
[
1 + Kaδ ∂q

∂w

]
=

1+O(aδ) > 0 on arbitrarily large compact sets |w| ≤ ∆

13 In the rest of the proof we suppress arguments of all func-
tions whenever they are clear.

and in such cases we can divide both sides of (49) by
this expression. Suppose that this is the case and note
that using the Mean Value Theorem [15, page 125], we
conclude that:

f1(σ,w + Kaδq)− f1(σ,w) = O(aδ)
f2(σ,w + Kaδq)− f2(σ,w) = O(aδ),

and we know that R = R(σ,w + Kaδq) = O(1). Hence,
for sufficiently small a and δ we can write (49) as follows:

dw

dσ
= Ka2δfav(w) + O(a3δ) + O(a2δ2) + O(a3δ2). (50)

Using the Lyapunov function V from (45) as a candidate
Lyapunov function for the system (50), we can easily
conclude that the reduced system in w coordinates is
SPA stable, uniformly in (a2, δ). Then, using (46) it is
immediate that the reduced system (40) in the original
coordinates θr is SPA stable, uniformly in (a2, δ).

Next we prove that the overall system (15) is SPA sta-
ble, uniformly in (a2, δ). We do that by showing ap-
propriate stability of the boundary layer system and
then use Lemma 1 in Appendix B. Introducing x̄

4
=

x̃ − l(θ∗ + θ̃(σ) + a · sin(σ)) − x∗, t′ = σ−σ0
ω , where σ0

is a fixed time instant in time scale σ, setting ω = 0 and
denoting θ1

4
= θ∗ + θ̃(σ0) + a · sin(σ0), the of boundary

layer corresponding to the overall system (15) satisfies,

dx̄
dt′

= f(x̄ + l(θ1), α(x̄ + l(θ1), θ1)). (51)

Assumption 2 guarantees that the above system is glob-
ally asymptotically stable, uniformly in θ1. Hence, us-
ing Lemma 1 in the Appendix B, the system (14) (when
b = a) with parameter ε is SPA stable uniformly in
(a2, δ) (with the time scale t), which completes the proof.

Sketch of proof of Proposition 1: Introducing the change
of coordinates θ̃ := w + aδq(σ,w, a) like in (46) with
(47), we can rewrite (27) in original time scale “t”:

ẇ = a2δ
K

2
Q′(w+θ∗)+(a2δ2+a3δ+a3δ2)∆3(w, x̄)+aδ∆̃2,

and ∆̃2 is obtained by substituting w + aδq instead of θ̃
in ∆2 in (28). Moreover, it is not hard to show that ∆3

is bounded and there exists γ̃ ∈ K∞ such that

∆̃2(x̄, θ) ≤ γθ
2(|x̄|),

on compact sets, uniformly in small a and δ. Using
the Lyapunov function V (w) = 1

2w2 and Assumption
4, we obtain that for any (∆, ν) and ω∗ there exist
a∗ and δ∗ such that for any a ∈ (0, a∗), δ ∈ (0, δ∗),

12



ω ∈ (0, ω∗) and max{|x̄|, |w|} ≤ ∆ we have that
|w| ≥ max{α−1

Q

(
4
aγθ

2(|x̄|)) , α−1
Q (4(δ + a)∆3)} implies

dV

dσ
≤ −K

4
a2δαQ(|w|).

Standard comparison lemmas for ISS [5, Lemma 3.4] im-
ply that an appropriate ISS bound holds for trajectories
of system (27) in w coordinates. But then this immedi-
ately implies that the conclusion of Proposition 1 holds
since |θ̃| ≤ |w|+ aδ|q|.

Sketch of proof of Proposition 2: From Assumptions 1
and 2 we conclude using results from [8] that there exists
a smooth Lyapunov function W such that for all x̄, θ̃ we
have:

α1(|x̄|) ≤ W (x̄, θ̃)≤ α2(|x̄|) (52)
∂W

∂x̄
(x̄, θ̃)f̃(x̄ + l̃(θ̃), θ̃)≤−α3(|x̄|), (53)

for some α1, α2, α3 ∈ K∞. We use the Lyapunov function
U(x̄, θ̃, σ) := W (x̄, θ̃ + a sin(σ)) as a candidate ISS Lya-
punov function for the system (26). Taking the deriva-
tive of W along solutions of (26) in time scale “σ = ωt”,
we obtain:

dU

dσ
=

1
ω

∂T W

∂x̄
f̃(x̄ + l̃(θ̃ + a sin(σ)), θ̃ + a sin(σ))

+
∂T W

∂x̄
∆1 +

∂W

∂θ̃

[
dθ̃

dσ
+ a cos(σ)

]
, (54)

and using the definition of ∆1 in (27) and the condition in
(53) we can see that for any a∗, δ∗ and ∆ > 0 there exist
L, c > 0 and γ ∈ K∞ such that for all max{|x̄|, |θ̃|} ≤ ∆,
a ∈ (0, a∗) and δ ∈ (0, δ∗) we have:

dU

dσ
≤ − 1

ω
α3(|x̄|) + a[c + Lα3(|x̄|) + γ(|θ̃|)].

Hence, we can see that on compact sets and for small ω
we have that |x̄| ≥ max{α−1

3 (4ωa(γ(|θ̃|))), α−1
3 (4ωac)}

implies
dU

dσ
≤ − 1

4ω
α3(|x̄|),

from which the conclusion of the proposition follows im-
mediately.

Sketch of proof of Theorem 2: It follows directly from
Propositions 1 and 2 and Theorem 2 in the Appendix B.

Proof of Theorem 3: The system (35) has 2 time scales:
fast dynamics x̃ and slow dynamics (θ̃, ξ̃) when ω is a
small positive constant. We next use the singular pertur-
bation method. To this end, we set ω = 0 and “freeze”

x̃ at its “equilibrium”, x̃ = l(θ∗ + θ̃ + a · sin(σ))− x∗ to
obtain the reduced system in variables (ξr, θr):

[
dθr

dσ
dξr

dσ

]
=

[
Kδξr

−δωL[ξr −Q(θ∗ + θr + a sin(σ))a sin(σ)]

]
.(55)

In the rest of the proof we use the same notation as in
the proof of Theorem 1. In particular, using (41) and
(44) we introduce the average system of (55):

[
dθav

dσ
dξav

dσ

]
=

[
Kδξav

δωL[−ξav + a2fav(θav)]

]
=: F (z, δ, a), (56)

where z := (θav ξav)T . First, we show that the following
quadratic function:

V (z) :=
1
2
zT

[
1 1

c

1
c

c2+1
c2

]
z =

1
2
zT Hz,

with c
4
=

ωL

K
, is a Lyapunov function for the average

system (56). It is obvious that V is positive definite and
radially unbounded since there exist α1, α2 > 0 such
that

α1 · |z|2 ≤ V (z) ≤ α2 · |z|2 ∀z. (57)

Taking derivative of V along solutions of (56), we can
write:

dV

dσ
=

∂V

∂z
F (z, a, δ) = zT HF (z, a, δ)

= Kδξav

(
θav +

1
c
ξav

)
+

ωLδ

(
1
c
θav +

c2 + 1
c2

ξav

)
(−ξav + a2fav(θav)). (58)

Moreover, using K = ωL

c and ωL

c2 = K
c , (58) becomes

∂V

∂z
F (z, a, δ) = Ka2δfav(θav)θav − ωLδξ2

av

+ωLa2δ

(
1 +

1
c2

)
ξavfav(θav).

(59)

Adding and subtracting δωL

2 · (a2
(
1 + 1

c2

)
fav(θav)

)2 to
(59) and using the completion of squares, we can write:

∂V

∂z
F (z, a, δ) ≤ Ka2δfav(θav)θav − ωL

2
δξ2

av

−ωLδ

2

(
ξav − a2

(
1 +

1
c2

)
fav(θav)

)2

+ O(δa4), (60)
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Since fav(θav)θav > 0 is negative definite (see Assump-
tion 3) and (57) holds, there exists a positive definite
function α3 : R≥0 → R≥0 such that for all a ∈ (0, 1) we
have:

∂V

∂z
· F (z, a, δ)≤−a2δα3(V ) + O(a4δ). (61)

The rest of the proof follows using averaging results in
[24] and Lemma 1 in the Appendix B (see [22] for more
details).

Sketch of proof of Theorem 4: In the new coordinate
x̃ = x − x∗, θ̃ = θ̂ − θ∗, ξ̃ = ξ and η̃ = η − y∗, the η̃-
subsystem in the average does not affect the sub-system
(θ̃, ξ̃), that is, the average system of the sub-system (θ̃, ξ̃)
in (36) is exactly the same as the average of the sub-
system (θ̃, ξ̃) in (32). Hence, we have a cascade of the
system (θ̃, ξ̃) and the system η̃. In Theorem 3 we proved
that the average of the sub-system (θ̃, ξ̃) is SPA stable
uniformly in (a2, δ). Moreover, it is obvious that the η̃
subsystem is ISS in y. Using the stability results for cas-
cade systems, we can conclude that the average system
(θ̃, ξ̃, η̃) is SPA stable, uniformly in (a2, δ). The proof is
then completed following exactly the same steps as in
the proof of Theorem 3.

Appendix B

In order to state Lemma 1, we consider the following
nonlinear system

ẋ = ε`f(ε`t,x, z, ε1, · · · , ε`−1)
ż = g(ε`t,x, z, ε1, · · · , ε`−1, ε`), (62)

where x ∈ Rn, z ∈ Rq and [ε1, ε2, · · · , ε`−1] ∈ R`−1. Let
σ = ε`t, in the new time “σ”,

∂x
∂σ

= f(σ,x, z, ε1, · · · , ε`−1)

ε`
∂z
∂σ

= g(σ,x, z, ε1, · · · , ε`−1, ε`), (63)

Let ε` = 0, the state vector z becomes instantaneous
and (63) takes the form

∂x
∂σ

= f(σ,x, zs, ε1, ε2, · · · , ε`−1)

0 = g(σ,x, zs, ε1, · · · , ε`−1, 0), (64)

where zs denotes a quasi-steady state for the fast state
vector z.

With zs = h(σ,x, ε1, · · · , ε`−1), the following reduced
system is obtained

∂x
∂σ

= f(σ,x,h(σ,x, ε1, · · · , ε`−1), ε1, · · · , ε`−1). (65)

Introducing y = z− h(σ,x, ε1, · · · , ε`−1), τ = σ−σ0
ε`

and
setting ε` = 0, the boundary layer satisfies

dy
dτ

= g(σ0,x,h(σ0,x, ε1, · · · , ε`−1) + y, ε1, · · · , ε`−1, 0).(66)

Lemma 1 Suppose the following conditions hold:

(1) The algebraic equation (64) possesses a unique root
zs = h(σ,x, ε1, . . . , ε`−1), where h and its partial
derivatives ∂h

∂x are locally Lipschitz, uniformly in σ
and small (ε1, . . . , ε`−1).

(2) The reduced system (65) with parameter (ε1, · · · , ε`−1),
is SPA stable, uniformly in ε1.

(3) The equilibrium y = 0 of the boundary layer sys-
tem in (66) is globally asymptotically stable, uni-
formly 14 in x, σ0 as well as ε1, ε2, · · · , ε`−1.

Then, the system (62) with parameter (ε1, · · · , ε`−1, ε`)
is SPA stable, uniformly in ε1 (with the time scale t).

Consider a connection of two parameterized time varying
systems (we refer to [20, Lemma A4][21, Theorem 5] for
the techniques that can be used to prove this result):

ẋ1 = f1(t, x1, x2, ε) (67)
ẋ2 = f2(t, x2, x1, ε), (68)

where x1 ∈ Rn1 , x2 ∈ Rn2 and ε ∈ Rl
>0 and we also

denote x := [xT
1 xT

2 ]T . Then, the following small gain
result holds:

Lemma 2 Suppose that there exist β1, β2 ∈ KL such
that for any strictly positive ∆1,∆2, ν1, ν2, s1, s2 with
∆i > νi > 0, i = 1, 2 and 0 < s1 < s2 there exist
ε∗ ∈ Rl

>0 and for εi ∈ (0, ε∗i ), i = 1, 2, . . . , l there exist
γ1
ε, γ2

ε ∈ K∞ such that max{|x1(t0)|, ||x2||} ≤ ∆1 im-
plies that solutions of the subsystem (67) satisfy

|x1(t)| ≤ max{β1(|x1(t0)|, t− t0), γ1
ε(||x2||), ν1},

for all t ≥ t0 ≥ 0 and max{|x2(t0)|, ||x1||} ≤ ∆2 implies
that solutions of the subsystem (68) satisfy

|x2(t)| ≤ max{β2(|x2(t0)|, (ε1 · · · εl)·(t−t0)), γ2
ε(||x1||), ν2},

for all t ≥ t0 ≥ 0 and, moreover, for all εi ∈
(0, ε∗i ), i = 1, 2, . . . , l the small gain conditions hold for
all s ∈ [s1, s2]:

γ1
ε ◦ γ2

ε(s) ≤ γ(s) < s γ2
ε ◦ γ1

ε(s) ≤ γ(s) < s, (69)

where γ ∈ K∞ is independent of ε. Then, the system
(67), (68) is SPA stable uniformly in ε. In other words,

14 Here, by uniform stability in (ε1, . . . , ε`−1) we mean that
the stability bounds are independent of all parameters, i.e.
we do not use Definition 1.
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there exists β ∈ KL such that for any (∆, ν) there exists
ε∗ ∈ Rl

>0 such that for all |x(t0)| ≤ ∆ and all εi ∈ (0, ε∗i )
the solutions of the system (67), (68) satisfy:

|x(t)| ≤ max {β (|x(t0)|, (ε1 · · · εl) · (t− t0)) , ν} ,

for all t ≥ t0 ≥ 0.

15


