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Abstract

This paper consists of two main parts. In the first part, we provide a framework for stabilization
of arbitrary (not necessarily compact) closed sets for sampled-data nonlinear differential inclusions
via their approximate discrete-time models. We generalize [19, Theorem 1] in several different direc-
tions: we consider stabilization of arbitrary closed sets, plants described as sampled-data differential
inclusions and arbitrary dynamic controllers in the form of difference inclusions. Our result does not
require the knowledge of a Lyapunov function for the approximate model, which is a standing as-
sumption in [21] and [19, Theorem 2]. We present checkable conditions that one can use to conclude
semi-global asymptotic (SPA) stability, or global exponential stability (GES), of the sampled-data
system via appropriate properties of its approximate discrete-time model.

In the second part, we present sufficient conditions for stability of parameterized difference in-
clusions that involve various summability criteria on trajectories of the system to conclude global
asymptotic stability (GAS), or GES, and they represent discrete-time counterparts of results given
in [32]. These summability criteria are not Lyapunov based and they are tailored to be used within
our above mentioned framework for stabilization of sampled-data differential inclusions via their ap-
proximate discrete-time models. We believe that these tools will be a useful addition to the toolbox
for controller design for sampled-data nonlinear systems via their approximate discrete-time models.

1 Introduction

Although most controllers are nowadays implemented digitally using sample and hold devices, sampled
data nonlinear control has received much less attention than continuous time nonlinear control. The
controller design problem for sampled-data systems can be carried out in three essentially different ways:

∗This work was partially supported by the Australian Research Council under the Australian Professorial Fellow and
Discovery Grant schemes and partly by EGIDE, France.
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(i) emulation (design continuous time controller and then discretize the controller); (ii) discrete-time
design (discretize the plant and design a discrete-time controller directly on the discrete time model);
(iii) sampled-data design (use the real model of the sampled-data system that includes the inter-sample
behavior to design the controller). For nonlinear systems, some results on emulation can be found in
[16], while we are not aware of any results on sampled data design for nonlinear systems (details on the
sampled data method for linear systems can be found in [4] and references cited therein).

For nonlinear plants, the discrete-time design is frustrated by the fact that it is typically not possible
to analytically find the exact discrete-time model of the plant and in such situation an approximate
discrete-time model is the only alternative to use for controller design. However, it was shown already
in [19] and later in [21] that there are situations where a controller stabilizes an approximate discrete-
time plant model for all small sampling periods but at the same destabilizes the exact discrete-time
plant model for all small sampling periods. This has lead to a range of different results that provide
sufficient conditions on the approximate model, controller and the continuous-time plant model that
guarantee stabilizing properties of controllers designed via approximate discrete-time plant models. Such
results have been proved for stabilization [19, 21], input-to-state stabilization [26], integral input-to-state
stabilization in [20] and observer design in [1]. Also, these results imply stability of the sampled-data
systems under mild conditions [18].

We note that this framework is prescriptive and not constructive. In other words, the results in
above cited references tell us what conditions the controller and approximate model need to satisfy for
the design to be successful but they do not tell us how to design such controllers. Hence, one needs to
develop tools that would guarantee the type of stability properties required by the framework. A range of
tools has been developed to aid the controller design within this framework: construction of appropriate
strict Lyapunov functions via change of supply rates techniques [15, 26, 27], stability of cascaded sys-
tems [23, 24] and Matrosov theorem [22]. These results were used, for instance, to construct controllers
based on approximate models using backstepping [25], optimization based stabilization [7], model pre-
dictive control [5], nonholonomic systems [13] and port controlled Hamiltonian systems [14]. Simulation
comparisons in these references invariably show that controllers designed within our framework perform
better than appropriate emulated controllers, see e.g. [25].

The purpose of this paper is twofold. First, we contribute novel results on the framework for sta-
bilization via approximate discrete-time models. In particular, our Theorem 1 is a generalization of
[19, Theorem 1] in several directions: we consider semi-global practical (SPA) stability of arbitrary (not
necessarily compact) sets, plants modelled as differential inclusions and arbitrary dynamic controllers
modelled as difference inclusions. Motivation for considering such general stability properties, classes of
plants and controllers is given in [21, 32]. Our Theorem 2 provides stronger conditions under which one
can conclude global exponential stability (GES) for the exact discrete-time model and we are not aware
of similar results even in the simpler setting of [19]. We emphasize that these results are different from
the main results in [21] that assume existence of an appropriate Lyapunov function for the approximate
model. Proofs in this paper are purely trajectory based and they do not need such Lyapunov functions.
Second, we provide a range stability analysis tools that involve summability type conditions on trajecto-
ries of the system to conclude the right type of stability properties for the approximate model in absence
of a Lyapunov function. We present results for global asymptotic stability (GAS) and GES of arbitrary
sets for families of difference inclusions. These results are discrete-time counterparts of continuous-time
results in [32], [28, Appendix B] and generalize the main results in [17] for systems described by contin-
uous difference equations. The main technical issues lay in stating appropriate (natural) definitions and
showing that they lead to the right type of stability properties required by the above design framework.
Moreover, some conditions for discrete-time systems are different when compared to their continuous-
time counterparts in [32]. We believe that these tools are a useful addition to the toolbox for controller
design via approximate discrete-time models and in our future work we will use them to construct con-
trollers for classes of nonlinear sampled-data systems. Finally, we note that our results can be adapted
to the case when the exact discrete time model of the plant is known. However, in such cases the proofs
are quite different (more straightforward) and can be carried out under different (weaker) assumptions
and are not reported here for space reasons.

The paper is organized as follows. Section 2 contains mathematical preliminaries and the description
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of the mathematical set-up that we use. Trajectory based results that relate stability properties of
sampled-data inclusions and stability properties of their approximate discrete time models are presented
in Section 3. Section 4 contains summability criteria for GAS and GES for parameterized difference
inclusions. In Section 5 we illustrate how results of Section 4 can be used to check stability of some
classes of systems via the method of “output injection”. All proofs are presented in Section 6 and
Conclusions are given in the last section.

2 Preliminaries

Sets of real and natural numbers are respectively denoted as R and N. A function γ : R≥0 → R≥0 is said
to be of class K if it is continuous, γ(0) = 0 and strictly increasing. γ is said to be of class K∞, denoted
as γ ∈ K∞, if γ ∈ K and it is unbounded. Class K∞ functions are globally invertible. A continuous
function β : R≥0 × R≥0 → R≥0 is said to be of class KL, denoted as β ∈ KL, if for each fixed t ≥ 0 we
have that β(·, t) ∈ K and for each fixed s ≥ 0 we have that limt→∞ β(s, t) = 0. For arbitrary positive
L, T we define:

`L,T :=
⌊

L

T

⌋
,

where for arbitrary x ∈ R we have that bxc := max{z ∈ N : z ≤ x}. Given a closed (not necessarily
compact) set A ⊂ Rn, we denote the distance of a point x ∈ Rn to the set as:

|x|A := inf
z∈A

|z − x| .

We often use the well known fact that |·|A is globally Lipschitz with the Lipschitz constant equal to one,
that is for all x, y ∈ Rn we have:

||x|A − |y|A| ≤ |x− y| .

We consider nonlinear control systems of the form

ẋp ∈ F (xp, u) , y ∈ H(xp) (1)

where xp ∈ Rnp , y ∈ Rp and u ∈ Rm. It is assumed that u(t) = const., ∀t ∈ [kT, (k + 1)T ) where T > 0
is the sampling period and k ∈ N. The set-valued map F (·, u) is assumed to have enough regularity to
guarantee existence of solutions:

Assumption 1 For each u ∈ Rm, the set-valued map F (·, u) satisfies the following basic conditions: 1)
it is upper semi-continuous, i.e., for each xp ∈ Rnp and each ε > 0 there exists δ > 0 such that, for all
ξ ∈ Rnp satisfying |ξ − xp| ≤ δ we have F (ξ, u) ⊆ F (xp, u) + εBnp , where Bnp denotes the closed unit
ball in Rnp , 2) for each xp ∈ Rnp the set F (xp, u) is nonempty, compact and convex. ¥

We will use S(xp, u) to denote the set of solutions to (1) starting at xp with constant input u. For a given
t > 0 and (xp, u) ∈ Rnp × Rm we use the following notation F e

t (xp, u) := {ξ ∈ Rn : ξ = φ(t, xp, u), φ ∈
S(xp, u)}.

The exact discrete-time model of the sampled-data system is given by:

x+
p ∈ F e

T (xp, u) , y ∈ H(xp) (2)

where F e
T (xp, u) is the set of values the solutions to (1) can take at time T when starting at xp and with

the constant input u applied. The parameter T > 0 represents the sampling period. We will assume that
for each fixed u and each initial condition xp there exists at least one solution to (1) for all t ∈ [0, T ],
where T is the sampling period, i.e. for each xp and u we have that F e

T (xp, u) is non-empty. We will
consider the case where the sampling period T can be adjusted to arbitrarily small values. Hence, (2)
represents a family of systems. We note that since F in (1) is in general nonlinear, it is not possible
to analytically determine F e

T in (2). Instead, we assume that the family of approximate discrete-time
models

x+
p ∈ F a

T (xp, u) , y ∈ H(xp) (3)
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which approximates the exact discrete-time model (2), is used in the control design. In particular, we
assume that a family of, possibly discontinuous, discrete-time controllers

x+
c ∈ GT (xc,H(xp)); u ∈ UT (xc,H(xp)) , (4)

where xc ∈ Rnc , has been designed to (approximately) asymptotically stabilize a nonempty closed set
A ⊂ Rn, where n := nc + np, for the family (3). Our object of study is the stability of the system
(3), (4) or (2), (4) with respect to a nonempty closed set A ⊂ Rn. To shorten notation, we introduce
x = (xT

p xT
c )T , HA(δ,∆) := {x ∈ Rn : δ ≤ |x|A ≤ ∆} and

Fa
T (x) :=

(
F a

T (xp, UT (xc,H(xp)))
GT (xc, H(xp))

)
, Fe

T (x) :=
(

F e
T (xp, UT (xc,H(xp)))

GT (xc,H(xp))

)
.

Then, we write
x+ ∈ F?

T (x) (5)

and denote as S?
T (x◦) the set of all solutions φ?

T (k, x◦) initialized at x◦. The symbol ? = e is used for
the exact closed loop (2), (4) and ? = a for the approximate closed loop (3), (4).

Remark 1 In general, it is possible to consider more complex classes of approximate discrete-time
models of the form x+ ∈ F a

T,h(x, u), where T is the sampling period and h is a modelling parameter
that can be used to reduce the mismatch between the approximate and exact models (usually, it is an
integration period of the numerical integration scheme). The case when T 6= h is useful in situations
when the structure of the underlying approximate model is not exploited in controller design, such as in
model predictive control. When T = h, then we write x+ ∈ F a

T,T (x, u) =: F a
T (x, u) and such situations

typically lead to approximate models with simpler structure that are amenable to constructive nonlinear
control techniques. Our stability results in the second part of the paper are tailored to such situations
and, hence, we concentrate only on the case T = h, i.e. we concentrate on the approximate models of
the form (3). For more details on the Lyapunov based approach to stability of the general case, see [21].

In the sequel, we need the following definition1:

Definition 1 [Uniform forward completeness] Consider the family of systems (5), where ? ∈ {a, e}.
The family of systems (5) is said to be uniformly forward complete if there exist strictly positive numbers
T ∗, c and σ1, σ2 ∈ K∞ such that for all T ∈ (0, T ∗) and x◦ ∈ Rn we have that all solutions φ?

T ∈ S?
T (x◦)

of the family (5) satisfy:

|φT (k, x◦)| ≤ σ1(|x◦|) + σ2(kT ) + c ∀k ≥ 0 . (6)

¥

Remark 2 Note that if (5) with ? = e is uniformly forward complete, then this rules out finite escape
times for the sampled-data system consisting of the plant (1) and the controller (4). The definition of
uniform forward completeness given above was first used in [24] to treat stability of time-varying discrete-
time parameterized cascaded systems. Lyapunov like sufficient conditions that guarantee uniform forward
completeness in the sense of Definition 1 can be found in [24].

3 Stabilization via approximate discrete-time models

In this section, we pose and answer the following question:

If there exists a (not necessarily compact) set A such that the system (3), (4) is asymp-
totically/exponentially stable with respect to A for all small T , then under which condi-
tions is the family of exact discrete-time models (2), (4) also (approximately) asymptoti-
cally/exponentially stable with respect to the set A for sufficiently small values T?

1This property is used in the proof of Proposition 3.
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The above question was answered in [19] for a less general set up and in [21] for the same set up like
in this paper but with the assumption that an appropriate family of strict Lyapunov functions can be
constructed for the family (3), (4). Constructing such families of Lyapunov functions is in general hard
and the question arises whether one can answer the above question without knowledge of appropriate
Lyapunov functions for (3), (4). We present several such non-Lyapunov based results in this section.

3.1 SPA stability via approximate discrete-time models

In order to state the main result of this subsection we first need to define an appropriate stability
property and a consistency property that quantifies the mismatch between the approximate and exact
closed loop systems.

Definition 2 [SPA stability] Consider the family of systems (5), where ? ∈ {a, e}. Let a nonempty
closed set A ⊂ Rn be given. The family of systems (5) is said to be (β,A)-semi-globally practically
asymptotically (SPA) stable if the system is uniformly forward complete and there exists β ∈ KL such
that for any pair of strictly positive numbers (∆, ν) there exists T ∗ > 0 such that for all T ∈ (0, T ∗), all
x◦ ∈ HA(0, ∆) and all solutions φ?

T (·, x◦) of the family (5) we have:

|φ?
T (k, x◦)|A ≤ β(|x◦|A , kT ) + ν, ∀k ∈ N . (7)

Moreover, if the system is forward complete and there exists T ∗ > 0 such that for all T ∈ (0, T ∗) we
have that (7) holds for all x◦ ∈ Rn and with ν = 0, then we say that the system (5) is (β, A)-globally
asymptotically stable (GAS). ¥

The following definition of multi-step consistency is a generalization to differential inclusions of the
multi-step consistency property in [19] that was given for differential equations only.

Definition 3 [Multi-step upper consistency] The family Fa
T is said to be A-multi-step upper semi-

consistent with Fe
T if, for each triple of strictly positive real numbers (L, η, ∆) there exist a function

α : R≥0 × R≥0 → R≥0 ∪ {∞} and T ∗ > 0 such that, for all T ∈ (0, T ∗) we have

{x, y ∈ HA(0,∆) , |x− y| ≤ δ} =⇒ Fe
T (x) ⊆ Fa

T (y) + α(δ, T )Bn (8)

and2

k ∈ [0, `L,T ] =⇒ αk(0, T ) :=

k︷ ︸︸ ︷
α (· · ·α (α (0, T ) , T ) · · · , T ) ≤ η . (9)

¥

In the sequel we may refer to this property simply as “multi-step consistency”.

Remark 3 We present sufficient conditions for multi-step upper semi-consistency in Subsection 3.3.
We emphasize that this property can be checked without knowing the exact discrete-time model. The
notion of consistency is adapted from numerical analysis literature [30, 33] and was already used in
[19, 21].

With these definitions, we can state the main result of this subsection:

Theorem 1 Let β ∈ KL and let a nonempty set A ⊂ Rn be given. If the following holds:

1. Fa
T us multi-step upper semi-consistent with Fe

T ;

2. The approximate closed loop system (3),(4) is (β,A)-SPA stable (or (β,A)-GAS)

then, the family of exact closed loop systems (4), (2) is (β,A)-SPA stable.
2Note that, for k = 0, we define α0(0, T ) := 0.
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Remark 4 We note that stability of the exact discrete-time model implies under mild and reasonable
assumptions also the stability of the sampled-data system (including the inter-sample behaviour), see e.g.
[18].

Remark 5 Theorem 1 presents stability conditions that can be verified without the knowledge of the
exact discrete-time model. Indeed, we already noted that the consistency property can be checked without
knowing the exact discrete-time model of the system (item 1). Hence, we only need to verify an appro-
priate stability of the approximate model (item 2) to conclude a corresponding stability property of the
exact discrete-time system. Note that in general stability for the exact closed loop can be guaranteed only
for sufficiently small sampling periods T .

Remark 6 Several examples in [19] and [21] illustrate that if the item 1 in Theorem 1 does not hold while
the item 2 holds, it may happen that the exact discrete-time model can not be stabilized by sufficiently
reducing T . Also, it is trivial to see that we do need the item 2 to state the result. Hence, while our
conditions are only sufficient, they are tight since if one of them does not hold there are examples for
which the conclusion does not hold.

Remark 7 The paper [21] presents Lyapunov conditions that can be used to verify SPA stability (or
GAS) of arbitrary sets for parameterized inclusions of the form (5). In Section 4, we present new non-
Lyapunov results that use different types of summability conditions to conclude GAS in the sense of
Definition 2. These results constitute a toolbox for controller design for sampled-data nonlinear systems
via their approximate discrete-time models.

Remark 8 Theorem 1 generalizes [19, Theorem 1] in several different directions: it covers differential
inclusions, it is given for stability with respect to arbitrary sets and the controllers are allowed to be
dynamic. We note that Theorem 1 differs from results presented in [21] because we do not use a family of
Lyapunov functions for the approximate model to state the result. In particular, results in [21] generalize
[19, Theorem 2] whereas Theorem 1 generalizes [19, Theorem 1].

Remark 9 We note that Lyapunov based result in [21] and [19, Theorem 2] use a different notion of
the so-called one-step consistency. It was shown in [19] that one-step consistency and an appropriate
local Lipschitz condition of (3), (4) imply multi-step consistency. However, it was shown that the two
consistency properties are genuinely different and without some extra conditions neither implies another.

3.2 GES via approximate discrete-time models

In some cases, it is possible to establish stronger global exponential stability for the family of approximate
models and it is natural to look for appropriate consistency conditions that will guarantee that the family
of exact closed loops will also be globally exponentially stable. We summarize such a result (Theorem
2) in this section. We use the following definitions:

Definition 4 [GES stability] Consider the family of systems (5), where ? ∈ {a, e}. Let a nonempty
closed set A ⊂ Rn be given. The family of systems (5) is said to be (K,λ,A)- globally exponentially
stable (GES) if the system is forward complete and there exist positive numbers K, λ and T ∗ such that
for all T ∈ (0, T ∗), all x◦ ∈ Rn and all solutions φ?

T (·, x◦) of the family (5) we have:

|φ?
T (k, x◦)|A ≤ K exp(−λkT ) |x◦|A , ∀k ∈ N . (10)

¥

Definition 5 [Linear gain multi-step upper consistency] The family Fa
T is said to be linear gain

A-multi-step upper semi-consistent with Fe
T if for each pair of positive numbers (L, η) there exists T ∗ > 0

and a function α : R≥0 ×R≥0 ×R≥0 → R≥0 ∪ {∞} such that, for all T ∈ (0, T ∗) and all ∆ > 0 we have

{x, y ∈ HA(0, ∆) , |x− y| ≤ δ} =⇒ Fe
T (x) ⊆ Fa

T (y) + α(δ, T, ∆)Bn (11)
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and3

kT ≤ L =⇒ αk(0, T, ∆) :=

k︷ ︸︸ ︷
α (· · ·α (α (0, T, ∆) , T, ∆) · · · , T, ∆) ≤ η ·∆ . (12)

¥

The main result of this section is stated next.

Theorem 2 Let positive K, λ and a nonempty set A ⊂ Rn be given. If the following holds:

1. Fa
T is linear-gain A-multi-step upper semi-consistent with Fe

T ;

2. The approximate closed loop system (3),(4) is (K,λ,A)-GES.

Then, there exist positive K1, λ1 such that the family of exact closed loop systems (4), (2) is (K1, λ1,A)-
GES. ¥

Remark 10 Theorem 2 can be used to conclude stronger stability property (GES) of the exact discrete-
time model if the approximate discrete-time model is GES and a stronger linear gain multi-step upper
semi-consistency holds.

Remark 11 We are not aware whether Theorem 2 has been proved even in the case of sampled-data
differential equations, static state feedback controllers and stability of the origin.

3.3 Sufficient conditions for multi-step consistency

In this subsection we present several different conditions to guarantee the consistency properties that
we used in Theorems 1 and 2. We emphasize that all these conditions can be checked without knowing
the exact discrete-time model of the system. The proofs are appropriate generalizations of proofs in [19]
that were given only for differential equations. First, we present sufficient conditions for the consistency
property needed in Theorem 1.

Proposition 1 If, for each ∆ > 0, there exist K > 0, ρ ∈ K∞ and T ∗ > 0 such that for all T ∈ (0, T ∗)
and all x, y ∈ HA(0,∆) we have

Fe
T (x) ⊆ Fa

T (y) + [(1 + KT ) |x− y|+ Tρ(T )]Bn (13)

then Fa
T is A-multi-step upper semi-consistent with Fe

T . ¥

Proof of Proposition 1: Let (L, η, ∆) be given. From the assumption of the lemma, let ∆ generate
K > 0, ρ ∈ K∞ and T ∗1 > 0. Define

α(δ, T ) := (1 + KT )δ + Tρ(T ); T ∗ := min
{

T ∗1 , ρ−1

(
ηK

exp(KL)− 1

)}
. (14)

With these definitions, the condition (8) is satisfied. Also note that for all k such that kT ≤ L we have:

αk(0, T ) = Tρ(T )
k−1∑

j=0

(1+KT )j =
ρ(T )
K

[
(1 + KT )k − 1

] ≤ ρ(T )
K

[exp(KTk)− 1] ≤ ρ(T )
K

[exp(KL)− 1]

(15)
and so (9) is satisfied. ¥

3We define α0(0, T, ∆) := 0.
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Remark 12 It should be noted that one can state sufficient conditions for multi-step upper semi-
consistency in terms of another (one step) consistency condition that characterizes the mismatch be-
tween the open loop exact F e

T (x, u) and approximate F a
T (x, u) plant models, a Lipschitz property on F a

T

and uniform boundedness of the control law (4). Such conditions can be found in [19] and [21] and are
omitted for space reasons.

Next, we present sufficient conditions for the consistency property used in Theorem 2.

Proposition 2 If there exist positive numbers K and T ∗ and ρ ∈ K such that, for all T ∈ (0, T ∗) and
all x, y ∈ Rn we have

Fe
T (x) ⊆ Fa

T (y) + [(1 + KT )|x− y|+ Tρ(T )max{|x|A, |y|A}]Bn , (16)

then Fa
T is linear-gain multi-step upper semi-consistent with Fe

T . ¥

Proof of Proposition 2: Let (L, η) be given. Let K > 0, ρ ∈ K∞ and T ∗1 > 0 come from the conditions
in the lemma. Define

α(δ, T, ∆) := (1 + KT )δ + Tρ(T )∆; T ∗ := min
{

T ∗1 , ρ−1

(
ηK

exp(KL)− 1

)}
. (17)

With these definitions, the condition (8) is satisfied. Also note that for all k such that kT ≤ L we have:

αk(0, T,∆) = Tρ(T )∆
k−1∑

j=0

(1 + KT )j =
ρ(T )∆

K

[
(1 + KT )k − 1

] ≤ ρ(T )∆
K

[exp(KTk)− 1] ≤

ρ(T )∆
K

[exp(KL)− 1] ≤ η ·∆ (18)

and so (12) is satisfied. ¥

4 Summability conditions for stability

In this section, we consider stability properties of the family of parameterized discrete-time inclusions:

x+ ∈ FT (x) . (19)

We present summability type conditions that can be used to verify that a parameterized family of differ-
ence inclusions is GAS (Theorem 3) or GES (Theorem 4). These results are discrete-time counterparts
of results in [32] and are tailored carefully to be used within the framework that Theorems 1 and 2
provide for controller design via approximate discrete-time models. Results of this section are useful in
situations when one can not find a strict Lyapunov function for the family of approximate closed-loop
systems, i.e. when one can not use results from [21] –this is a common situation, for instance, in analysis
of adaptive control systems, see [28] for examples in continuous time. We consider only GAS and GES
for space reasons but appropriate versions of results that guarantee SPA stability can be stated in a
similar manner.

4.1 Summability conditions for GAS

All of the below definitions are stated for the system (19).

Definition 6 The closed set A is globally stable (GS) if the system (19) is uniformly forward complete
and there exist ρ ∈ K∞ and T ∗ > 0 such that for all x◦ ∈ Rn, T ∈ (0, T ∗) and φT ∈ ST (x◦) we have:

|φT (k, x◦)|A ≤ ρ(|x◦|A) ∀k ≥ 0 . (20)

The set A is GS with linear gain if ρ is of the form ρ(s) = ρ̄ · s for some ρ̄ > 0. ¥
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Next, we state a definition of GAS that is equivalent to Definition 2 but that is easier to use in the
proofs.

Definition 7 The closed set A is globally asymptotically stable (GAS) if it is GS and there exists T ∗ > 0
such that for any r > 0, ε > 0 there exists τ > 0 such that for all x◦ ∈ Rn, T ∈ (0, T ∗) and φT ∈ ST (x◦)
we have

|x◦|A ≤ r, k ≥ `τ,T =⇒ |φT (k, x◦)|A ≤ ε . (21)

¥

Remark 13 Using similar arguments to [12, Proposition 2.5] it can be shown that GAS implies existence
of β ∈ KL and T ∗ > 0 such that for all T ∈ (0, T ∗), all x◦ and all φT ∈ ST (x◦) we have:

|φT (k, x◦)|A ≤ β(|x◦|A , kT ) ∀k ≥ 0 .

Definition 8 The closed set A is said to be globally sliding time stable (GSTS) if the system (19) is
uniformly forward complete and there exist class K∞ functions τ(·) and ρ(·) and T ∗ > 0 such that for
all x◦ ∈ Rn, T ∈ (0, T ∗) and φT ∈ ST (x◦) we have

τ := τ(r), k ∈ [0, `τ,T ], |x◦|A ≤ r =⇒ |φT (k, x◦)|A ≤ ρ(r) . (22)

¥

Proposition 3 Suppose that:

1. The closed set A is compact.

2. For every ∆ > 0, there exist M > 0 and T ∗ > 0 such that for all T ∈ (0, T ∗) we have
supx∈HA(0,∆),w∈FT (x) |w − x| ≤ TM .

Then, the set A is GSTS for the system (19) if and only if the system is uniformly forward complete. ¥

The main result of this subsection is presented next.

Theorem 3 For the system (19), the following statements are equivalent:

1. The set A is GAS.

2. (a) The set A is GSTS.

(b) There exist α ∈ K, γ ∈ K∞ and T ∗ > 0 such that for all T ∈ (0, T ∗), x◦ ∈ Rn and all
φT ∈ ST (x◦) we have:

T

∞∑

k=0

α (|φT (k, x◦)|A) ≤ γ(|x◦|A) (23)

3. (a) The set A is GS.

(b) There exists T ∗ > 0 such that for all T ∈ (0, T ∗) the following holds: for any 0 < δ ≤ ∆ there
exists a continuous function ωδ,∆ : Rn → R≥0 and strictly positive ωm, γ > 0 such that

i. for any T ∈ (0, T ∗) and x ∈ HA(δ,∆) we have:

ωδ,∆(x) ≥ ωm . (24)

ii. for all T ∈ (0, T ∗), x◦ ∈ HA(δ,∆), φT ∈ ST (x◦) and all τ > 0

T

`τ,T∑

k=0

ωδ,∆(φT (k, x◦)) ≤ γ . (25)
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¥

Remark 14 We note that Theorem 3 can be used to conclude GAS in cases when it is not easy to
find a strict Lyapunov function. Such situations arise when the first difference of a Lyapunov function
candidate is negative semi-definite instead of negative definite. Since such situations are quite common,
Theorem 3 is an important tool in establishing stability properties of the inclusion (19). ¥

Remark 15 It is instructive to compare and discuss the conditions 2 and 3 in Theorem 3. First, note
that the condition 2(a) is weaker than the condition 3(a) but at the same time the condition 2(b) is
stronger than the condition 3(b). Also, it is worthwhile to point out that if α ∈ K∞ in the condition 2(b),
then we can relax the condition 2(a) by requiring only uniform forward completeness instead of GSTS.

Theorem 3 can be combined with Theorem 1 to conclude SPA stability of the exact discrete time
model of the system via its approximate model. Indeed, we can state:

Corollary 1 Let a nonempty set A ⊂ Rn be given. If the following holds:

1. Fa
T is multi-step upper semi-consistent with Fe

T ;

2. One of the items in Theorem 3 holds for the approximate closed loop system (3),(4).

Then, there exists β ∈ KL such that the family of exact closed loop systems (2), (4) is (β,A)-SPA stable.
¥

Remark 16 We note that Theorems 3 and 4 are tailored for situations when the exact discrete time
model of the plant is not known and the analysis and controller design are carried out via an approximate
discrete time model. On the other hand, similar results can be proved for the non-parameterized difference
inclusions of the form:

x+ ∈ F(x) ,

which is useful in (rare) situations when the exact discrete-time model of the system is known to the
designer. However, in this case the assumptions can be relaxed and proofs greatly simplified. Since
differences between these two cases are substantial we will report these results in our future work. ¥

Next, we present a result that can be used to check GAS via Lyapunov like functions.

Proposition 4 Suppose for the system (19) that the set A is GS. The set A is GAS if there exists
T ∗ > 0 such that for T ∈ (0, T ∗) there exists a family of functions VT : Rn → R, a function κ : Rn → R
and for each positive δ,∆ satisfying 0 < δ < ∆, there exist positive real numbers ψ1, ψ2, ωm and a
continuous function ωδ,∆ : Rn → R such that:

1. for all x ∈ HA(δ,∆) we have ωδ,∆(x) ≥ ωm;

2. for all x ∈ HA(0, ∆) and T ∈ (0, T ∗) we have:

(a)

max

{∣∣∣∣∣ sup
w∈FT (x)

VT (w)

∣∣∣∣∣ , |VT (x)|
}
≤ ψ1 ;

(b)
supw∈FT (x) VT (w)− VT (x)

T
≤ −ωδ,∆(x) + κ(x) ;

(c) for each τ > 0 we have:

T

`τ,T∑

k=0

κ(φT (k, x)) ≤ ψ2 .

10



¥

Remark 17 Note that Proposition 4 does not require any continuity properties of VT , which was needed
to prove its continuous-time counterpart (c.f. [32, Lemma 2]). Also, the function κ does not need to be
continuous which was required in [32, Lemma 2]. On the other hand, we still require continuity of the
function ωδ,∆, which was needed in the proof of Theorem 3. ¥

Remark 18 We note that the integral lemmas for continuous time systems were used in [32] to establish
a generalization of the Matrosov theorem. In a similar fashion, Theorem 3 could be used to prove a
generalized Matrosov theorem for parameterized difference inclusions. However, we do not present such
a result since a generalized Matrosov theorem was investigated in detail in [22]. ¥

4.2 Summability conditions for GES

We present now a result that uses summability type conditions to conclude global exponential stability of
(19). This result can be used in conjunction with Theorem 2 to conclude GES of the exact discrete-time
model via an approximate discrete-time model.

Definition 9 The closed set A is said to be globally fixed time stable (GFTS) with linear gain if the
system (19) is forward complete and there exist ρ̄ > 0, τ > 0 and T ∗ > 0 such that for all x◦ ∈ Rn,
T ∈ (0, T ∗) and φT ∈ ST (x◦) we have

k ∈ [0, `τ,T ] =⇒ |φT (k, x◦)|A ≤ ρ̄ |x◦|A . (26)

¥

Definition 10 The system (19) has the unboundedness observability property through |·|A if the following
holds: if there exist τ > 0, x◦ ∈ Rn and φT ∈ ST (x◦) such that

lim
k→`τ,T ,T→0

|φT (k, x◦)| = ∞ (27)

then, the following holds:
lim

k→`τ,T ,T→0
|φT (k, x◦)|A = ∞ . (28)

¥

Sufficient conditions for GFTS are presented next:

Proposition 5 Suppose that: (i) the system (19) has the unboundedness observability property through
|·|A; (ii) there exist strictly positive numbers c, T ∗ such that for all T ∈ (0, T ∗) and x ∈ Rn we have:

supw∈FT (x) |w|A − |x|A
T

≤ c |x|A . (29)

Then, the set A is GFTS with linear gain. ¥

The main result of this subsection is given below. It provides summability type conditions that
guarantee GES of arbitrary sets for parameterized inclusions of the form (19).

Theorem 4 For the system (19), the following statements are equivalent:

1. The set A is GES.

2. (a) The set A is GFTS with linear gain.

11



(b) There exist strictly positive real numbers c, p and T ∗ such that for all x◦ ∈ Rn, T ∈ (0, T ∗)
and φT ∈ ST (x◦) we have:

T

∞∑

k=0

|φT (k, x◦)|pA ≤ c |x◦|pA . (30)

¥

We can combine results of Theorems 2 and 4 to conclude GES of the exact discrete-time model via an
approximate model that is consistent with exact:

Corollary 2 Let a nonempty set A ⊂ Rn be given. If the following holds:

1. Fa
T is linear gain A-multi-step upper semi-consistent with Fe

T ;

2. One of the items in Theorem 4 holds for the approximate closed loop system (3),(4).

Then, there exists K,λ > 0 such that the family of exact closed-loop systems (2), (4) is (K, λ,A)-GES.
¥

Sufficient conditions for GES via Lyapunov like functions are given below:

Proposition 6 Suppose for the system (19) that the set A is GS with linear gain. The set A is GES if
there exists T ∗ > 0 such that for T ∈ (0, T ∗) there exists a family of functions VT : Rn → R, a function
κ : Rn → R and positive real numbers ψ1, ψ2, ψ3 such that

1. for all x ∈ Rn and T ∈ (0, T ∗):

max

{∣∣∣∣∣ sup
w∈FT (x)

VT (w)

∣∣∣∣∣ , |VT (x)|
}
≤ ψ1 |x|pA ;

2. for all x ∈ Rn and T ∈ (0, T ∗):

supw∈FT (x) VT (w)− VT (x)
T

≤ −ψ2 |x|pA + κ(x) ;

3. for each τ > 0, T ∈ (0, T ∗), x◦ ∈ Rn and φT ∈ ST (x◦) we have:

T

`τ,T∑

k=0

κ(φT (k, x◦)) ≤ ψ3 |x◦|pA .

¥

5 Results for systems under output injection

In nonlinear stability analysis we often analyze stability properties of a system via stability properties of
another auxiliary system that is easier to analyze (e.g. known to be stable). In particular, summability
based stability results of Theorems 3 and 4 can be used in the following manner. Suppose that we want
to analyze stability properties of the system (19) and it is known that a set A is GS for this system.
Suppose that there exists a continuous function K : Rn → R≥0 is such that for all x ∈ Rn and all
φT ∈ ST (x) we have that the function K(φT (k, x)) is summable in an appropriate sense (Definition 11)
and, moreover, for the inclusion

x+ ∈ F̃T (x) , (31)
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with
FT (x) ⊆ F̃T (x) + TK(x)B̄n ∀x ∈ Rn , (32)

we have that the set A is GAS. Then, we can conclude via Theorem 3 that the set A is GAS for the
system (19). Similar results can be stated for GES and they are related to results on stability under
output injection (see [32, Section 6]). In particular, we use the following definition of summability for
the function K(·).

Definition 11 The continuous function K : Rn → R≥0 is said to be weakly uniformly summable for
the system (19) if there exists T ∗ > 0 for each ε > 0 there exists a number β > 0 such that for all
T ∈ (0, T ∗), x ∈ Rn, all φT ∈ ST (x), τ > 0 we have

T

`τ,T∑

k=0

K(φT (k, x)) ≤ β + εT `τ,T (33)

¥

Checkable sufficient conditions for weak uniform summability are presented next.

Proposition 7 Suppose that the set A is GS for the inclusion (19). If there exist T ∗ > 0, a continuous
function h : Rn → Rm, nondecreasing functions κ, k1, k2 : R≥0 → R≥0 a continuous positive definite
function γ : R≥0 → R≥0 and k ∈ K∞ such that for all T ∈ (0, T ∗), x ∈ Rn, φT ∈ ST (x) we have:

1. T
∑∞

k=0 γ(|h(φT (k, x))|) ≤ κ(|x|A);

2. K(x) ≤ k1(|x|A) · k(|h(x)|);
3. |h(x)| ≤ k2(|x|A);

then, the function K(·) is weakly uniformly summable for the inclusion (19). ¥

Next, we state the main result of this section:

Proposition 8 (GAS under output injection) Suppose that the following conditions hold:

1. The set A is GS for the system (19);

2. There exists T ? > 0 such that for all T ∈ (0, T ?) we have FT (x) ⊆ F̃T (x) + TK(x)B̄n;

3. There exists T ∗ and for T ∈ (0, T ∗) there exists a family of functions VT : Rn → R≥0, α1, α2 ∈ K∞,
a positive definite function α3 : R≥0 → R≥0 such that for all x ∈ Rn, T ∈ (0, T ∗) we have:

α1(|x|A) ≤ VT (x) ≤ α1(|x|A) (34)
supw∈F̃T (x) VT (w)− VT (x)

T
≤ −α3(|x|A) (35)

4. For any ∆ > 0 there exist T ∗, L > 0 such that for all x, y ∈ HA(0,∆), T ∈ (0, T ∗) we have

|VT (x)− VT (y)| ≤ L |x− y| (36)

5. The function K(·) is uniformly weakly summable for the system (19).

Then, the set A is GAS for the system (19). ¥

Remark 19 One can state a similar result for GES via output injection but we do not include it for
space reasons. ¥
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6 Proofs of main results

To prove Theorem 1, we first need to prove the following:

Lemma 1 If Fa
T is multi-step upper semi-consistent with Fe

T , then for each strictly positive triple
(L, η, ∆) there exist T ∗ > 0 such that if the solutions of the approximate closed-loop system (3), (4)
satisfy

φa
T (k, ξ) ∈ HA(0, ∆) ∀k ∈ [0, `L,T ] , T ∈ (0, T ∗), (37)

then for any solution φe
T of the exact closed-loop system (4), (2) there exists a solution φa

T satisfying
(37) such that

|φe
T (k, ξ)− φa

T (k, ξ)| ≤ η ∀k ∈ [0, `L,T ] . (38)

Proof of Lemma 1: Let (L, η, ∆) be given. Define ∆1 := ∆ + η. Since Fa
T is multi-step upper semi-

consistent with Fe
T , there exist a function α(·, ·) and a strictly positive real number T ∗ such that (8) and

(9) are satisfied for the triple (L, η, ∆1). We now prove the result by induction. First for k = 0 we have
|φe

T (0, ξ) − φa
T (0, ξ)| = |ξ − ξ| = 0 = α0(0, T ) ≤ η. Next, suppose that for every φe

T (k, ξ) there exists
φa

T (k, ξ) such that |φe
T (k, ξ)− φa

T (k, ξ)| ≤ αk(0, T ) ≤ η and k + 1 ∈ [0, `L,T ]. Since φa
T (k, ξ) ∈ HA(0, ∆),

it follows from the definition of ∆1 that all solutions of exact and approximate closed loops satisfy
φa

T (k, ξ), φe
T (k, ξ) ∈ HA(0, ∆1). It then follows from (8) that for any solution φe

T (k + 1, ξ) there exists
φa

T (k + 1, ξ) such that |φe
T (k + 1, ξ)−φa

T (k + 1, ξ)| ≤ α(αk(0, T ), T ) = αk+1(0, T ). Since k + 1 ∈ [0, `L,T ]
it follows from (9) that αk+1(0, T ) ≤ η. ¥
Proof of Theorem 1: Let (∆, ν) be given. Let β come from the item 2 of the theorem. Let η > 0 and
ε ∈ (0, 1) be such that4:

β(2η + εν, 0) + 2η + εν ≤ ν (39)
2η + εν ≤ ∆ . (40)

Let L > 1 be such that
β(∆, t) ≤ η ∀t ≥ L− 1 . (41)

Let
∆1 := β(∆, 0) + ν . (42)

Let (L, η, ∆1) generate T ∗1 > 0 via the item 1 of the the theorem and let (∆1, εν) generate T ∗2 > 0 via
the item 2. Let

T ∗ := min{T ∗1 , T ∗2 , 1} (43)

and T ∈ (0, T ∗). From the item 2 and the choice of T , we have that:

ξ ∈ HA(0,∆) =⇒ φa
T (k, ξ) ∈ HA(0,∆1) ∀k ∈ N . (44)

Using the item 1 of the theorem and Lemma 1 we have that for all ξ ∈ HA(0, ∆), T ∈ (0, T ∗) and any
solution φe

T (k, ξ) there exists a solution φa
T (k, ξ) such that for all k with k ∈ [0, `L,T ] we have:

|φe
T (k, ξ)− φa

T (k, ξ)| ≤ η . (45)

Thus, for any such φe
T (k, ξ) there exists φa

T (k, ξ) such that

|φe
T (k, ξ)|A ≤ |φa

T (k, ξ)|A + |φe
T (k, ξ)− φa

T (k, ξ)|
≤ β (|ξ|A , kT ) + εν + η ∀k ∈ [0, `L,T ] . (46)

Since (39) implies that εν + η < ν, we have that the desired bound (7) holds for all k such that
k ∈ [0, `L,T ]. Now we need to prove that the desired bound holds for all k ≥ 0. Then, since T < T ∗ ≤ 1,
we can write:

`L,T T > L− T > L− 1 . (47)

4Since β(s, 0) ∈ K, it is always possible to find such numbers.
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Define ki := i · `L,T for i = 1, 2, . . .. Thus, using the definition of L, η and ε, we get from (40) that for
all ξ ∈ HA(0,∆) we have:

|φe
T (k1, ξ)|A ≤ β(∆, L− 1) + εν + η ≤ 2η + εν ≤ ∆ . (48)

Now consider those k such that k ∈ [k1, k2]. We have, using time-invariance, (45), (48) and the fact that
φe

T (k1, ξ) ∈ HA(0, ∆), that for each φe
T there exists φa

T such that

|φe
T (k, ξ)|A = |φe

T (k − k1, φ
e
T (k1, ξ))|A

≤ |φa
T (k − k1, φ

e
T (k1, ξ))|A + |φe

T (k − k1, φ
e
T (k1, ξ))− φa

T (k − k1, φ
e
T (k1, ξ))|

≤ β(2η + εν, (k − k1)T ) + εν + η

(49)

from which it follows (using (39)) that for all k ∈ [k1, k2],

|φe
T (k, ξ)|A ≤ β(2η + εν, 0) + εν + η < ν (50)

and, using the definition of ki and (40) we have that

|φe
T (k2, ξ)|A ≤ β(2η + εν, L− 1) + εν + η ≤ 2η + εν ≤ ∆ . (51)

The result then follows by induction. ¥
In terms of trajectory error over “continuous-time” intervals with length of order one, linear gain

A-multi-step consistency gives the following:

Lemma 2 Suppose that Fa
T is linear-gain multi-step consistent with Fe

T and there exist positive T ∗1 , B
such that that for each L > 0 and for all T ∈ (0, T ∗1 ) all solutions of the approximate closed loop satisfy

|φa
T (k, ξ)|A ≤ B · |ξ|A ∀k ∈ [0, `L,T ]. (52)

Then, for each strictly positive pair (L, η) there exists T ∗ > 0 such that for all T ∈ (0, T ∗) and for any
solution of the exact closed loop (4), (2), there exists a solution of the approximate closed loop (4), (3)
such that

|φe
T (k, ξ)− φa

T (k, ξ)| ≤ η · |ξ|A ∀k ∈ [0, `L,T ] . (53)

¥

Proof of Lemma 2: Let (L, η) be given. Let L, B and T ∗1 be such that (52) holds. Let B1 := B + 1
and η1 := 1

B1
min{η, 1}. Let (L, η1) generate T ∗2 > 0 and α(·, ·, ·) via the linear multi-step upper semi-

consistency. Let T ∗ := min{T ∗1 , T ∗2 } and T ∈ (0, T ∗) and define ∆ := B1|ξ|A. The proof is completed by
induction. First we have |φe

T (0, ξ)− φa
T (0, ξ)| = |ξ − ξ| = 0 = α0(0, T, ∆) ≤ η1∆ = η1 ·B1 · |ξ|A ≤ η |ξ|A

(which follows from the definition of ∆ and η1). Next, suppose that for every φe
T (k, ξ) there exists φa

T (k, ξ)
such that |φe

T (k, ξ)− φa
T (k, ξ)| ≤ αk(0, T, ∆) ≤ η1 ·∆ and k + 1 ∈ [0, `L,T ]. Since |φa

T (k, ξ)| ≤ B |ξ|A by
assumption, it follows from the definition of B1 and η1 ≤ 1 that all solutions of exact and approximate
closed loops satisfy max{|φa

T (k, ξ)|A, |φe
T (k, ξ)|A} ≤ B1 |ξ|A. It then follows from (11) that for any

solution φe
T (k+1, ξ) there exists φa

T (k+1, ξ) such that |φe
T (k+1, ξ)−φa

T (k+1, ξ)| ≤ α(αk(0, T, ∆), T,∆) =
αk+1(0, T,∆). Since k+1 ∈ [0, `L,T ] it follows from (12) that αk+1(0, T, ∆) ≤ η1∆ = η1 ·B1|ξ|A ≤ η|ξ|A.

¥
Proof of Theorem 2: Let c ∈ (0, 1) and δ ∈ (0, c) be arbitrary. Let K, λ, T ∗1 come from the item
2. Let L := 1

λ ln
(

K
c−δ

)
. Define L1 := L + 1 and let L1 and δ generate T ∗2 via the item 1. Let

T ∗ := min{T ∗1 , T ∗2 , 1} and let T ∈ (0, T ∗) be arbitrary. Note from the definitions and the fact that
T < T ∗ ≤ 1, we have:

L = L1 − 1 ≤ `L1,T · T ≤ L1 . (54)
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Define ki := i·`L1,T . From item 1 (with Lemma 2), we can write that for every x◦ and every φe
T ∈ Se

T (x◦)
there exists φa

T ∈ Sa
T (x◦) such that:

|φe
T (ki+1, x◦)|A = |φe

T (ki+1 − ki, φ
e
T (ki, x◦))|A

≤ |φa
T (ki+1 − ki, φ

e
T (ki, x◦))|A + |φe

T (ki+1 − ki, φ
e
T (ki, x◦))− φa

T (ki+1 − ki, φ
e
T (ki, x◦))|

≤ |φa
T (ki+1 − ki, φ

e
T (ki, x◦))|A + δ · |φe

T (ki, x◦)|A . (55)

Using the item 2, (55), (54) and definitions of L1 and L we can write:

|φe
T (ki+1, x◦)|A ≤ K exp(−λ(ki+1 − ki)T ) |φe

T (ki, x◦)|A + δ · |φe
T (ki, x◦)|A

= [K exp(−λ`L1,T T ) + δ] · |φe
T (ki, x◦)|A

≤ [K exp(−λL) + δ] · |φe
T (ki, x◦)|A

≤ [(c− δ) + δ] · |φe
T (ki, x◦)|A

= c · |φe
T (ki, x◦)|A . (56)

From (56), we conclude that for all x◦ and all φe
T ∈ Se

T (x◦) we have

|φe
T (ki, x◦)|A ≤ ci · |x◦|A = exp(−λ̃1i) |x◦|A , (57)

for λ̃1 := ln( 1
c ) > 0. Using the definitions of ki and `L1,T and (54) we can write:

−λ̃1i = −λ̃1
ki

`L1,T
≤ − λ̃1

L1
kiT = −λ1kiT ,

where λ1 := λ̃1
L1

, and using (57), we obtain:

|φe
T (ki, x◦)|A ≤ exp(−λ1kiT ) |x◦|A ∀i = 0, 1, . . . (58)

Again, using items 1 with Lemma 1 and 2, we have for all x◦ and φe
T ∈ Se

T (x◦) that there exists
φa

T ∈ Sa
T (x◦) such that for all k ∈ [ki, ki+1] we have:

|φe
T (k, x◦)|A = |φe

T (k − ki, φ
e
T (ki, x◦))|A

≤ |φa
T (k − ki, φ

e
T (ki, x◦))|A + |φe

T (k − ki, φ
e
T (ki, x◦))− φa

T (k − ki, φ
e
T (ki, x◦))|

≤ (K + δ) |φe
T (ki, x◦))|A . (59)

Finally, using (58) and (59), we obtain:

|φe
T (k, x◦)|A ≤ (K + δ) |φe

T (ki, x◦))|A
≤ (K + δ) exp(−λ1kiT ) |x◦|A
≤ (K + δ) exp(λ1`L1,T T ) exp(−λ1kT ) |x◦|A
≤ (K + δ) exp(λ1L1) exp(−λ1kT ) |x◦|A
=: K1 exp(−λ1kT ) |x◦|A (60)

which completes the proof. ¥
Proof of Proposition 3: The proof follows the steps of [32, Lemma 1]. Note that GSTS implies
forward completeness by definition. Hence, we need to prove the sufficiency part: that forward com-
pleteness implies GSTS when A is compact. Let T ∗, c, σ1, σ2 come from forward completeness and let
T ∈ (0, T ∗) be arbitrary. Since A is compact, then HA(0, 2) is compact. Let M > 0 be such that
supx∈HA(0,2),w∈FT (x) |w − x| ≤ MT . Then, we have that for every x◦ ∈ HA(0, 1), φT ∈ ST (x◦) we have:

k ∈ [
0, `M−1,T

]
=⇒ |φT (k, x◦)− x◦| ≤ MkT .

Since |·|A is globally Lipschitz with constant one, we can write:

|φT (k, x◦)|A ≤ |φT (k, x◦)− x◦|+ |x◦|A . (61)
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Hence, for all r ∈ [0, min{1,M−1}] we have:

k ∈ [0, `r,T ], |x◦|A ≤ r =⇒ |φT (k, x◦)|A ≤ (M + 1)r . (62)

Denote ν := maxx∈A |x| < ∞. Then, we have that |x| ≤ |x|A + ν and |x|A ≤ |x| + ν for any x ∈ Rn.
Consider now arbitrary r > 0 and we have from forward completeness that

k ∈ [0, `r,T ], |x◦|A ≤ r =⇒ |φT (k, x◦)| ≤ σ1(r + ν) + σ2(r) + c =: χ(r) , (63)

which implies

k ∈ [0, `r,T ], |x◦|A ≤ r =⇒ |φT (k, x◦)|A ≤ |φT (k, x◦)|+ ν ≤ χ(r) + ν =: χ̄(r) . (64)

Next, we define ρ(s) := s(M + 1) + b(s) · χ̄(s) where b : R → [0, 1] is an increasing continuous function
such that b(0) = 0 and b(s) = 1, for all s ≥ min{1, M−1}. Hence, we have ρ ∈ K∞ and from (62) and
(64) we have that for any r ≥ 0, T ∈ (0, T ∗), x◦ ∈ Rn and φT ∈ ST (x◦):

k ∈ [0, `r,T ], |x◦|A ≤ r =⇒ |φT (k, x◦)|A ≤ ρ(r) ,

which completes the proof. ¥
Proof of Theorem 3: In the sequel we refer to the function β defined in Remark 13.
1 =⇒ 2(a) We have forward completeness from GAS and by defining τ(r) := r and ρ(s) ≥ β(s, 0), ∀s ≥ 0
we have that GSTS holds since:

τ := τ(r), k ∈ [0, `τ,T ], |x◦|A ≤ r =⇒ |φT (k, x◦)|A ≤ β(|x◦|A , 0) ≤ ρ(|x◦|A) .

1 =⇒ 2(b) Let T ∗1 > 0 and β ∈ KL come from GAS. Let T ∗2 > 0 be such that

T

1− exp(−T )
≤ 2, ∀T ∈ (0, T ∗2 ) . (65)

Let T ∈ (0, T ∗), with T ∗ := min{T ∗1 , T ∗2 }. From Sontag’s Lemma [29, Lemma 8] there exist α, γ1 ∈ K∞
such that

α(β(s, t)) ≤ γ1(s) exp(−t), ∀s, t ≥ 0 .

Hence, for GAS we can write for all x◦, φT ∈ ST (x◦):

α(|φT (k, x◦)|A) ≤ α(β(|x◦|A , kT )) ≤ γ1(|x◦|A) exp(−kT )

Summing both sides of the above equation for k ≥ 0 and multiplying with T , we obtain:

T

∞∑

k=0

α(|φT (k, x◦)|A) ≤ γ1(|x◦|A)T
∞∑

k=0

exp(−kT ) = γ1(|x◦|A)
T

1− exp(−T )
≤ 2γ1(|x◦|A) =: γ(|x◦|A) ,

(66)
where the last inequality follows from the definition of T ∗2 .
2 =⇒ 3(a) Let T ∗1 , ρ, τ come from item 2(a). Let T ∗2 , α, γ come from the item 2(b). Let T ∗ :=
min{T ∗1 , T ∗2 } and T ∈ (0, T ∗). Let κ ∈ K∞ be such that

κ−1(s) ≤ min
{

s, γ−1

(
1
2
τ(s) · α(s)

)}

(this function always exists, see equation (17) in [32]). From the definition of κ, it follows that for all
s ≥ 0 we have κ(s) ≥ s and

γ(s) ≤ 1
2
τ ◦ κ(s) · α ◦ κ(s) . (67)

We show that for all x◦ and all φT ∈ ST (x◦) we have:

|φT (k, x◦)|A ≤ ρ ◦ κ(|x◦|A) ∀k ≥ 0 . (68)
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If |x◦|A = 0, then it follows from item 2(b) that |φT (k, x◦)| = 0, ∀k ≥ 0 and hence (68) holds. Suppose
now that |x◦|A > 0. Also, for the purpose of showing contradiction suppose there exist T ∈ (0, T ∗), x◦
and φT ∈ ST (x◦) and k1 > 0 such that

|φT (k1, x◦)|A > ρ ◦ κ(|x◦|A) . (69)

Since we have that |φT (0, x◦)|A = |x◦|A ≤ κ(|x◦|A), we have that k1 > 0 and there exists k0 ∈ [0, k1)
such that

|φT (k0, x◦)|A ≤ κ(|x◦|A) (70)
|φT (k, x◦)|A > κ(|x◦|A) ∀k ∈ [k0 + 1, k1] , (71)

and (69) holds. From the item 2(a) we have:

T (k1 − k0) > τ ◦ κ(|x◦|A) . (72)

Using (72), (70), (71) and the item 2(b), we can write:

α ◦ κ(|x◦|A) · τ ◦ κ(|x◦|A) < T

k1∑

k=k0

α(|φT (k, x◦)|A) ≤ γ(|x◦|A) ,

which contradicts (67).
2 =⇒ 3(b)i. Let T ∗1 , α, γ come from item 2(b). Let T ∗2 come from (65) and define T ∗ := min{T ∗1 , T ∗2 }.
Let T ∈ (0, T ∗) and let arbitrary 0 < δ ≤ ∆ be given. Define ωδ,∆(x) := α(|x|A), ωm := α(δ). Hence,
we have:

x ∈ HA(δ,∆) =⇒ ωδ,∆(x) = α(|x|A) ≥ α(δ) = ωm .

2 =⇒ 3(b)ii. Using the above definitions of T ∗, ωm, ωδ,∆ and γ := 2γ1(∆) we have for all T ∈ (0, T ∗),
x◦ ∈ HA(δ,∆), φT ∈ ST (x◦) and any τ > 0:

T

`τ,T∑

k=0

ωδ,∆(φT (k, x◦)) ≤ T

∞∑

k=0

α(|φT (k, x◦)|A) ≤ 2γ1(|x◦|A) ≤ 2γ1(∆) = γ ,

where the second last inequality follows using the definition of T ∗2 and similar arguments as to obtain
(66).
3 =⇒ 1 Note that GS is assumed and we only need to prove uniform attractivity. Let T ∗1 , ρ come from
item 3(a) and let T ∗2 come from item 3(b). Let T ∗ := min{T ∗1 , T ∗2 , 1} and T ∈ (0, T ∗). From the item
3(a) we have that for all x◦ and all φT ∈ ST (x◦) the following holds:

|φT (k, x◦)|A ≤ ρ(|x◦|A) k ≥ 0 . (73)

Fix r, ε > 0 and define ∆ := ρ(r), δ := min{∆, ρ−1(ε)}. Let ∆, δ generate ωδ,∆(·), ωm, γ and let
τ := 2γ

ωm
+ 1. We claim that for all x◦, φT ∈ ST (x◦) there exists k1 ∈ [0, `τ,T ] such that5

|φT (k1, x◦)|A ≤ ρ−1(ε) .

For the purpose of showing contradiction, suppose that this is not true, that is, there exists x◦ and
φT ∈ ST (x◦) such that

|φT (k, x◦)|A > ρ−1(ε) ∀k ∈ [0, `τ,T ] .

From the item 3(a) and definition of δ we have

φT (k, x◦) ∈ HA(δ,∆) ∀k ∈ [0, `τ,T ] ,

5Note that because of (73), this is enough to conclude uniform attractivity.
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and using item 3(b)i, we have

ωδ,∆(φT (k, x◦)) ≥ HA(δ,∆) ∀k ∈ [0, `τ,T ] .

Hence, we can write:

T

`τ,T∑

k=0

ωδ,∆(φT (k, x◦)) ≥ T`τ,T ωm ≥ 2γ ,

which contradicts the item 3(b)ii (in the second last inequality we use the fact that since T < 1, then
T`τ,T > τ − 1 = 2γ

ωm
). ¥

Proof of Proposition 4: Let T ∗1 > 0 come from GS and T ∗2 > 0 from the conditions of the proposition.
Let T ∗ := min{T ∗1 , T ∗2 } and T ∈ (0, T ∗). Let δ ≤ ∆ be arbitrary and let ∆̃ := ρ(∆) where ρ comes
from GS. Let δ, ∆̃ generate the numbers ωm, ψ1, ψ2 and ωδ,∆̃ via the conditions of the proposition (we
can write ωδ,∆̃ = ω̃δ,∆ since ∆̃ depends on ∆). Note first that for any arbitrary x◦ ∈ HA(0, ∆) and
φT ∈ ST (x◦) we have

φT (k, x) ∈ HA(0, ∆̃) ∀k ≥ 0 .

Hence, from the item 2(b) we can write for all x◦ ∈ HA(δ,∆) and φT ∈ ST (x◦) and k ≥ 0:

T ω̃δ,∆(φT (k, x◦)) ≤ VT (φT (k, x◦))− sup
w∈FT (φT (k,x◦))

VT (w) + Tκ(φT (k, x◦)) . (74)

Moreover, since φ(k, x◦) ∈ FT (φT (k − 1, x◦)) for k ≥ 1 we can also write using (74):

T ω̃δ,∆(φT (k, x◦)) ≤ sup
w∈FT (φT (k−1,x◦))

VT (w)− sup
w∈FT (φT (k,x◦))

VT (w) + Tκ(φT (k, x◦)) . (75)

Consider an arbitrary τ > 0 and add both sides of the inequality (75) from k = 1 to `τ,T to the inequality
(74) with k = 0. Then, using the items 2(a) and 2(c) we have:

T

`τ,T∑

k=0

ω̃δ,∆(φT (k, x◦)) ≤ VT (x◦) +
`τ,T−1∑

k=0

sup
w∈FT (φT (k,x◦))

VT (w)−
`τ,T∑

k=0

sup
w∈FT (φT (k,x◦))

VT (w)

+T

`τ,T∑

k=0

κ(φT (k, x◦))

≤ VT (x◦)− sup
w∈FT (φT (`τ,T ,x◦))

VT (w) + T

`τ,T∑

k=0

κ(φT (k, x◦))

≤ |VT (x◦)|+
∣∣∣∣∣ sup
w∈FT (φT (`τ,T ,x◦))

VT (w)

∣∣∣∣∣ + T

`τ,T∑

k=0

κ(φT (k, x◦))

≤ 2ψ1 + ψ2 =: γ . (76)

The conclusion follows from the proof 3 =⇒ 1 in Theorem 1. ¥
Proof of Proposition 5: Let T ∗ > 0 come from the item (ii). Let T ∈ (0, T ∗) and note that the item
(ii) implies that for all x ∈ Rn we have:

sup
w∈FT (x)

|w|A ≤ (1 + cT ) |x|A .

By induction, this implies that for all T ∈ (0, T ∗), x◦ ∈ Rn and φT ∈ ST (x◦) we have:

|φT (k, x◦)|A ≤ (1 + cT )k |x◦|A ≤ exp(ckT ) |x◦|A ∀k ≥ 0 . (77)

Hence, the bound (26) holds with ρ̄ = exp(c) and τ = 1. We only need to show that the system is
forward complete. For the purpose of showing contradiction, suppose it is not. Then, it is not hard to
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see that there must exists x◦ and τ > 0 such that (27) holds. From the item (i) then we also have that
(28) holds but this then contradicts (77), which completes the proof. ¥
Proof of Theorem 4: 1 =⇒ 2: Let λ,K and T ∗1 come from the item 1. Let T ∗2 > 0 be such that

T

1− exp(−λpT )
≤ 2

λp
∀T ∈ (0, T ∗2 ) .

Let T ∗ := min{T ∗1 , T ∗2 } and T ∈ (0, T ∗). It is immediate that |φT (k, x◦)|A ≤ K |x◦|A and, hence, A is
GFTS with linear gain. Moreover, for any p > 0, we can write:

|φT (k, x◦)|pA ≤ Kp |x◦|pA exp(−λpkT ) ,

and, hence, we have

T

∞∑

k=0

|φT (k, x◦)|pA ≤ TKp |x◦|pA
∞∑

k=0

exp(−λpkT ) = Kp T

1− exp(−λpT )
|x◦|pA ≤ 2Kp

λp
|x◦|pA .

2 =⇒ 1: Let τ , ρ̄ come from 2(a) and c, p come from 2(b). Let T ∗1 and T ∗2 come respectively from
items 2(a) and 2(b) of the theorem. Let T ∗ := min{T ∗1 , T ∗2 } and T ∈ (0, T ∗). Define the function

κ(s) := max

{
1,

(
2c

τ

)1/p
}
· s .

Note that for all s ≥ 0 and using the definition of T ∗we have that:

κ(s) ≥ s (78)

c · sp ≤ 1
2
τ · κ(s)p . (79)

We first show that for all x◦ ∈ Rn and φT (k, x◦) ∈ ST (x◦) we have

|φT (k, x◦)|A ≤ ρ̄ · κ (|x◦|A) = ρ̄ ·max

{
1,

(
2c

τ

)1/p
}
· |x◦|A =: ρ · |x◦|A , (80)

that is, the set A is GS. For the purpose of showing contradiction, suppose that there exist T1 ∈ (0, T ∗),
x◦ ∈ Rn and k1 ∈ N such that

|φT1(k1, x◦)|A > ρ̄ · κ(|x◦|A)

Note that ρ̄ ≥ 1 and as a result we have |φT1(k1, x◦)|A > κ(|x◦|A). Define

k0 := min{k ∈ [0, k1] : |φT1(i, x◦)|A > κ(|x◦|A), ∀i ∈ [k, k1]} .

Because of (78) we have |φT (0, x◦)|A = |x◦|A ≤ κ(|x◦|A) and hence we have k1, k0 > 0 (it may happen
that k0 = k1!). To summarize, we have:

|φT1(i, x◦)|A > κ(|x◦|A) ∀i ∈ [k0, k1] (81)
|φT1(k1, x◦)|A > ρ̄ · κ(|x◦|A) (82)

|φT1(k0 − 1, x◦)|A ≤ κ(|x◦|A) . (83)

From (82) and (83) and the item 2(a) (i.e. the definition of GFTS), we have that

T1(k1 − k0 + 1) ≥ τ . (84)

Next, using the item 2(b) and (84), we have:

τκ(|x◦|A)p ≤ T1(k1 − k0 + 1)κ(|x◦|A)p

≤ T1

k1∑

i=k0

|φT1(i, x◦)|pA

≤ c · |x◦|pA ,
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which contradicts (79).

Let λ ∈ (0, 1) and define ∆ := ρpc
λp where ρ comes from (80) and c comes from (30). Define ∆T :=

⌊
∆
T

⌋
,

where z = bsc is the largest integer that is smaller than s ∈ R. First, we show that for all T ∈ (0, T ∗),
x◦ and all φT ∈ ST (x◦) we have:

|φT (∆T , x◦)|A ≤ λ · |x◦|A . (85)

Note that because of (80), it is enough to show that under above conditions there exists k′ ∈ [0, ∆T ]
such that

|φT (k′, x◦)|A ≤
λ

ρ
|x◦|A .

For the purpose of showing contradiction, assume the opposite. That is, there exists x◦ and T ∈ (0, T ∗)
and φT ∈ S(x◦) such that |φT (k, x◦)|A > λ

ρ |x◦|A for all k ∈ [0, ∆T ]. Then, we have

T

∞∑

i=0

|φT (i, x◦)|pA ≥ T

∆T∑

i=0

|φT (i, x◦)|pA > T (∆T + 1)
λp

ρp
|x◦|pA ≥ ∆

λp

ρp
|x◦|pA = c · |x◦|pA ,

which contradicts (30). Hence, (85) holds. Define γ := − 1
∆ ln(λ) and note that for each N ∈ N, we have

λN = e−γN∆ (86)

We claim that for all x◦, T ∈ (0, T ∗) and φT ∈ ST (x◦), we have for all k ≥ 0:

|φT (k, x◦)|A ≤
ρ

λ
|x◦|A exp(−γkT ) . (87)

For k ∈ [0, ∆T ], this follows from (80) and (86) with N = 1: we have for all k ∈ [0, ∆T ] that exp(−γkT ) ≥
exp(−γ∆T T ) ≥ exp(−γ∆) = λ. For k ≥ ∆T , let N ≥ 1 be the largest integer such that k ≥ N∆T .
Using (85), time invariance of the system, (87) for k ∈ [0, ∆T ], k − bN∆/T c ∈ [0, ∆T ] and (86), we can
write:

|φT (k, x◦)|A ≤ λN |φT (k − bN∆/T c, x◦)|A
≤ λN ρ

λ
|x◦|A exp(−γT (k − bN∆/T c))

≤ λN exp(γN∆)
ρ

λ
|x◦|A exp(−γTk)

≤ ρ

λ
|x◦|A exp(−γTk) ,

which completes the proof. ¥
Proof of Proposition 6: In a similar way as in the proof of Proposition 4, we can obtain from item 2
that for arbitrary τ > 0, T ∈ (0, T ∗), x◦ ∈ Rn and φT ∈ ST (x◦) we have:

ψ2T

`τ,T∑

k=0

|φT (k, x◦)|pA ≤
∣∣∣∣∣ sup
w∈FT (φT (`τ,T ,x◦))

VT (w)

∣∣∣∣∣ + |VT (x)|+ T

`τ,T∑

k=0

κ(φT (k, x◦)) . (88)

Then, using items 1 and 3 and GES with linear gain property, we have:

T

`τ,T∑

k=0

|φT (k, x◦)|pA ≤ c |x◦|pA ,

where c = ψ1+ψ1ρ̄p+ψ3
ψ2

. The conclusion follows from Theorem 4. ¥
Proof of Proposition 7: Follows exactly the same steps as the proof of [32, Lemma 3] by using sums
instead of integrals.
Proof of Proposition 8: We prove the result by showing that all conditions of Proposition 4 hold.
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Let ρ ∈ K∞ and T ∗1 > 0 come from the GS assumption. Let T ∗2 > 0, VT (·) and αi(·) come from item
3. Let arbitrary 0 < δ ≤ ∆ be given. Let ∆1 := ρ(∆) and let M > 0 and T ∗3 ∈ (0, T ?) be such that for
all x ∈ HA(0, ∆1) and T ∈ (0, T ∗3 ) we have

sup
w∈F̃T (x)+TK(x)B̄n

|w| ≤ M

Let ∆̃ := max{M, ∆1} generate L, T ∗4 via the item 4 and let the item 5 generate T ∗5 . Let T ∗ :=
min{T ∗1 , T ∗2 , T ∗3 , T ∗4 , T ∗5 } and T ∈ (0, T ∗).

Let ωm > 0 be such that
α3(s) ≥ 2ωm ∀s ∈ [δ,∆] .

and define ωδ,∆(x) := α3(|x|A)−ωm. Note that the definition of ωm implies that the item 1 of Proposition
4 holds. Moreover, from the item 3, we have that for all T ∈ (0, T ∗) and x ∈ HA(0, ∆):

max

{∣∣∣∣∣ sup
w∈F̃T (x)

VT (w)

∣∣∣∣∣ , |VT (x)|
}
≤ α2(∆̃) =: ψ1 ,

which implies that the item 2(a) of Proposition 4 holds. Let ε := ωm

L and let ε and ∆ generate β via the
item 5. We also define κ(·) := L(K(·)− ε). Using these definitions and the items 3 and 4, we can write
for all x ∈ HA(0,∆) and all T ∈ (0, T ∗):

sup
w∈FT (x)

VT (w) ≤ sup
w∈F̃T (x)+TK(x)B̄n

VT (w)

≤ sup
w∈F̃T (x)

VT (w) + sup
w∈F̃T (x)+TK(x)B̄n

VT (w)− sup
w∈F̃T (x)

VT (w)

≤ −Tα3(|x|A) + VT (x) + TLK(x)

≤ −[α3(|x|A)− ωm] + VT (x) + TL
[
K(x)− ωm

L

]

≤ −Tωδ,∆(x) + VT (x) + Tκ(x) ,

which implies that the item 2(b) of Proposition 4 holds. Finally, from the item 5 we have that item 2(c)
of Proposition 4 trivially holds. ¥

7 Conclusions

We presented a framework for stabilization of arbitrary closed (not necessarily compact) sets for nonlinear
sampled-data differential inclusions. Our main results (Theorem 1 and 2) present stability conditions
that guarantee SPA stability or GES of an arbitrary closed set for the exact discrete-time model of the
sampled-data inclusion that can be checked without knowing the exact discrete-time model. Theorem
1 generalizes [19, Theorem 1] in several directions: we consider sampled-data differential inclusions,
arbitrary dynamic controllers represented as discrete-time difference inclusions and we consider stability
of arbitrary closed sets. We are not aware whether Theorem 2 has been published previously in the
literature even in the simpler case of sampled-data differential equations, static controllers and stability
of the origin. These results are proved via trajectory based techniques and they do not use the knowledge
of a Lyapunov function for the approximate discrete-time model, which was a standing assumption in
[21].

In the second part of the paper we presented several non-Lyapunov based conditions for achieving
GAS or GES of the family of approximate closed loops. These results are discrete-time versions of results
in [32] and they are an important addition to the toolbox that the control designer can use to design
controllers for sampled-data nonlinear systems via their approximate discrete-time models, especially
in cases when it is not easy to construct a strict Lyapunov function for the family of approximate
discrete-time models.
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[18] D. Nešić, A. R. Teel and E.D.Sontag, “Formulas relating KL stability estimates of discrete-time
and sampled-data nonlinear systems”, Syst. Contr. Lett., vol. 38 (1999), pp. 49-60.
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[23] D. Nešić and A. Loria, “On uniform asymptotic stability of time-varying parameterized discrete-time
cascades”, IEEE Trans. Automt. Contr., vol. 49 (2004), pp. 875-887.
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