
Extremum Seeking Control: Convergence Analysis∗

Dragan Nešić

Abstract— This paper summarizes our recent work on dy-
namical properties for a class of extremum seeking (ES)
controllers that have attracted a great deal of research attention
in the past decade. Their local stability properties were already
investigated, see [2]. We first show that semi-global practical
convergence is possible if the controller parameters are care-
fully tuned and the objective function has a unique (global)
extremum. An interesting tradeoff between the convergence
rate and the size of the domain of attraction of the scheme
is uncovered: the larger the domain of attraction, the slower
the convergence of the algorithm. The amplitude, frequencyand
shape of the dither signal are important design parameters in
the extremum seeking controller. In particular, we show that
changing the amplitude of the dither adaptively can be used to
deal with global extremum seeking in presence of local extrema.
Moreover, we show that the convergence of the algorithm is
proportional to the power of the dither signal. Consequently,
the square-wave dither yields the fastest convergence among
all dithers of the same frequency and amplitude. We consider
extremum seeking of a class of bioprocesses to demonstrate our
results and motivate some open research questions for multi-
valued objective functions.

I. I NTRODUCTION

In many engineering applications the system needs to
operate close to an extremum of a givenobjective (cost) func-
tion during its steady-state operation. Moreover, the objective
function is often not available analytically to the designer but
instead one can measure the value of the objective function
by probing the system.

Extremum seekingis an optimal control approach that
deals with situations when the plant model and/or the cost to
optimize are not available to the designer but it is assumed
that measurements of plant input and output signals are
available. Using these available signals, the goal is to design
an extremum seeking controller that dynamically searches for
the optimizing inputs. This situation arises in a range of clas-
sical, as well as certain emerging, engineering applications.
Indeed, this method was successfully applied to biochemical
reactors [9], [4], ABS control in automotive brakes [8],
variable cam timing engine operation [14], electromechanical
valves [13], axial compressors [21], mobile robots [11],
mobile sensor networks [5], [12], optical fibre amplifiers
[7] and so on [2]. A good survey of the literature on this
topic prior to 1980 can be found in [16] and a more recent
overview can be found in [2].̊Aström and Wittenmark rated
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extremum seeking as one of the most promising adaptive
control methods [1, Section 13.3].

There are two main approaches to extremum seeking: (i)
adaptive control extremum seeking; (ii) nonlinear program-
ming based extremum seeking. Adaptive control methods
provide a range of adaptive controllers that solve the ex-
tremum seeking problem for a large class of systems [2].
The controller makes use of a certain excitation (dither)
signal which provides the desired sub-optimal behaviour if
the controller parameters are tuned appropriately. On the
other hand, nonlinear programming based extremum seek-
ing methods combine the classical nonlinear programming
methods for numerical optimization with an approximate on-
line generation of the gradient of the objective function by
applying constant probing inputs successively [20].

The main goal of this paper is to report on our recent
results on stability properties of a class of adaptive extremum
seeking controllers. The first local stability analysis of this
class of controllers was reported in 2000 by Krstić and Wang
[10]. This seminal paper used techniques of averaging and
singular perturbations to show that if the adaptive extremum
seeking controller is tuned appropriately, then sub-optimal
extremum seeking is achieved if the system is initialized
close to the extremum.

We introduced a simplified adaptive scheme in [17] where
it was shown under slightly stronger conditions that non-
local (even semi-global) extremum seeking is achieved if
the controller is tuned appropriately. Moreover, by using the
singular perturbations techniques and averaging, we demon-
strated that this simplified scheme operates on average in its
slow time scale as the steepest descent optimization scheme.
We reported a detailed analysis of this simplified scheme
in [17]. In [19] we analysed the flexibility in choosing
the shape of the excitation dither signal to ensure faster
convergence. It was shown for static maps that a square wave
dither yields fastest convergence over all dither signals with
the same amplitude and frequency. We reported conditions
that ensure global extremum seeking in the presence of
local extrema in [18]. Adaptive schemes with multi-valued
objective functions that arise, for instance, in bioprocesses,
were investigated in [4]. Multi-valued functions pose some
open research questions that we briefly mention in the last
section. In the sequel, we present an overview of our recent
results in [4], [17], [18], [19].

Mathematical preliminaries: We denote the set of real
numbers asR. Given a sufficiently smooth functionh :
R

p → R, we denote itsith derivative with respect tojth

variable asDi
jh(x1, . . . , xp). Wheni = 1 andj = 1 we write

simply Dh(x1, . . . , xp) := D1
1(x1, . . . , xp). The continuous



function β : R≥0 × R≥0 → R≥0 is of classKL if it is
nondecreasing in its first argument and converging to zero
in its second argument. Given a measurable functionx, we
define itsL∞ norm ‖ · ‖ = esssupt≥0 |x(t)|.

We will show in the next section that the closed loop
systems with an adaptive extremum seeking controller can
be written as a parameterized family of systems:

ẋ = f(t,x, ε) , (1)

where x ∈ R
n, t ∈ R≥0 and ε ∈ R

`
>0 are respectively

the state of the system, the time variable and the parameter
vector. The stability of the system (1) can depend in an
intricate way on the parameterε and we will need the
following definition (see [17] for motivating examples):

Definition 1 The system (1) with parameterε is said to
be semi-globally practically asymptotically (SPA) stable,
uniformly in (ε1, . . . , εj), j ∈ {1, . . . , `}, if there exists
β ∈ KL such that the following holds. For each pair
of strictly positive real numbers(∆, ν), there exist real
numbersε∗k = ε∗k(∆, ν) > 0, k = 1, 2, . . . , j and for
each fixedεk ∈ (0, ε∗k), k = 1, 2, . . . , j there existεi =
εi(ε1, ε2, . . . , εi−1, ∆, ν), with i = j + 1, j + 2, . . . , `, such
that the solutions of (1) with the so constructed parameters
ε = (ε1, . . . , ε`) satisfy:

|x(t)| ≤ β(|x0|, (ε1 · ε2 · · · · · ε`)(t − t0)) + ν, (2)

for all t ≥ t0 ≥ 0, x(t0) = x0 with |x0| ≤ ∆. If we have that
j = `, then we say that the system is SPA stable, uniformly
in ε.

Note that in Definition 1 we can construct a small “box”
around the origin for the parametersεk, k = 1, 2, . . . , j so
that the stability property holds uniformly for all parameters
in this box, whereas at the same time we can not do so for
the parametersεk, k = j + 1, . . . , l. Sometimes we abuse
terminology and refer to(ε1 · · · ε`) in the estimate (2) as the
“convergence speed” (although the real convergence speed
depends also on the functionβ).

II. A N ADAPTIVE CONTROL SCHEME

Consider the system:

ẋ = f(x, u), y = h(x) , (3)

where f : R
n × R → R

n and h : R
n → R are sufficiently

smooth. x is the measured state,u is the input andy
is the output. We suppose that there exists a uniquex

∗

such thaty∗ = h(x∗) is the extremum of the maph(·).
Due to uncertainty, we assume that neitherx

∗ nor h(·) is
precisely known to the control designer. The main objective
in extremum seeking control is to force the solutions of the
closed loop system to eventually converge tox

∗ and to do
so without any precise knowledge aboutx

∗ or h(·).
Consider a family of control laws of the following form:

u = α(x, θ), (4)

whereθ ∈ R is a scalar parameter. The closed-loop system
(3) with (4) is then

ẋ = f(x, α(x, θ)). (5)

The requirement thatθ is scalar and that (3), (4) is SISO is to
simplify presentation. Multidimensional parameter situations
can be tackled, see [2].

We proposed in [17] a first order extremum seeking
scheme (see Figure1) that yields the following closed loop
dynamics:

ẋ = f(x, α(x, θ̂ + a sin(ωt))) (6)
˙̂
θ = kh(x)b sin(ωt), (7)

where(k, a, b, ω) are tuning parameters. Compared with the
extremum seeking scheme in [10], the proposed extremum
seeking scheme in Figure 1 is simpler, containing only an
integrator (without low-pass and high-pass filters that are
used in [10]).
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Fig. 1. A first order extremum seeking controller

III. G LOBAL EXTREMUM SEEKING IN ABSENCE OF

LOCAL EXTREMA

In this section we summarize results from [17] that provide
guarantees for SPA stability under the following assump-
tions:

Assumption 1 There exists a functionl : R → R
n such that

f(x, α(x, θ)) = 0 if and only if x = l(θ).

Assumption 2 For eachθ ∈ R, the equilibriumx = l(θ) of
(5) is globally asymptotically stable, uniformly inθ.



Assumption 3 Denoting Q(·) = h ◦ l(·), there exists a
uniqueθ∗ maximizingQ(·) and, the following holds1:

DQ(θ∗) = 0 D2Q(θ∗) < 0 (8)

DQ(θ∗ + ζ)ζ < 0 ∀ζ 6= 0 . (9)

Note that (9) in Assumption 3 guarantees that there do not
exist any local extrema. We will consider the case with local
extrema in the next section.

Introduce the change of the coordinates,x̃ = x − x
∗,

θ̃ = θ̂ − θ∗ and the system takes the form:

˙̃x = f(x̃ + x
∗, α(x̃ + x

∗, θ̃ + θ∗ + a sin(ωt)))
˙̃
θ = kh(x̃ + x

∗)b sin(ωt). (10)

Note that the point(x∗, θ∗) is in generalnot an equilibrium

pointof the system (6), (7). We introducek
4
= ωδK, σ

4
= ωt,

whereω andδ are small parameters andK > 0 is fixed. The
system equations expanded in timeσ are:

ω
dx̃

dσ
= f(x̃ + x

∗, α(x̃ + x
∗, θ̃ + θ∗ + a sin(σ)))

dθ̃

dσ
= δKh(x̃ + x

∗)b sin(σ). (11)

The system (11) has the form (1) where the parameter vector
is defined asε := [a b δ ω]T . For simplicity of presentation
in the sequel we letb = a and

ε := [a2 δ ω]T . (12)

The system (11) has a two-time-scale structure and our first
main result is proved by applying the singular perturbations
and averaging methods (see [17]).

Theorem 1 Suppose that Assumptions 1, 2 and 3 hold. Then,
the system (10) is SPA stable, uniformly in(a2, δ).

�

Theorem 1 provides the parameter tuning guidelines since it
shows that to achieve a certain domain of attraction one first
needs to reducea andδ sufficiently and then for fixed values
of these parameters reduceω sufficiently. Hence, one can
achieve any given domain of attraction but the convergence
speed will be reduced simultaneously (cf. Definition 1). This
tradeoff was first observed in [17]. In the convergence speed
analysis of the extremum seeking scheme, the “worst case”
convergence speed is considered. That is, the convergence
speed of the overall system depends on the convergence
speed of the slowest sub-system. The first order extremum
seeking controller (10), according to Theorem 1, yields the
following stability bound:

|z(t)| ≤ β(|z(t0)|, (a
2δω)(t − t0)) + ν,

= β

(
|z(t0)|, (a

2k)
(t − t0)

K

)
+ ν, (13)

for all t ≥ t0 ≥ 0 and |z(t0)| ≤ ∆, wherez
4
= (x̃T , θ̃T )T

and k, K were defined before. SinceK > 0 is fixed, the

1Without loss of generality we assume that the extremum is a maximum.

parametera2 · k affects the convergence speed. The smaller
a2 · k, the slower the convergence and the larger the domain
of attraction.

Note that sinceh(·) is continuous, then for anyν > 0,
there existsν1 > 0 such that

|x̃| ≤ ν1 =⇒ |h(x̃ + x
∗) − y∗| ≤ ν . (14)

Theorem 1 can be interpreted as follows. For any(∆, ν)
we can adjustε so that for all |z| ≤ ∆ we have that
lim sup

t→∞

|y(t) − y∗| ≤ ν. In other words, the output of the

system can be regulated arbitrarily close to the extremum
value y∗ from an arbitrarily large set of initial conditions
by adjusting the parametersε in the controller. In particular,
the parametersε are chosen so that Definition 1 holds with
(∆, ν1) andν1 is defined in (14).

Theorem 1 is a stronger result than [10, Theorem 1] since
we prove SPA stability, as opposed to local stability in [10].
However, our results are stated under stronger assumptions
(Assumptions 1-3) than those in [10]. Assumptions 1-3
appear to be natural when non-local stability is investigated.
Moreover, we note that it is not crucial in Assumptions 1 –
3 that all conditions hold globally. For instance, instead of
requiring (9) in Assumption 3, we can assume:

DQ(θ∗ + ζ)ζ < 0 ∀ζ ∈ D, ζ 6= 0 , (15)

whereD is a bounded neighborhood ofθ∗. We note that
these conditions are not very restrictive, whereas their global
version is (Assumptions 2 and 3). Indeed, if the maximum
is isolated and all functions are sufficiently smooth, we can
conclude that the condition (8) implies that there exists a
setD satisfying (15). Similarly, we could assume only local
stability in Assumption 2. If all of our assumptions were
regional (as opposed to global) we could still state SPA
stability with respect to the given bounded region.

The proof of Theorem 1 in [17] provides an interesting
insight into the way the extremum seeking controller oper-
ates. The parameterω is used to separate time scales be-
tween the plant (boundary layer) and the extremum seeking
controller (reduced system), where the plant states are fast
and they quickly die out (Assumption 2). Using the singular
perturbation method, we obtain that the reduced system in
the variable “θr” in time “σ = ωt” is time varying and it
has the form:

dθr

dσ
= KaδQ(θ∗ + θr + a sin(σ)) sin(σ) , (16)

for which we introduce an “averaged” system:

dθav

dσ
=

K

2
a2δ · DQ(θ∗ + θav) . (17)

Hence, the averaged system (17) can be regarded as the “gra-
dient system” whose globally asymptotically stable equilib-
rium θ∗ corresponds to the global maximum of the unknown
mapQ (Assumption 3).

As already indicated, the first order extremum seeking
scheme works on average as a “gradient search” method.
Both the excitation signal and the integrator are necessary



to achieve this. The excitation signala sin(ωt) is added to
system (3) to get probing while the multiplication (modula-
tion) of output and the excitation signal extracts the gradient
of the unknown mappingQ(·). The role of the integrator is
to get on average the steepest decent along the gradient of
Q(·). Hence, the first order scheme is the simplest controller
structure that achieves extremum seeking.

Note that we did not prove SPA stability, uniform in the
whole vectorε in Theorem 1 for system (10) with parameter
ε. To prove such a result we need a stronger assumption:

Assumption 4 We have that (8) holds and there existsαQ ∈
K∞ such thatDQ(θ∗ + ζ)ζ ≤ −αQ(|ζ|) for all ζ ∈ R.

Next we will use Assumptions 4 and 5 that will be stated
below after some auxiliary results are presented to prove
semi-global stability results uniform in the parameterε.

We introduce “boundary layer” usinḡx := x̃− l(θ∗ + θ̃ +
a sin(σ)) =: x̃− l̃(θ̃ + a sin(σ)) and rewrite (11) in the time
scale “t” as follows:

˙̄x = f̃(x̄ + l̃(θ̃ + a sin(σ)), θ̃ + a sin(σ)) + ωa∆̃1 (18)
˙̃
θ = aδKh̃ ◦ l̃(θ̃ + a sin(σ)) sin(σ) + aδ∆̃2, (19)

wheref̃(x, θ) := f(x+x
∗, α(x+x

∗, θ∗+θ)), h̃(x) := h(x+
x
∗) and∆̃1, ∆̃2 are appropriate functions that depend on the

state variables, parameters and time (see [17]). We consider
the system (18), (19) as a feedback connection of two
systems. It was shown in [17] that under our assumptions, the
two systems are input to state stable (ISS) in an appropriate
sense (see [15]):

Proposition 1 Suppose that Assumption 4 holds. Then, there
existβ1 ∈ KL and for any∆1 > ν1 > 0 and ω∗ > 0 there
existγθ

1 , γθ
2 ∈ K∞, a∗ > 0 and δ∗ > 0 such that for alla ∈

(0, a∗), δ ∈ (0, δ∗), ω ∈ (0, ω∗) and max{|θ̃0|, ||x̄||} ≤ ∆1,
with θ̃0 := θ̃(t0) we have that the solutions of the subsystem
(19) satisfy:

|θ̃(t)| ≤ max
{
β1(|θ̃0|, (a

2δω)(t − t0)), γ
1
ε
(||x̄||), ν1

}
, (20)

for all t ≥ t0 ≥ 0, whereγ1
ε
(s) := γθ

1

(
1
a
γθ
2(s)

)
. �

Proposition 2 Suppose that Assumptions 1 and 2 hold.
Then, there existβ2 ∈ KL and for any positive∆2, ν2,
a∗ and δ∗ there existγz

1 , γz
2 ∈ K∞ and ω∗ > 0, such

that for all a ∈ (0, a∗), δ ∈ (0, δ∗) ω ∈ (0, ω∗) and
max{|x̄0|, ||θ̃||} ≤ ∆, with x̄0 := x̄(t0), we have that the
solutions of the subsystem (18) satisfy:

|x̄(t)| ≤ max
{
β2(|x̄0|, t − t0), γ

2
ε
(||θ̃||), ν2

}
, (21)

for all t ≥ t0 ≥ 0, whereγ2
ε
(s) := γz

1 (ωaγz
2(s)). �

Note that the ISS gainsγ1
ε

andγ2
ε

in Propositions 1 and
2 depend ona and ω. Moreover, the gainγ1

ε
increases to

infinity as a is reduced to zero. Typically, this behavior
leads to lack of stability in the interconnection. However,
in this case, it is possible to counteract this increase ofγ1

ε

through the decrease ofγ2
ε

as γ2
ε

decreases to zero asa
decreases. Moreover, it is sometimes possible to achieve this
in a manner that will guarantee SPA stability, uniform in
ε, see [17]. A condition that is needed for this to hold is
summarized in the next assumption.

Assumption 5 Let the gainsγ1
ε
, γ2

ε
come from Propositions

1 and 2. Assume that there existsγ ∈ K∞ such that for
any 0 < s1 < s2 there existω∗ and a∗ such that for all
ω ∈ (0, ω∗), a ∈ (0, a∗) and s ∈ [s1, s2] we have that the
following small gain conditions hold:

γ1
ε
◦ γ2

ε
(s) ≤ γ(s) < s, γ2

ε
◦ γ1

ε
(s) ≤ γ(s) < s. (22)

The following result was proved in [17]:

Theorem 2 Suppose that Assumptions 1, 2, 4 and 5 hold.
Then, the closed-loop system (10) is SPA stable, uniformly
in ε = (a2, δ, ω). �

Note that the conditions (22) do not imply each other,
as can be easily seen from the case whenγθ

2 ◦ γz
1 (s) =

sq, q > 1 and γz
2 ◦ γθ

1(s) = sp, p > 1 in which case the
conditions (22) become respectivelyγθ

1

(
ωaq−1 (γz

2 (s))
q)

<

s andγz
1

(
ωa1−p

(
γθ
2(s)

)p)
< s. It is obvious, that in the first

case we can chooseω and a independent of each other so
that the first condition in (22) holds, whereas it is impossible
to do so for the second condition in (22). This also illustrates
that conditions of Assumption 5 may not hold for some gains.
If all the gainsγθ

1 , γθ
2 , γz

1 , γz
2 are linear then Assumption 5

holds. In particular, the small gain conditions (22) become
independent ofa and can be achieved by reducingω only.

It is an open question whether there is a genuine gap
between Theorems 1 and 2, that is whether there exists
an example satisfying all conditions of Theorem 1 but not
conditions of Theorem 2 thatis notSPA stable uniformly in
ε.

Example 1 Consider the system:

ẋ = −x + u2 + 4u; y = −(x + 4)2 . (23)

Let the control input beu = θ. Then, using our notation we
haveθ∗ = −2, x∗ = −4 and y∗ = 0. We choose the initial
value x(0) = 2 that is far away from the optimal value
x∗ = −4. Let θ̂(0) = 0. We present simulations for various
values ofa, δ, ω to illustrate that the speed of convergence,
the domain of attraction and the accuracy of the algorithm
indeed depend on the parameters as suggested by Theorems
1 and 2.

We apply the first order scheme in Figure 1. By choosing
a = 0.3, δ = 0.5(K = 4) and ω = 0.5, the performance of
the scheme is shown in Figure 2, where|z| = |(x̃, θ̃)| and x̃
and θ̃ are the same as in Equation (10). It can be seen that,
the statez converges to the neighborhood of the origin. The
output also converges to the vicinity of the extremum value.
We increasea such thata = 0.6 while keepingδ = 0.5 and
ω = 0.5. Increasinga will get a fast convergent speed, while
the domain of the attraction would be smaller. It can be seen



clearly from Figure 2 that, though bothy(t) and|z| converge
very fast, they converge to a muchlarger neighborhood of
their optimal values.
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Fig. 2. The performance of the simplest extremum seeking scheme
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Fig. 3. The performance of the simplest extremum seeking scheme

Next, we fixa = 0.3 and ω = 0.5. First, we letδ = 0.25
and observe that the statez converges to the neighborhood
of the origin, see Figure 3. The output also converges to the
vicinity of its extremum value. Then, we increaseδ to be0.75
and observe that the convergence speed has increased, see
Figure 3. However, when we further increaseδ to be larger
than 1.40 unstable performance is observed.

IV. GLOBAL EXTREMUM SEEKING IN PRESENCE OF

LOCAL EXTREMA

In this section, we summarize the results from [18] where
global extremum seeking was investigated for objective
functions that have local extrema. In particular, we use the
following assumption:

Assumption 6 There exists a unique global maximumθ∗ ∈
R of Q(·) such that

Q(θ∗) > Q(θ), ∀θ ∈ R, θ 6= θ∗. (24)

Assumption 6 implies that besides the global maximum
θ∗ there may also exist local maximãθ∗. It is weaker than
Assumption 3 that does not allow for local maxima.

The extremum seeking feedback scheme in Figure 4 was
proposed in [18] to deal with this problem. One of the main
differences between this scheme and the one in the previous
section is that the amplitude of the excitation signal in Figure
4 is time varying, whereas in Figure 1 the amplitude is fixed.
The model of the system in Figure 4 can be written as

ẋ = f(x, α(x, θ̂ + a · sin(ω · t)))
˙̂
θ = ω · δ · h(x) · sin(ω · t)

ȧ = −ω · δ · ε · g(a), a(0) = a0 , (25)

whereg(·) is a locally Lipschitz function that is zero at zero
and positive otherwise. The simplest choice isg(a) = a.
Hereε, ω, δ anda0 are to be chosen by the designer.
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Fig. 4. A global extremum seeking feedback scheme.

Denotingσ = ω · t, the equations (25) in time “σ” are:

ω · dx
dσ

= f(x, α(x, θ̂ + a sin(σ)))

dθ̂
dσ

= δ · h(x) · sin(σ)
da
dσ

= −ε · δ · g(a), a(0) = a0. (26)

The system (26) is in standard singular perturbation form,
where the singular perturbation parameter isω. To obtain
the fast and slow systems, we setω = 0 and “freeze”x at
its “equilibrium”, x̃ = l(θ̂+a·sin(σ)) to obtain the “reduced”
system in the variables(θ, a) in the time scaleσ = ω · t:

dθ
dσ

= δ · Q(θ + a · sin(σ)) · sin(σ) = δ · µ(σ, θ, a) (27)
da
dσ

= −ε · δ · g(a), a(0) = a0, (28)

where Q(·) = h ◦ l(·) is the output equilibrium map (cf.
Assumption 6). We can write the “averaged” system of (27)
by using:

µav(θ, a) :=
1

2π

∫ 2π

0
µ(t, θ, a)dt, (29)

where µ(·, ·, ·) comes from (27). Indeed, using the above
definition, we can analyze the closed loop system ((27)-(28))
via the auxiliary “averaged” system:

dθ
dσ

= δ · µav(θ, a) (30)
da
dσ

= −δ · ε · g(a), a(0) = a0 > 0 . (31)



By introducing the new timeτ := ε · δ · σ, we can rewrite
the above equations as follows:

ε · dθ
dτ

= µav(θ, a)
da
dτ

= −g(a), a(0) = a0 > 0 , (32)

that are in standard singular perturbation form. However,
there are several differences with the classical singular per-
turbation literature. In our case the equation:

0 = µav(θ, a) (33)

may not havek isolatedreal rootsθ = `i(a). Indeed, some
of the real roots may only be defined fora ∈ [0, ā] and such
that for somei andj we have`i(a) 6= `j(a), a ∈ [0, ā) and
`i(ā) = `j(ā). Moreover, it shown in [18] that there exists a
continuous functionp(θ, a) such that:

µav(θ, a) = a · p(θ, a) (34)

and this means that we will be unable to prove stability of
the “boundary layer” systemuniform in a that is a standard
assumption in the singular perturbation literature. Note also
that we are interested in convergence properties of this
system initialized from a set of initial conditions satisfying
a(0) = a0 which is a weaker property from the standard
stability properties considered in the singular perturbation
literature.

Another assumption that characterizes solutions of the
equation (33) is needed in the main result.

Assumption 7 There exists an isolated real root θ =
`(a) : R≥0 → R of the equation (33) such that:

1) ` is continuous andD1p(`(a), a) < 0, ∀a ≥ 0, where
p(θ, a) is defined in (34).

2) There existsa∗ > 0 such that for alla ≥ a∗, θ = `(a)
is the unique real root of (33).

3) `(0) = θ∗, where θ∗ is the global extremum, which
comes from Assumption 6.

Before showing the stability properties of the closed
loop system (25), the following proposition shows stability
properties of the “reduced” system (27)-(28).

Proposition 3 Suppose that Assumptions 6 and 7 hold.
Then, for any strictly positive(∆, ν) and a0 > a∗ there
existβ = βa0,∆,ν ∈ KL and ε∗ = ε∗(a0, ∆, ν) > 0 and for
anyε ∈ (0, ε∗) there existsδ∗ = δ∗(ε) > 0 such that for any
sucha0, ε andδ ∈ (0, δ∗) we have that for all(θ(σ0), a(σ0))
satisfying a(σ0) = a0 and |θ(σ0) − `(a0)| ≤ ∆ and all
t ≥ t0 ≥ 0 the solutions of the system (27), (28) satisfy:

|θ(σ) − `(a(σ))| ≤ β(|θ(σ0) − `(a(σ0))|, δ(σ − σ0)) + ν. (35)

From the semi-global practical asymptotical (SPA) sta-
bility properties of the “reduced” system ((27)- (28)), the
stability properties of the overall system (25) are stated in
the following theorem.

Theorem 3 Suppose that Assumptions 1, 2, 6 and 7 hold.
Then, for any strictly positive(∆, ν) and a0 > a∗ there
existKL functionsβx, βθ and ε∗ = ε∗(a0, ∆, ν) > 0 and
for any ε ∈ (0, ε∗) there existsδ∗ = δ∗(ε) > 0, for any
δ ∈ (0, δ∗(ε)) there existsω∗ = ω∗(δ) > 0 and for any
sucha0, ε, δ ∈ (0, δ∗) andω ∈ (0, ω∗), we have that for all
(x(t0), θ̂(t0), a(t0)) satisfyinga(t0) = a0, |θ̂(t0)− `(a0)| ≤
∆, |x(t0) − l(θ̂(t0))| ≤ ∆ and all t ≥ t0 ≥ 0 the solutions
of the system (25) satisfy:

|x(t) − l(θ̂(t))| ≤ βx

(
|x(t0) − l(θ̂(t0))|, (t − t0)

)
+ ν,

|θ̂(t) − `(a(t))| ≤ βθ

(
|θ̂(t0) − `(a(t0))|, ωδ(t − t0)

)
+ ν.

�

Theorem 3 presents a tuning mechanism for the controller
parameters (choice ofω, δ, ε) and its initialization (choice
of a0) that guarantees semi-global practical convergence to
the global extremum despite the presence of local extrema.
Simulations in [18] illustrate that such convergence is indeed
achieved. We note that since the static mappingQ(·) is
not known, it is in general not possible to checka priori
whether Assumption 7 holds, let alone analytically compute
the values ofa∗, ε∗, δ∗ andω∗. However, our result suggests
that if there is some evidence that Assumptions 6 and 7 may
hold, then increasing sufficientlya0 and reducing sufficiently
ε, δ and ω will indeed result in global convergence. In
practice, determining how largea0, ε, δ, ω should be, may
have to be determined through experiments.

The stability result of Theorem 3 is different from the
stability result in [17, Theorem 1], where the closed-loop
system is proved to be SPA stable, uniformly in the tuning
parameters: the amplitude of the sine wave dithera and δ.
First of all, in Theorem 3, the initial value of the amplitude
of the dither plays an important role in the proposed ES feed-
back scheme to guarantee that the output of the system (25)
converges to the global extremum semi-globally practically.
Such an initial valuea0 is also a tuning parameter in the
proposed ES feedback scheme. Secondly,a0 does affect the
convergence speed asβθ andβx are dependent on the choice
of a0, though analyzing howa0 affects the convergence
speed is much more difficult than other parameters. Thirdly,
Theorem 3 clearly indicates that the choice ofε∗ depends on
the choice ofa0 and the choice ofδ∗ depends on the choice
of ε and the choice ofω∗ depends on the choice ofδ.

A consequence of Theorem 3 is that we can tune the
extremum seeking controller to achievelim supσ→∞ |θ(σ)−
`(a(σ))| ≤ ν from an arbitrarily large set of initial conditions
and for arbitrarily smallν > 0. Moreover, from (28) it is
obvious that there existsβa ∈ KL with βa(s, 0) = s, such
that for all a(σ0) = a0 ∈ R>0 we have:

|a(σ)| ≤ βa(a(σ0), ε · δ · (σ − σ0)), ∀σ ≥ σ0 ≥ 0 , (36)

and sincè (·) is continuous and̀(0) = θ∗, it follows that

lim
σ→∞

`(a(σ)) = θ∗ ⇒ lim sup
σ→∞

|θ(σ) − θ∗| ≤ ν ,



which implies semi-global practical extremum seeking since
θ∗ is the global extremum ofQ(·). In the time “t”, (36)
becomes

|a(t)| ≤ βa(a(t0), ω · ε · δ · (t − t0)), ∀t ≥ t0 ≥ 0. (37)

Note that sinceQ(·) is continuous, then for anyν > 0,
there existsν1 > 0 such that

|θ̂| ≤ ν1 =⇒ |Q(θ̂(t)) − θ∗| = |y(t) − y∗| ≤ ν . (38)

Theorem 3 can be interpreted as follows. For any(a0, ∆, ν1),
where a0 > a∗, ν1 is defined in (38), we can adjustε,
δ and ω appropriately so that for all|z(t0)| ≤ ∆, where

z
4
=

[
x − l(θ̂)

θ̂ − `(a)

]
, we have thatlim sup

t→∞

|y(t) − y∗| ≤ ν.

In other words, the output of the system can be regulated
arbitrarily close to the global extremum valuey∗ from an
arbitrarily large set of initial conditions by adjusting the
parameters(ω, δ, ε, a0) in the controller. This is despite the
possible presence of local extrema (cf. Assumption 6).

The system model (26) suggests a three-time-scale dynam-
ics whenω, δ and ε are very small. Indeed, the solutions
first converge to a small neighborhood of the setX :=
{(x, θ̂) : x − l(θ̂) = 0} (fast transient) and then with the
speed proportional toω · δ to a neighborhood of the set
L := {(θ̂, a) : θ̂ − `(a) = 0} (medium transient) and then
with the speed propositional toω · δ · ε to a neighborhood of
the point(θ, a) = (θ∗, 0) (slow transient). Moreover, during
the slow transient, the solutions stay in aν-neighborhood of
the setX .

Example 2 Assumption 7 is crucial to prove the global
convergence of the proposed scheme. From the result of
Theorem 3,θ̂ converges tò (0). If `(0) is not the global
extremum, the output of the overall system would converge to
a local extremum. An illustrative example is used to show that
global extremum seeking can be achieved by the proposed
scheme in Figure 4 in the presence of local extrema. Consider
the following dynamic system

ẋ1 = −x1 + x2, ẋ2 = x2 + u, y = h(x), (39)

where h(x) = −(x1 + 3x2)
4 + 8

15 (x1 + 3x2)
3 + 5

6 (x1 +
3x2)

2 + 10. The control input is chosen as

u = −x1 − 4x2 + θ . (40)

Moreover, we haveQ(θ) = −θ4 + 8
15θ3 + 5

6θ2 + 10 that
has a global maximum atθ∗ = 1 and a local maximum at
θ̃∗ = −0.6 as seen in Figure 5. Hence, Assumption 6 holds.
The bifurcation diagram in Figure 5 implies that Assumption
7 also holds. First, we use the extremum seeking scheme from
Section III, in which the amplitude of the sinusoidal signal
is fixed to be smalla = 0.1. The initial condition is chosen
to be θ̂(0) = −1 such that the local maximum̂θ = −0.6
lays between the initial condition and the global maximum.
By choosingε = 1, δ = 0.005, ω = 0.1, x1(0) = x2(0) = 0,
the simulations show that the extremum seeking scheme is
stuck in the local maximum̃θ∗ = −0.6, see Figure 6.
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Fig. 5. A 4th-order polynomial and its bifurcation diagram for which
Assumption 7 holds.
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Fig. 6. The performance of the extremum seeking feedback scheme when
a = 0.1 is fixed.

All conditions in Theorem 3 hold and hence the conclusion
of Theorem 3 holds. Letg(a) = a, a0 = 3, which turns
out to be sufficiently large (see Figure 5), using the same
parameters as above,θ̂(t) converges to a small neighborhood
of the global maximumθ∗ = 1 (the global extremum) as seen
in Figure 7. This example shows that the proposed scheme
can ensure that global extremum seeking is achieved despite
the existence of local extrema.
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Fig. 7. The performance of the proposed ES feedback scheme.

V. D ITHER SHAPE EFFECTS

In this section, we consider a static mappingh(·) with
the first order extremum seeking controller from Section
III, see Figure 8. Our goal is to consider the effects of the
shape of the dither signald(t) on convergence properties
of the algorithm. We present the main result in [19] that
describes in detail how different dithers affect the domainof



attraction and speed of convergence, as well as the accuracy
of extremum seeking control. It is shown that the square wave
produces the fastest convergence among all signals with the
same amplitude and frequency, if the amplitudea and the
parameterδ in the controller are sufficiently small. Moreover,
it is shown that in the limit as the amplitude is reduced to
zero, all dithers yield almost the same domain of attraction
and accuracy.

s
ωδωδωδωδ

)(td

××××+

)(xhy =

x̂
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Fig. 8. A peak seeking feedback scheme with arbitrary dither.

The model of the closed loop system in Figure 8 is:

ẋ = δ · ω · h(x + d(t)) · d(t), (41)

where h : R → R is sufficiently smooth. The signal
d(·) is referred to as “dither” andδ > 0 and ω > 0
are parameters that the designer can choose. We use the
following assumptions:

Assumption 8 : There exists a maximumx∗ of h(·) such
that

Dh(x∗) = 0; D2h(x∗) < 0 . (42)

Assumption 9 Dither signalsd(·) are periodic functions of
period T > 0 (and frequencyω = 2π

T
) that satisfy:

∫ T

0

d(s)ds = 0;
1

T

∫ T

0

d2(s)ds > 0; max
s∈[0,T ]

|d(s)| = a;

wherea > 0 is the amplitude of the dither.

The parameterω in (41) is chosen to be the same as the
frequency of the dither signal.

For comparison purposes, three special kinds of dither are
used repeatedly in our examples: sine wave, square wave and
triangle wave. The sine wave is defined in the usual manner.
The square wave and triangle wave of unit amplitude and
period2π are defined as follows:

sq(t) :=

{
1, t ∈ [2πk, π(2k + 1))
−1, t ∈ [π(2k + 1), 2π(k + 1))

tri(t) :=






2
π
(t − 2πk), t ∈ [2πk, π(2k + 1

2 ))
2
π
(−t − π(2k − 1)), t ∈ [π(2k + 1

2 ), π(2k + 3
2 ))

2
π
(t − π(2k + 2)), t ∈ [π(2k + 3

2 ), 2π(k + 1))

Note that by definition, the signalssin(t), sq(t) and tri(t)
are of unit amplitude and period2π. We can generate similar
signals of arbitrary amplitudea and frequencyω, e.g.,a ·
sq(ωt). We will often use the “power” (average of the square
of the signal) of the normalized dithers (unit amplitude and
period2π):

Psq = 1; Psin =
1

2
; Ptri =

1

3
(43)

In general, we usePd to denote the power of dithersd(·) with
amplitude equal to1 and period2π. The power for ditherd(·)
with amplitudea 6= 1 is equal toa2Pd. We emphasize that
our results apply to arbitrary dithers satisfying Assumption
9.

Remark 1 Assumption 9 is needed in our analysis that is
based on averaging of (41). We note that most extremum
seeking literature (see [2]) uses dither signals of the form
d(t) = a sin(ωt) which obviously satisfy our Assumption 9.

Introducing the coordinate changẽx = x − x∗, we can
rewrite (41) as follows:

˙̃x = δωh(x̃ + x∗ + d(t)) · d(t) =: δωf̄(t, x̃, d). (44)

It was shown in Section III that under a stronger version
of Assumption 8 (uniqueness of the maximum) and with
the sinusoidal ditherd(t) = a · sin(ωt), whereω = 1 (that
satisfies Assumption 9) we have that for any compact setD
and anyν > 0 we can chose the amplitude of the dither
a > 0 and δ > 0 and find a classKL function β, which
depends onδ andd(·), such that the solutions of the closed
loop system (44) satisfy:

|x̃(t0)| ∈ D =⇒ |x̃(t)| ≤ β (|x̃(t0)|, t − t0) + ν, (45)

for all t ≥ t0 ≥ 0.
Note thatD, ν and β are performance indicatorssince

they quantify different aspects of the performance of the
extremum seeking algorithm. We will show later that each
of these indicators is affected by our choice of ditherd(·)
and the parameterδ > 0. In particular, we have that:

• Speed of convergenceof the algorithm is captured by
the functionβ. Obviously, we would like convergence
to be as fast as possible.

• Domain of convergenceis quantified by the setD.
In particular, we would like to make the domain of
convergence (attraction) as large as possible.

• Accuracy of the algorithm is quantified by the number
ν > 0 since all trajectories starting in the setD
eventually end up in the ballBν , where we have that
|x(t) − x∗| ≤ ν. Indeed, the smaller the numberν,
the closer we eventually converge to the maximumx∗

(hence, the accuracy of the algorithm is better).

It turns out that a direct analysis of the system (44) to
estimateD, ν, β is hard but the system can be analyzed via



an appropriate auxiliary averaged system. We will carry out
such an analysis in the next section.

Consider the following auxiliary gradient system:

ζ̇ = Dh(ζ + x∗) . (46)

Because of Assumption 8, the system (46) has the property
that x∗ is an asymptotically stable equilibrium2. Let D
denote the domain of attraction ofx∗ for the system (46)
and note that sinceh(·) is assumed smooth, the setD is
a neighborhood ofx∗. In other words, a consequence of
Assumption 8 is that there existsβ ∈ KL and a setD such
that for all t ≥ 0 the solutions of (46) satisfy:

ζ0 ∈ D ⇒ |ζ(t)| ≤ β(|ζ0|, t) (47)

Using this auxiliary system, we can state our main result:

Theorem 4 Suppose that Assumption 8 holds and consider
the closed loop system (41) with an arbitrary ditherd(·)
for which Assumption 9 holds, wherea > 0 is the dither
amplitude. LetD andβ come from (47). Then, for any strict
compact subset̂D of D and anyν > 0, there existsa∗ > 0
and δ∗ > 0 such that for anya ∈ (0, a∗], δ ∈ (0, δ∗] and
any ω > 0 we have that solutions of (41) satisfy:

x̃0 ∈ D̂ ⇒ |x̃(t)| ≤ β
(
|x̃0|, δωa2Pd(t − t0)

)
+ ν (48)

A sketch of proof of Theorem 4 can be found in [19].
We emphasize that the auxiliary gradient system (46)

plays a crucial role in terms of achievable performance
of the extremum seeking controller. Indeed,D and β are
independentof the choice of dither and Theorem 4 specifies
how they affect the achievable domain of attractionD̂ of the
closed loop (41), as well as the speed of convergence via the
function β.

We now discuss Theorem 4 in more detail to explain how
dither shape affects the domain of attraction, accuracy and
convergence speed of the closed loop system. We note that
the controller parameter(a, δ) needs to be tuned appropri-
ately in order for Theorem 4 to hold.

Domain of attraction:It is shown that any dither satisfying
Assumption 9 can yield a domain of attraction̂D that is
an arbitrary strict subset of the domain of attraction of the
gradient system (46) ifa and δ are sufficiently small. We
emphasize thatω > 0 can be arbitrary anda and δ do not
depend on it.

Accuracy: The ultimate bound that is quantified by the
number ν can be made arbitrarily small by any dither
satisfying Assumption 9 ifa and δ are sufficiently small.
Hence, in the limit, all dithers perform equally well in terms
of domain of attraction and accuracy.

Convergence speed:We emphasize thatβ in (48) is the
same asβ in (47) for any ditherd(·). The main difference in
speed of convergence comes from the scaling factor within
the functionβ:

δ · ω · a2 · Pd , (49)

2Moreover, all local maxima ofh(·) are asymptotically stable equilibria
of (46) and all local minima ofh(·) are unstable equilibria of (46).

whereδ is a controller parameter,a andω are respectively
the amplitude and frequency of dither andPd is the power of
the normalized dither (with unit amplitude and period2π).
Note also thatωδ is the integrator constant in Figure 8. Also,
note that Theorem 4 holds for sufficiently smalla andδ that
are independent ofω which is an arbitrary positive number.
Obviously, if the product (49) is larger than1 then the closed
loop system (41) converges faster than the auxiliary gradient
system (46). Similarly, if the product (49) is smaller than1,
the system (41) converges slower than the gradient system
(46).

The first observation is that for sufficiently smalla andδ
the bound in Theorem 4 holdsfor any ω. Hence, for fixed
a, δ and Pd we have that the larger theω, the faster the
convergence. In other words, Theorem 4 shows that in our
case study we can achieve arbitrarily fast convergence of
the extremum seeking closed loop by makingω sufficiently
large. Simulations in Example 3 verify our analysis. We
also emphasize that this result is in general not possible to
prove for general dynamic plants. For instance, the results
in Sections III and IV that are stated for general dynamical
systems provide a similar bound as in (48) under the stronger
assumption thatω is sufficiently small.

Suppose now thata, δ and ω are fixed and we are only
interested in how the shape of dither affects the convergence.
As we change dither, its (normalized) powerPd changes and
as we can see from (43) that the square wave will yield
twice larger normalized power than the sine wave and three
times larger power than the triangle wave. Consequently, we
can expect twice faster convergence with the square wave
than with the sine wave and three times faster convergence
than with the triangle wave. Simulation results in Example
4 that we present in the sequel are consistent with the above
analysis.

Note that Theorem 1 is a weaker version of Theorem 4
for the sine wave dither only. Indeed, Theorem 1 does not
consider arbitrary dither and the domain of attraction and
convergence estimates are not as sharp as in Theorem 4.
For instance, the relationship of convergence rate and the
domain of attraction to the auxiliary system (46) was not
shown in Section III as this was impossible to do using the
Lyapunov based proofs used to prove Theorem 1. On the
other hand, using the trajectory based proofs adopted in this
paper, we can prove tight estimates as outlined in Theorem
4. Moreover, in Theorem 1 it was not clear how the dither
powerPd affects the convergence rate of the average system.
Note that the functionβ in (48) is the same for any dither
satisfying Assumption 9 and the only difference comes the
parameters in (49). However, the values ofa∗ and δ∗ are
typically different for different dithers.

We note that one can state and prove a more general
version of Theorem 4 that applies to general dynamical plants
and in this caseh(·) is an appropriate reference-to-output
map. With extra assumptions on the plant dynamics, one can
use singular perturbation theory to prove this more general
result (see for instance [17] for a Lyapunov based proof in
the case of sine wave dither). However, in this case we will



need to require thatω is sufficiently small.
The following proposition is obvious and it states that

the power of the normalized square wave is larger than or
equal to the power of any other normalized dither satisfying
Assumption 9. In other words, for fixedδ and a for which
(48) holds, the square wave is guaranteed to produce the
fastest convergence over all dithers with the same amplitude
and frequency.

Proposition 4 Consider arbitrary d(·) satisfying Assump-
tion 9. Then, we have that the power of the normalized dither
satisfies:

0 < Pd ≤ Psq = 1 .

It has been shown in Theorem 4 that the convergence
speed of the extremum seeking systems depends on the
choice the dither shapePd, amplitudea and frequencyω
as well as δ. It also is shown that the domain of the
attraction and accuracy of all dithers are almost the same

as

{
a → 0
δ → 0

. In this part, we use examples to illustrate

various behaviors and simulations to confirm our theoretical
findings. Our results should motivate the users of extremum
seeking control to experiment with different dithers in order
to achieve the desired trade-off between convergence, domain
of attraction or accuracy.

The following example illustrates that increasing the fre-
quency of dither while keepinga, δ andPd the same yields
faster convergence.

Example 3 Consider the quadratic mapping

h(x) = −(x + 4)2 (50)

whereDh(x̃+x∗) = −2x̃. It is trivial to see that in this case
D = R and β(s, t) = se−2t (see Theorem 4). The dither is
chosen to bed(t) = a sin(ωt). Hence, from (43) we have
Psin = 1/2. The initial condition is chosen asx0 = −2.
When we fixa = 0.5 and δ = 0.1, the output response with
different frequencies is shown in Figure 9. It is clear that the
larger theω is, the faster the convergence is.
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Fig. 9. The output of the ES with different frequencies

Next, we will discuss the situation whenh(·) is a quadratic
mapping, where we assumeω = 1. Consider the simplest
possible case of quadratic maps:

h(x) = −x2 + a1x + a0 ,

we have that
Dh(x) = −2x + a1

and sincex∗ = a1

2 , we can write withx̃ := x − x∗:

Dh(x̃ + x∗) = −2x̃ .

Hence, the auxiliary gradient system (46) takes the following
form:

ζ̇ = −2ζ .

It is not hard to show that in this case for arbitrary ditherd(·)
satisfying Assumption 9 we have that the average system is
of the form:

˙̃x = −2a2Pdδx̃ . (51)

Hence, in this special case we have that the average system
for any dither satisfying Assumption 9 is globally expo-
nentially stable. Indeed, for square wave, sine wave and
triangular wave we have from (43) that the following holds
for all x0 ∈ R, t ≥ 0, respectively:

sq : |x̃(t)| = exp
(
−2a2δt

)
|x̃0|

sin : |x̃(t)| = exp
(
−a2δt

)
|x̃0|

tri : |x̃(t)| = exp

(
−

2

3
a2δt

)
|x̃0| .

The square wave produces the fastest speed of convergence
for the average system among all dithers with the same
amplitude. The same can be concluded for the actual system
using the proof of Theorem 4. This suggests that the square-
wave dither should be the prime candidate to use in the ES
system for fast convergence speed, although this dither is
rarely considered in the literature [2]. Indeed, all references
that we are aware of use a sinusoidal dither signal. The
simulation results shown in Example 4 illustrates that the
convergence speed of extremum seeking controller with the
square wave is fastest among all dithers with the same
amplitude.

Example 4 The simulation is done for the following system
whereω = 1:

ẋ = δh(x + d(t))d(t)

whereh(x) = −(x + 4)2. In the new coordinate,̃x = x −
x∗ = x + 4, we have

˙̃x = δh(x̃ + x∗ + d(t))d(t) = −δ(x̃ + d(t))2d(t).

The averaged system is given in (51). The simulation result is
shown in Figure 10, wherea = 0.1 andδ = 0.5. Simulations
show that the extremum seeking controller with the square
wave dither converges fastest.
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Fig. 10. The performance of the extremum seeking schemes of different
excitation signal

VI. EXTREMUM SEEKING OF BIOPROCESSES

In this section we consider the steady-states of biopro-
cesses that need to achieve an optimal trade-off between
yield and productivity maximization, see [4]. To illustrate
the ideas, consider a single irreversible enzymatic reaction
of the formX1 −→ X2 with X1 the substrate (or reactant)
and X2 the product. The reaction takes place in the liquid
phase in a continuous stirred tank reactor. The substrate is
fed into the reactor with a constant concentrationc at a
volumetric flow rateu. The reaction medium is withdrawn
at the same volumetric flow rateu so that the liquid volume
V is kept constant. The process dynamics are described by
the following standard mass-balance state space model:

ẋ1 = −r(x1) + (u/V )(c − x1) (52a)

ẋ2 = r(x1) − (u/V )x2 (52b)

where x1 is the substrate concentration,x2 is the product
concentration andr(x1) is the reaction rate (calledkinetics).
Obviously this system makes physical sense only in the non-
negative orthantx1 > 0, x2 > 0. Moreover the flow rateu
(which is the control input) is non-negative by definition and
physically upper-bounded (by the feeding pump capacity)
0 6 u 6 umax. In [4] we investigated two different cases
depending on the form of the rate functionr(x1). The first
one is the Michaelis-Menten kinetics which is the most basic
model for enzymatic reactionsr(x1) = vmx1

Km+x1

with vm the
maximal reaction rate andKm the half-saturation constant.
To normalise the model we usevmV and v−1

m as the units
of u and time respectively. We also assume that the process
is equipped with an on-line sensor that measures the product
concentrationx2 in the outflow. So the normalised model
becomes

ẋ1 = −
x1

Km + x1
+ u(c − x1) (53a)

ẋ2 =
x1

Km + x1
− ux2. (53b)

It can be readily verified that, for any positive constant input
flow rate ū ∈ (0, umax], there is a unique steady-statex̄1 =
ϕ1(ū), x̄2 = ϕ2(ū) that is globally asymptotically stable in
the non-negative orthant.

The industrial objective of the process is the production of
the reaction product. For process optimization, two steady-
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Fig. 11. Productivity and yield for system (53) withc = 3, Km = 0.1.
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Fig. 12. Overall performance indexJT for system (53) withc = 3,
Km = 0.1 andλ = 0.5.

state performance criteria are considered : theproductivity
JP is the amount of the product harvested in the outflow per
unit of timeJP := ūx̄2 = ūϕ2(ū); theyield is the amount of
product made per unit of substrate fed to the reactor:JY :=
x̄2

c
= ϕ2(ū)

c
. The sensitivity ofJP and JY with respect to

ū is illustrated in Figure 11. The process must be operated
at a steady-state that achieves a trade-off between yield and
productivity. To this end we define an overall performance
index as a convex combination ofJP andJY :

JT (ū) , λJP + (1 − λ)JY = ϕ2(ū)

[
λū +

1 − λ

c

]
(54)

for λ ∈ [0, 1]. This cost function is illustrated in Figure
12 where it is readily seen that it has a unique global
maximum u∗. The corresponding optimal steady-state is
naturally defined asx∗

1 = ϕ1(u
∗), x∗

2 = ϕ2(u
∗).

The kinetic rate functionr(x1), the dynamical model (52)
and the functionJT (ū) are unknown to the user while the
goal is to maximize the composite costJT = λux2 + (1 −
λ)c−1x2 but he does not know thatJT is a function ofū of
the form (54) shown in Figure 12. We apply the extremum
seeking scheme from Section III with the following definition



of the output and input:

y = h(x) := λux2 + (1 − λ)c−1x2; u := α(θ̂ + a sin(ωt))
(55)

wherex2 is measured,λ chosen by the designer andα(·)
is a sigmoid function (see [4]). In Figure 13 the operation
of the extremum seeking control algorithm is illustrated for
appropriately tuned parametersa = 0.02, Kδ = 1, ω = 0.1.
We see that there is a time scale separation between the
system itself and the climbing mechanism se predicted by
Theorem 1.
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Fig. 13. Extremum seeking for system (53) witha = 0.02, k = 1,
ω = 0.1.

The following corollary holds for all bioprocesses that
satisfy the following assumption:

Assumption 10 The following conditions hold: (i) For each
admissible value of the flow ratēu the system must have
a single globally asymptotically stable equilibrium; (ii)The
performance cost function must be single-valued and “well-
shaped” in the sense that, for the admissible range of flow
rate values0 6 ū 6 umax, it must have a single maximum
valueJT (u∗) without any other local extrema.

A direct consequence of Theorem 1 is the following:

Corollary 1 For any initial condition (x1(0) > 0, x2(0) >
0, θ0(0)) and for anyν > 0, there exist parameters(a, k, ω)
such that, for the closed-loop system(53), (55), (7), x1(t) >
0, x2(t) > 0, θ0(t) bounded and

lim sup
t→∞

(
|x1(t) − x∗

1| + |x2(t) − x∗
2| + |u(t) − u∗|

)
6 ν.

Note that the above corollary can be restated in the spirit of
Theorem 1 to guarantee semi-global practical convergence.
This is a stronger result than the main result in [22] that
deals only with local convergence.

It was shown in [4] that some bioprocesses may not satisfy
Assumption 10 and, in particular,JT may turn out to be
multivalued. Such situation is quite natural in the contextof
bioreactors and yet it is not covered with any of the presented
results. A preliminary analysis of this situation was givenin
[4] and we summarize below.

We consider again the simple model (52) but we now
assume that, in addition to the Michaelis-Menten kinetics,
the reaction rate is subject to exponential substrate inhibition.
The rate function is as follows:

r(x1) =
vmx1

Km + x1
e−bx

p

1

where b and p are two positive constant parameters. The
dynamical model is written:

ẋ1 = −
vmx1

Km + x1
e−bx

p

1 + u(c − x1) (56a)

ẋ2 =
vmx1

Km + x1
e−bx

p

1 − ux2 (56b)

Depending on the value of̄u ∈ (0, umax], the system may
have one, two or three steady-states (x̄1, x̄2) with x̄1 solution
of:

vmx̄1

Km + x̄1
e−bx̄

p

1 = ū(c − x̄1)

and x̄2 = c − x̄1.
The productvityJP = ūx̄2 is represented in Figure 14 as

a function ofū. In this example,JP is clearly a multivalued
function of ū. However it can be seen that it has a unique
global maximum for̄u = u∗. Moreover, the graph of Figure
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Fig. 14. ProductivityJP for system (56) withc = 3, vm = 2, Km = 1,
b = 0.08, p = 3.4.

14 can also be regarded as a bifurcation diagram with respect
to the parameter̄u where the solid branches correspond to
stable equilibria and the dashed branch to unstable equilibria.
Hence it can be seen that the maximum point is located on
a stable branch.

Here we assume that the industrial objective is to achieve
the maximization of the productivityJP . A fully satisfactory
operation of the extremum seeking control law (withy(t) =
u(t)x2(t)) can be observed in Figure 15 and Figure 16.

The result of Figure 15 is expected since we are in
conditions quite similar to the previous case of Section IV.
The result of Figure 16 is more informative since here the
convergence towards the maximum of the cost function is
operated in two successive stages. In a first stage, there
is a fast convergence to the nearest stable state which is
located on the lower stable branchfollowed by a quasi-
steady-state progression along that branch. Then, when the
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Fig. 15. Extremum seeking for system (56) witha = 0.003, k = 10,
ω = 0.01.
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Fig. 16. Extremum seeking for system (56) witha = 0.003, k = 6,
ω = 0.01.

state reaches the bifurcation point, there is a fast jump up
to the good upper branchand a final climbing up to the
maximum point. It is very important to emphasize here that,
in order to get the result of Figure 16, the amplitudea of the
dither signal must be large enough. Otherwise, the trajectory
of the closed loop system definitely remains stuck on the
lower branch at the bifurcation point as shown in Figure17.
On the other side, too large values of the dither amplitude

are also prohibited because they produce cyclic trajectories
as shown in Figure18. From all these observations, we can
conclude that by tuning the amplitude of the dither signal
properly, it is possible to pass through the discontinuities
of the stable branches of the cost function and to converge
to the global maximum. This further motivates tuning the
amplitude of dither in the extremum seeking controller.
While a preliminary analysis of this issue was presented
in [4], a careful analysis and tuning guidelines in this case
remain an open research problem.

VII. C ONCLUSIONS

A summary our recent results on dynamical properties of a
class of adaptive extremum seeking controllers was presented
and applied to a various models of a continuously stirred
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Fig. 17. Output signaly(t) : whena is too small, the trajectory is stuck
on the lower branch.
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Fig. 18. Extremum seeking for system (56) witha = 0.015, k = 6,
ω = 0.01.

reactor. Our analysis shows how various tuning parameters
in the extremum controller affect the overall convergence
properties of the algorithm. Such results will be useful to
practitioners since they provide controller tuning guidelines
that can ensure larger domains of attraction, faster conver-
gence or better accuracy of the extremum seeking algorithms.
Moreover, it was shown that global extremum seeking in
presence of local extrema can be achieved using appropriate
tuning of controller parameters.
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