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Abstract— This paper summarizes our recent work on dy-
namical properties for a class of extremum seeking (ES)
controllers that have attracted a great deal of research atntion
in the past decade. Their local stability properties were akady
investigated, see [2]. We first show that semi-global praatal
convergence is possible if the controller parameters are ce-
fully tuned and the objective function has a unique (global)
extremum. An interesting tradeoff between the convergence
rate and the size of the domain of attraction of the scheme
is uncovered: the larger the domain of attraction, the slowe
the convergence of the algorithm. The amplitude, frequencand
shape of the dither signal are important design parametersri
the extremum seeking controller. In particular, we show thd
changing the amplitude of the dither adaptively can be useda
deal with global extremum seeking in presence of local extrea.
Moreover, we show that the convergence of the algorithm is
proportional to the power of the dither signal. Consequenty,
the square-wave dither yields the fastest convergence amgn
all dithers of the same frequency and amplitude. We consider
extremum seeking of a class of bioprocesses to demonstratero
results and motivate some open research questions for multi
valued objective functions.

|I. INTRODUCTION

extremum seeking as one of the most promising adaptive
control methods [1, Section 13.3].

There are two main approaches to extremum seeking: (i)
adaptive control extremum seeking; (ii) nonlinear program
ming based extremum seeking. Adaptive control methods
provide a range of adaptive controllers that solve the ex-
tremum seeking problem for a large class of systems [2].
The controller makes use of a certain excitation (dither)
signal which provides the desired sub-optimal behaviour if
the controller parameters are tuned appropriately. On the
other hand, nonlinear programming based extremum seek-
ing methods combine the classical nonlinear programming
methods for numerical optimization with an approximate on-
line generation of the gradient of the objective function by
applying constant probing inputs successively [20].

The main goal of this paper is to report on our recent
results on stability properties of a class of adaptive extna
seeking controllers. The first local stability analysis loist
class of controllers was reported in 2000 by Krsti¢ and Wang
[10]. This seminal paper used techniques of averaging and
singular perturbations to show that if the adaptive extremu

In many engineering applications the system needs eking controller is tuned appropriately, then sub-oatim

operate close to an extremum of a givahjective (cost) func-

extremum seeking is achieved if the system is initialized

tion during its steady-state operation. Moreover, the objectivg|gse to the extremum.

function is often not available analytically to the desighet

We introduced a simplified adaptive scheme in [17] where

instead one can measure the value of the objective functignyas shown under slightly stronger conditions that non-

by probing the system.

local (even semi-global) extremum seeking is achieved if

Extremum seekings an optimal control approach thatthe controller is tuned appropriately. Moreover, by using t

deals with situations when the plant model and/or the cost g?ngL”ar perturbations techniques and averaging, we demon
optimize are not available to the designer but it is assumegrated that this simplified scheme operates on averags in it
that measurements of plant input and output signals aggw time scale as the steepest descent optimization scheme
available. Using these available signals, the goal is tigdes we reported a detailed analysis of this simplified scheme
an extremum seeking controller that dynamically searcties fin [17]. In [19] we analysed the flexibility in choosing
the optimizing inputs. This situation arises in a range abel the shape of the excitation dither signal to ensure faster
sical, as well as certain emerging, engineering applinatio convergence. It was shown for static maps that a square wave
Indeed, this method was successfully applied to biochdmicgither yields fastest convergence over all dither signat w
reactors [9], [4], ABS control in automotive brakes [8],the same amplitude and frequency. We reported conditions
variable cam timing engine operation [14], electromectani that ensure global extremum seeking in the presence of
valves [13], axial compressors [21], mobile robots [11]jpcal extrema in [18]. Adaptive schemes with multi-valued
mobile sensor networks [5], [12], optical fibre amplifiersppjective functions that arise, for instance, in biopreess
[7] and so on [2]. A good survey of the literature on thisyere investigated in [4]. Multi-valued functions pose some
topic prior to 1980 can be found in [16] and a more recendpen research questions that we briefly mention in the last
overview can be found in [2strom and Wittenmark rated section. In the sequel, we present an overview of our recent
results in [4], [17], [18], [19].

Mathematical preliminaries: We denote the set of real
numbers asR. Given a sufficiently smooth function :
RP — R, we denote itsi’* derivative with respect tg*"
variable asD’h(x1, . .., x;,). Wheni = 1 andj = 1 we write
simply Dh(z1,...,xp) := Di(z1,...,2,). The continuous
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function 8 : R>¢ x R>¢g — Ry is of classKL if it is wheref € R is a scalar parameter. The closed-loop system
nondecreasing in its first argument and converging to ze(8) with (4) is then
in its second argument. Given a measurable functiowe
define itsL., norm|| - || = esssup,s |z(t)]. x = f(x, a(x,0)). (5)
We will show in the next section that the closed loop

systems with an adaptive extremum seeking controller cal]'® requirementthatis scalar and that (3), (4) is SISO is to
be written as a parameterized family of systems: simplify presentation. Multidimensional parameter dimias
can be tackled, see [2].
x = f(t,x,€) , (1) We proposed in [17] a first order extremum seeking

, ) scheme (see Figurel) that yields the following closed loop
wherex € R", t € Ry ande € RS, are respectively dynamics:

the state of the system, the time variable and the parameter

vector. The stability of the system (1) can depend in an %
intricate way on the parameter and we will need the 4
following definition (see [17] for motivating examples): 0

f(x, a(x,0 + asin(wt))) (6)
kh(x)bsin(wt), @)

o ) . ) where(k, a, b, w) are tuning parameters. Compared with the
Definition 1 The system (1) with parameter is said 10 extremum seeking scheme in [10], the proposed extremum
be semi-globally practically asymptotically (SPA) stableseeking scheme in Figure 1 is simpler, containing only an

uniformly in (e1,...,¢;), j € {1,...,¢}, if there exists jntegrator (without low-pass and high-pass filters that are
p € KL such that the following holds. For each pair yseq in [10)).

of strictly positive real numbergA,v), there exist real
numberse; = &;(A,v) > 0,k = 1,2,...,7 and for
each fixede, € (0,¢5),k = 1,2,...,j there existe; =
Ei(El,Eg, - ,Ei_l,A,ll), with 7 = j + 1,j +2,... ,f, such
that the solutions of (1) with the so constructed parameters
e = (e1,...,&) satisfy: o x=f(xa(x.e) | Y
y=h(x)

x(@)] < B(xol; (e1-€2- -+ -e)t —to)) +v,  (2)

forallt > to > 0, x(tg) = %o With [xo| < A. If we have that
j = £, then we say that the system is SPA stable, uniformly

ine. 6
~ k )
. " ® — &)
Note that in Definition 1 we can construct a small “box” S
around the origin for the parametets, k = 1,2,...,j SO
that the stability property holds uniformly for all pararaet
in this box, whereas at the same time we can not do so for asin(wt) bsin(wt)

the parameters;,k = j + 1,...,l. Sometimes we abuse
terminology and refer t¢e; - - - €¢) in the estimate (2) as the
“convergence speed” (although the real convergence speed

depends also on the functigt).
Fig. 1. A first order extremum seeking controller

II. AN ADAPTIVE CONTROL SCHEME

Consider the system:

X = f(X7 u)a Yy= h(X) ) 3

wheref : R” x R — R™ andh : R" — R are sufficiently

smooth. x is the measured state; is the input andy

is the output. We suppose that there exists a unigtie

such thaty* = h(x*) is the extremum of the map(-).

Due to uncertainty, we assume that neitls&rnor i(-) is

precisely known to the control designer. The main objectivAssumption 1 There exists a functioh: R — R™ such that

in extremum seeking control is to force the solutions of thd (X, a(x,8)) = 0 if and only if x = 1(6).

closed loop system to eventually convergextoand to do

so without any precise knowledge abotlt or A(). Assumption 2 For eachd € R, the equilibriumx = 1(4) of
Consider a family of control laws of the following form: (5) is globally asymptotically stable, uniformly th

u=a(x,6), (4)

IIl. GLOBAL EXTREMUM SEEKING IN ABSENCE OF
LOCAL EXTREMA

In this section we summarize results from [17] that provide
guarantees for SPA stability under the following assump-
tions:



Assumption 3 Denoting Q(-) = h o 1(-), there exists a parametew? - k affects the convergence speed. The smaller
uniqued* maximizingQ(-) and, the following holds a® - k, the slower the convergence and the larger the domain
of attraction.

*\ 2 *
DQ(9*> =0 D7) <0 (8) Note that sinceh(-) is continuous, then for any > 0,
D" +¢<0  V(#0. (9) there exists/; > 0 such that
Note that (9) in Assumption 3 guarantees that there do not IX| <vy = |h(x+x")—y*|<v. (14)
exist any local extrema. We will consider the case with local .
extrema in the next section. Theorem 1 can be interpreted as follows. For ddy; v)
Introduce the change of the coordinatés— x — x*, We can adjuste so that for all|z] < A we have that
6 = 6 — 6* and the system takes the form: lim sup [y (¢) — 7| < v. In other words, the output of the
5 = P&+ alk+ X0+ 0"+ o sin(wt))) system can be regulated arbitrarily close to the extremum

. value y* from an arbitrarily large set of initial conditions
0 = kh(x+x")bsin(wt). (10) by adjusting the parametessin the controller. In particular,
the parameters are chosen so that Definition 1 holds with

i _ N A (A, 1) andr is defined in (14).
pointof the system (6), (7). We introdude= Wik, o = wt, Theorem 1 is a stronger result than [10, Theorem 1] since
wherew ands are small parameters aiid > 0 is fixed. The e prove SPA stability, as opposed to local stability in [10]
system equations expanded in timeare: However, our results are stated under stronger assumptions

Note that the pointx*, 6*) is in generahot an equilibrium

dx . s . 5 s . (Assumptions 1-3) than those in [10]. Assumptions 1-3
wo = f&+x%aE+ x50 467 + asin(0))) appear to be natural when non-local stability is investigat

do B _ Moreover, we note that it is not crucial in Assumptions 1 —

do SKh(X +x")bsin(o). (11) 3 that all conditions hold globally. For instance, instedd o

The system (11) has the form (1) where the parametervectrgrqulrlng (9) in Assumption 3, we can assume:

is defined ag := [a b § w]T. For simplicity of presentation DQO* +¢)¢C <0 VCeD, (#£0, (15)
in the sequel we lek = o and
where D is a bounded neighborhood éf. We note that

e:=[a?dw" . (12)  these conditions are not very restrictive, whereas theioal

The system (11) has a two-time-scale structure and our firgsion is (Assumptions 2 and 3). Indeed, if the maximum

main result is proved by applying the singular perturb&tion‘s isolated and all functions are sufficiently smooth, we can
and averaging methods (see [17]). conclude that the condition (8) implies that there exists a

setD satisfying (15). Similarly, we could assume only local

Theorem 1 Suppose that Assumptions 1, 2 and 3 hoId.Theﬁ',[at_’i”ty in Assumption 2. If all of our assumptions were
the system (10) is SPA stable, uniformly(irt, §). regional (as opposed to global) we could still state SPA
] stability with respect to the given bounded region.

The proof of Theorem 1 in [17] provides an interesting
Theorem 1 provides the parameter tuning guidelines sinceiiitsight into the way the extremum seeking controller oper-
shows that to achieve a certain domain of attraction one firates. The parameter is used to separate time scales be-
needs to reduce andé sufficiently and then for fixed values tween the plant (boundary layer) and the extremum seeking
of these parameters reduce sufficiently. Hence, one can controller (reduced system), where the plant states ate fas
achieve any given domain of attraction but the convergenead they quickly die out (Assumption 2). Using the singular
speed will be reduced simultaneously (cf. Definition 1).sThiperturbation method, we obtain that the reduced system in
tradeoff was first observed in [17]. In the convergence speddde variable #,.” in time “o = wt” is time varying and it
analysis of the extremum seeking scheme, the “worst caskas the form:
convergence speed is considered. That is, the convergence g . .
speed of the overall system depends on the convergence - = [£adQ(0" +0: +asin(o))sin(o) (16)
speed of the slowest sub-system. The first order extremufrgr which we introduce an *

seeking controller (10), according to Theorem 1, yields the averaged” system:

following stability bound: dgav _ §a25 - DQO" + ) - (17)
g
2(t)] < B(z(to)l, (a*6w)(t — to)) + v, )
(t — to) H_ence, the averaged system (17) can b_e regarded as thg_ gra-
= p <|z(t0)|, (an)T> + v, (13) dient system” whose globally asymptotically stable etpili

rium 6* corresponds to the global maximum of the unknown
map @ (Assumption 3).

As already indicated, the first order extremum seeking
scheme works on average as a “gradient search” method.
Iwithout loss of generality we assume that the extremum isxirman.  Both the excitation signal and the integrator are necessary

for all t > to > 0 and |z(to)| < A, wherez 2 (xT,4T)"
and k&, K were defined before. SincE > 0 is fixed, the



to achieve this. The excitation signakin(wt) is added to through the decrease of2 as 2 decreases to zero as

system (3) to get probing while the multiplication (modula-decreases. Moreover, it is sometimes possible to achiéve th

tion) of output and the excitation signal extracts the ggatli in a manner that will guarantee SPA stability, uniform in

of the unknown mappin@)(-). The role of the integrator is e, see [17]. A condition that is needed for this to hold is

to get on average the steepest decent along the gradientsafnmarized in the next assumption.

Q(-). Hence, the first order scheme is the simplest controller

structure that achieves extremum seeking. Assumption 5 Let the gainsyg,v2 come from Propositions
Note that we did not prove SPA stability, uniform in thel and 2. Assume that there exisise K., such that for

whole vectore in Theorem 1 for system (10) with parameterany 0 < s; < s2 there existw* and a* such that for all

. To prove such a result we need a stronger assumptionw € (0,w*), a € (0,a*) and s € [s1, s2] we have that the

following small gain conditions hold:
Assumption 4 We have that (8) holds and there exists € 1 o 9 1
Koo such thatDQ(8* + ¢)¢ < —ag(|C]) for all ¢ € RT e <s aZerd(s) <09 <.

Next we will use Assumptions 4 and 5 that will be statedThe following result was proved in [17]:

below after some auxiliary results are presented to pro
semi-global stability results uniform in the parameter
We introduce “boundary layer” using := x — 1(0* + 0+
asin(o)) =: x—1(6 4+ asin(o)) and rewrite (11) in the time
scale “t” as follows: Note that the conditions (22) do not imply each other,
VY- . = . Y as can be easily seen from the case whém v (s) =
E +100 ir aflfl(a))’e +asin(0)) +wa~A1 (18) 57, ¢ > 1 and~3 o +?(s) = s, p > 1 in which case the
0 = adKhol(0 + asin(0))sin(o) +adAz,  (19)  conditions (22) become respectivelf (wa?* (v5(s))?) <

wheref(x, 0) := f(x+x", a(x+x*,0*+0)), h(x) := h(x+ 53N (wa'~? (44(s))") < s. Itis obvious, that in the first

x*) andA,, A, are appropriate functions that depend on th&ase we can choose and a independent of each other so

state variables, parameters and time (see [17]). We considgat the first condition in (22) holds, whereas it is impolgsib
the system (18), (19) as a feedback connection of t do so for the second condition in (22). This also illussat
systems. It was shown in [17] that under our assumptions, t at conditio_ns Og Asesumption ° may not hold for some gains.
two systems are input to state stable (ISS) in an appropri%flea” the gainsyi,43,7f,73 are linear then Assumption 5
sense (see [15]): olds. In particular, the small gain conditions (22) become
independent of, and can be achieved by reduciagonly.

Proposition 1 Suppose that Assumption 4 holds. Then, there It is an open question whether t_here 'S a genuine gap
exist 3, € KL and for anyA; > v, > 0 andw* > 0 there between Theorems 1 and 2, that is whether there exists

existy?, 74 € Koo, a* > 0 and§* > 0 such that for alla & an e>.<'?1mple satisfying all cpnditions of Theorem 1 bufc not
(0,a%), 6 € (0,6%), w € (0,w*) and max{|dol, [[X|[} < A: conditions of Theorem 2 tha not SPA stable uniformly in

(22)

YFheorem 2 Suppose that Assumptions 1, 2, 4 and 5 hold.
Then, the closed-loop system (10) is SPA stable, uniformly
ine=(a?6,w). O

X =

with 6 := (o) we have that the solutions of the subsysterf

19) satisfy: .
(19) bt Example 1 Consider the system:

0(t)] < max {51(|90|,(a 5w)(t*t<)))a’75(||x||),l/1}7 (20) i o= a4 4du y——(z+42 . (23)
for all ¢ > to > 0, wherenz (s) := 17 (£44(s)). O Let the control input be: = 6. Then, using our notation we

haved* = -2, z* = —4 and y* = 0. We choose the initial
Proposition 2 Suppose that Assumptions 1 and 2 holdvalue z(0) = 2 that is far away from the optimal value
Then, there exist), € KL and for any positiveAs, v,  z* = —4. Let §(0) = 0. We present simulations for various
a* and 0 there existyi,7; € Ko and w® > 0, such values ofa, §,w to illustrate that the speed of convergence,
that for all @ € (0,a*), 6 € (0,6") w € (0,w*) and  the domain of attraction and the accuracy of the algorithm
max{|Xol,[|0]|} < A, with %o := X(t9), we have that the indeed depend on the parameters as suggested by Theorems
solutions of the subsystem (18) satisfy: 1 and 2.
e s (s =10 200}, WGP O e B B e
for all ¢ >ty > 0, wheren2(s) := 77 (wars(s)).  the scheme is shown ir_] Figure 2 whézé= |(Z,0)| and
and @ are the same as in Equation (10). It can be seen that,
Note that the ISS gaingt and+Z in Propositions 1 and the statez converges to the neighborhood of the origin. The
2 depend om: and w. Moreover, the gainy2 increases to output also converges to the vicinity of the extremum value.
infinity as a is reduced to zero. Typically, this behaviorWe increase: such thata = 0.6 while keeping) = 0.5 and
leads to lack of stability in the interconnection. Howeverw = 0.5. Increasinga will get a fast convergent speed, while
in this case, it is possible to counteract this increasegof the domain of the attraction would be smaller. It can be seen



clearly from Figure 2 that, though botj(¢) and|z| converge The extremum seeking feedback scheme in Figure 4 was
very fast, they converge to a mutdrger neighborhood of proposed in [18] to deal with this problem. One of the main
their optimal values. differences between this scheme and the one in the previous
section is that the amplitude of the excitation signal inuf&y

4 is time varying, whereas in Figure 1 the amplitude is fixed.

a=0.3,5=0.5, w=0.5 a=0.6,5=0.5, w=0.5

O Ao 0 The model of the system in Figure 4 can be written as
-0.05 -0.05 i A
7 ) x = f(x,a(x,0+a-sin(w-t)))
0 = w-6 h(x)- sin(w-t)
a = —w-6-e-g(a), a(0) =ap, (25)

0.5

0.4

whereg(-) is a locally Lipschitz function that is zero at zero
and positive otherwise. The simplest choicegia) = a.
Heree, w, § anday are to be chosen by the designer.

0.3

0.2

0.1

o

o

g [x=txax.0)]| vy
y=h(x)

Fig. 2. The performance of the simplest extremum seekingraeh

wo
a=0.3,5=0.25, w=0.5 a=0.3,5=0.75, w=0.5 —
0.05 0.05 S
o}w\{]"[llll"" Ll O hrype
-0.05 -0.05 X )€ 1
oa o sin(at)
-0.15 -0.15
a=—-&gwdg(a),a0) =
02 200 400 600 025 200 400 600 ( ) ( ) 20
0.5 0.5
04 =~ 04 =" Fig. 4. A global extremum seeking feedback scheme.
“’U\M,u Denotinge = w - t, the equations (25) in times” are:
0.1 0.1
DD 200 400 600 00 200 400 600 w . g—; = f(x’ a(x’ é + a Sin(o’)))
Fig. 3. The performance of the simplest extremum seekingraeh 9 = §-h(x)- sin(o)
d
Ge = —e-0-g(a), a(0)=ao. (26)

Next, we fixa = 0.3 andw = 0.5. First, we let§ = 0.25 L . ,
and observe that the stateconverges to the neighborhood '"€ System (26) is in standard singular perturbation form,
of the origin, see Figure 3. The output also converges to thihere the singular perturbation parameterisTo obtain
vicinity of its extremum value. Then, we incredge be0.75 e fast and slow systems, we set= 0 and *freeze"x at
and observe that the convergence speed has increased, $8e€quilibrium’, x = 1(6+a-sin()) to obtain the “reduced”
Figure 3. However, when we further increas¢o be larger SyStém in the variable@, a) in the time scaler = w - #:

than 1.40 unstable performance is observed.
0 uns P 1S ObS 99 = 5-Q(0+a-sin(0)) sin(o) =6 - pu(o,0,a) (27)
IV. GLOBAL EXTREMUM SEEKING IN PRESENCE OF g_a =—c-6-g(a), a(0) =ag, (28)

LOCAL EXTREMA

In this section, we summarize the results from [18] wher&here Q(-) = h o 1(:) is the output equilibrium map (cf.
global extremum seeking was investigated for objectivéSsumption 6). We can write the “averaged” system of (27)
functions that have local extrema. In particular, we use thay using:
following assumption:

Hav(0, @) == o (?Wﬂ(t797a>dtv (29)
Assumption 6 There exists a unique global maximur e
R of Q(-) such that where u(-,-,-) comes from (27). Indeed, using the above
X » definition, we can analyze the closed loop system ((27)}(28)
Q07) > Q), YIER, 006" (24) via the auxiliary “averaged” system:

Assumption 6 implies that besides the global maximum

i~ 0
6* there may also exist local maxint. It is weaker than %= 0 pav(8a) (30)
Assumption 3 that does not allow for local maxima. da — —§.cg(a), a(0)=ap>0. (31)



By introducing the new time- := ¢ - § - o, we can rewrite Theorem 3 Suppose that Assumptions 1, 2, 6 and 7 hold.

the above equations as follows: Then, for any strictly positivéA,v) and ap > a* there
» exist L functionsfy, Bp and e* = *(ag, A,v) > 0 and

e g = Ha(fa) for any ¢ € (0,¢*) there existsd* = §*(¢) > 0, for any

9 = —g(a), a(0)=ao>0, (32) 4 € (0,6%(e)) there existsw* = w*(5) > 0 and for any

suchag, ¢, § € (0,0*) andw € (0,w*), we have that for all
{te(t0), 6(t0), alto)) satistyinga(to) = ao, |0(to) — ¢(ao)| <
A, |x(to) —1(0(t0))| < A and all t > ¢, > 0 the solutions
of the system (25) satisfy:

that are in standard singular perturbation form. Howeve
there are several differences with the classical singutar p
turbation literature. In our case the equation:

0= pav(0,a) (33) . .
() =16 < B (Ix(to) = UB()) (¢~ t0)) + v,
may not havek isolatedreal rootsf = ¢;(a). Indeed, some . -
of the real roots may only be defined ferc [0,a] and such () — Llat)] = Fo (Wto) — Ua(to))], wi(t — to)) tv.
that for somei andj we havel;(a) # ¢;(a),a € [0,a) and 0
¢;(a) = ¢;(a). Moreover, it shown in [18] that there exists a
continuous functiorp(¢, a) such that: Theorem 3 presents a tuning mechanism for the controller
faw(0,a) = a - p(6, a) (34) parameters (choice ab,d, <) and its initialization (choice

of ag) that guarantees semi-global practical convergence to
and this means that we will be unable to prove stability ofhe global extremum despite the presence of local extrema.
the “boundary layer” systeraniform ina that is a standard Simulations in [18] illustrate that such convergence isied|
assumption in the singular perturbation literature. Nds® a achieved. We note that since the static mappipg) is
that we are interested in convergence properties of thiet known, it is in general not possible to cheakpriori
system initialized from a set of initial conditions satisfy whether Assumption 7 holds, let alone analytically compute
a(0) = ap which is a weaker property from the standardhe values ofi*, £*, §* andw*. However, our result suggests
stability properties considered in the singular pertudmat that if there is some evidence that Assumptions 6 and 7 may

literature. hold, then increasing sufficiently, and reducing sufficiently
Another assumption that characterizes solutions of the ¢ and w will indeed result in global convergence. In
equation (33) is needed in the main result. practice, determining how largey, ¢, d,w should be, may
have to be determined through experiments.
Assumption 7 There exists an isolated real root§ = The stability result of Theorem 3 is different from the
¢(a) : R>9 — R of the equation (33) such that: stability result in [17, Theorem 1], where the closed-loop
1) ¢ is continuous andD;p(£(a),a) < 0, Ya > 0, where system is proved to b_e SPA stable3 uniformly _in the tuning
p(0,a) is defined in (34). parameters: the amplitude of fch.e. sine wave dithemd 5
2) There exists:* > 0 such that for alla > a*, § = ¢(a)  First of all, in Theorem 3, the initial value of the amplitude
is the unique real root of (33). of the dither plays an important role in the proposed ES feed-
3) £(0) = 6*, where¢* is the global extremum, which Pack scheme to guarantee that the output of the system (25)
comes from Assumption 6. converges to the global extremum semi-globally practjcall

Such an initial valuesy is also a tuning parameter in the
Before showing the stability properties of the closegroposed ES feedback scheme. Secondjydoes affect the
loop system (25), the following proposition shows stapilit convergence speed As and 3y are dependent on the choice
properties of the “reduced” system (27)-(28). of ag, though analyzing how, affects the convergence
speed is much more difficult than other parameters. Thirdly,
Proposition 3 Suppose that Assumptions 6 and 7 holdTheorem 3 clearly indicates that the choicectfdepends on
Then, for any strictly positivéA,v) and ag > a* there the choice ofay and the choice of* depends on the choice
exist 3 = Bu,.n., € KL ande* = e*(ag, A,v) > 0 and for of € and the choice of* depends on the choice of
anye € (0,e*) there existsy* = §*(¢) > 0 such that for any A consequence of Theorem 3 is that we can tune the
suchag, e andé € (0,5*) we have that for al(f(oy), a(o))  extremum seeking controller to achiee sup,, ., [0(o) —
satisfyinga(cy) = ag and |0(oo) — £(ag)] < A and all £(a(co))| < v from an arbitrarily large set of initial conditions
t >ty > 0 the solutions of the system (27), (28) satisfy: and for arbitrarily smallv > 0. Moreover, from (28) it is
obvious that there exist§, € KL with §,(s,0) = s, such
10(c) — £(a(0))] < B(|0(c0) — £(a(00))|, (0 — 00)) + v (35) that for all a(og) = ap € Rs¢ we have:

From the semi-global practical asymptotical (SPA) sta- (o) < Balaloo),e 8- (0 — 00)), Yo >00>0, (36)
bility properties of the “reduced” system ((27)- (28)), the o T
stability properties of the overall system (25) are stated iand since/(-) is continuous and(0) = ¢*, it follows that
the following theorem.
lim ¢(a(c)) =0 = lim sup |f(c) — 6" <v,

g—00 T— 00



which implies semi-global practical extremum seeking sinc
6* is the global extremum of)(-). In the time “t”, (36)
becomes

la(t)| < Bala(to),w-e-6-(t—1tg)), Yt >to >0. (37)

Note that sinceQ(-) is continuous, then for any > 0,
there exists/; > 0 such that ©

0l < = Q1) — 67| = ly(t) —y*| <v. (39)

Theorem 3 can be interpreted as follows. For émy A, v1), , o _ o o ,
. . . . Fig. 5. A 4'-order polynomial and its bifurcation diagram for which
whereap > a*, vy is defined in (38), we can adjust  aAgsymption 7 holds.
0 and w appropriately so that for allz(to)| < A, where
s [ x—1()
T 6—t(a)
In other words, the output of the system can be regulated |
arbitrarily close to the global extremum valgé from an oSy
arbitrarily large set of initial conditions by adjustingeth
parametersw, 6, €, ag) in the controller. This is despite the = ° 1=
possible presence of local extrema (cf. Assumption 6).
The system model (26) suggests a three-time-scale dynam:
ics whenw, 0 ande are very small. Indeed, the solutions
first converge to a small neighborhood of the gét:= ° . ° o . o o
{(x,0) : x —1(6) = 0} (fast transient) and then with the
speed proportional taw - 6 to a neighborhood of the set Fig. 6. The performance of the extremum seeking feedbacknsetwhen
L :={(,a): - ¢(a) = 0} (medium transient) and then @ = 0-1is fixed.
with the speed propositional to- ¢ - € to a neighborhood of
the point(6,a) = (*,0) (slow transient). Moreover, during
the slow transient, the solutions stay in-aeighborhood of All conditions in Theorem 3 hold and hence the conclusion
the setX. of Theorem 3 holds. Lej(a) = a, ap = 3, which turns
out to be sufficiently large (see Figure 5), using the same
Example 2 Assumption 7 is crucial to prove the globalParameters as abové(t) converges to a small neighborhood
convergence of the proposed scheme. From the result @fthe global maximuréi* = 1 (the global extremum) as seen
Theorem 3,6 converges to/(0). If £(0) is not the global in Figure 7. This example shows that the proposed scheme
extremum, the output of the overall system would converge §@n ensure that global extremum seeking is achieved despite
a local extremum. An illustrative example is used to show th&he existence of local extrema.
global extremum seeking can be achieved by the proposed
scheme in Figure 4 in the presence of local extrema. Consider
the following dynamic system

I(a)

O P N W & O
B —

7~ N
-1 -0.5 [ 0.5 1 1.5 ©

, we have thafimsup |y(t) — y*| < v. T

jjl = —T1 + o, -ij = T2 + u, Y= h(X), (39)

where h(x) = —(z1 + 322)* + g5 (21 + 322)° + §(21 +
3x5)? 4 10. The control input is chosen as

u=—x1 —4x9+6 . (40)

Moreover, we have)(d) = —6* + 26% + 562 + 10 that
has a global maximum a&* = 1 and a local maximum at
0* = —0.6 as seen in Figure 5. Hence, Assumption 6 holds.
The bifurcation diagram in Figure 5 implies that Assumption
7 also holds. First, we use the extremum seeking scheme from
Section Ill, in which the amplitude of the sinusoidal signal

is fixed to be smalk = 0.1. The initial condition is chosen In this section, we consider a static mappihg) with

to be §(0) = —1 such that the local maximuh = —0.6 the first order extremum seeking controller from Section
lays between the initial condition and the global maximumill, see Figure 8. Our goal is to consider the effects of the
By choosing: = 1, 6 = 0.005, w = 0.1, 21(0) = 22(0) = 0, shape of the dither signal(t) on convergence properties
the simulations show that the extremum seeking schemeoisthe algorithm. We present the main result in [19] that
stuck in the local maximur#* = —0.6, see Figure 6. describes in detail how different dithers affect the donadin

Fig. 7. The performance of the proposed ES feedback scheme.

V. DITHER SHAPE EFFECTS



attraction and speed of convergence, as well as the accuracy %(t —2mk), t € 27k, w(2k + %))1 5
of extremum seeking control. It is shown that the square wavét(t) == g(_’f —7(2k—1)), te [77(2]“; 3),m(2k + 5))
produces the fastest convergence among all signals with the Z(t=7(2k +2)), t € [7(2k +3),27m(k + 1))

same amplitude and frequency, if the amplitud@nd the Note that by definition, the signalsn(t), sq(t) and tri(t)
paramet66 in the controller are SUf‘fiCiently small. MoreOVer, are of unit amp”tude and pericmT_ We can generate similar
it is shown that in the limit as the amplitude is reduced t@jgnals of arbitrary amplitude and frequency, e.g.,a -
zero, all dithers yield almost the same domain of attractiofy, (,,t). We will often use the “power” (average of the square

and accuracy. of the signal) of the normalized dithers (unit amplitude and
period 27):
sq — 4y L'sin — 55 Ltri — 3
y=h(x) ' 2 s

In general, we us@; to denote the power of dithed§-) with
amplitude equal td and perio®r. The power for dithed(-)
with amplitudea # 1 is equal toa?P;. We emphasize that

% oo our results apply to arbitrary dithers satisfying Assuroipti
+ x 9.

Remark 1 Assumption 9 is needed in our analysis that is
based on averaging of (41). We note that most extremum
seeking literature (see [2]) uses dither signals of the form
| d(t) = asin(wt) which obviously satisfy our Assumption 9.

d® Introducing the coordinate change= x — z*, we can
rewrite (41) as follows:
Fig. 8. A peak seeking feedback scheme with arbitrary dither i = 5Wh(j +a* +d(t)) - d(t) =: 500]?(@ z, d)- (44)

It was shown in Section Ill that under a stronger version
of Assumption 8 (uniqueness of the maximum) and with

i=6 w- h(z+dt)-dd), (41) the sinusoidal dithed(t) = a - sin(wt), wherew = 1 (that

satisfies Assumption 9) we have that for any compactset

where h : R — R is sufficiently smooth. The signal and anyr > 0 we can chose the amplitude of the dither
d(-) is referred to as “dither” and > 0 andw > 0 @ > 0 andé > 0 and find a classCL function 3, which
are parameters that the designer can choose. We use thgpends o andd(-), such that the solutions of the closed
following assumptions: loop system (44) satisfy:

The model of the closed loop system in Figure 8 is:

Assumption 8 : There exists a maximum* of h(-) such [#to)l €D = [2(®)] < B(2(to)l ¢ —to) + v, (45)
that forall t > tg > 0.
. o Note thatD, v and § are performance indicatorsince
Dh(z*) =0;  D"h(z") <0. (42) they quantify different aspects of the performance of the

. _ _ o . extremum seeking algorithm. We will show later that each
Assumption 9 Dither signalsd(-) are periodic functions of ¢ these indicators is affected by our choice of ditér)

period T' > 0 (and frequency, = ) that satisfy: and the parametef > 0. In particular, we have that:
T 1 (7 « Speed of convergencef the algorithm is captured by
d(s)ds = 0; d*(s)ds > 0; max |d(s)| = a; the function3. Obviously, we would like convergence
0 0 seloT] to be as fast as possible.
wherea > 0 is the amplitude of the dither. « Domain of convergenceis quantified by the seD.

In particular, we would like to make the domain of

convergence (attraction) as large as possible.
« Accuracy of the algorithm is quantified by the number
v > 0 since all trajectories starting in the s&
eventually end up in the balB,, where we have that
|x(t) — «*| < v. Indeed, the smaller the number
the closer we eventually converge to the maximum
(hence, the accuracy of the algorithm is better).

(1) = 1, t € 2mk, 7 (2k + 1)) It turns out that a direct analysis of the system (44) to
S = -1, te[n(2k+1),2n(k+ 1)) estimateD, v, 8 is hard but the system can be analyzed via

The parametew in (41) is chosen to be the same as the
frequency of the dither signal.

For comparison purposes, three special kinds of dither are
used repeatedly in our examples: sine wave, square wave and
triangle wave. The sine wave is defined in the usual manner.
The square wave and triangle wave of unit amplitude and
period27 are defined as follows:



an appropriate auxiliary averaged system. We will carry owvhered is a controller parametet, andw are respectively

such an analysis in the next section. the amplitude and frequency of dither afidis the power of
Consider the following auxiliary gradient system: the normalized dither (with unit amplitude and peri2d).
‘= Dh(C +2%) . (46) Note also thatvd is the integrator constant in Figure 8. Also,

note that Theorem 4 holds for sufficiently smalando that
Because of Assumption 8, the system (46) has the propeaye independent ab which is an arbitrary positive number.
that 2* is an asymptotically stable equilibrifmLet D  Obviously, if the product (49) is larger tharthen the closed
denote the domain of attraction af for the system (46) loop system (41) converges faster than the auxiliary gradie
and note that sincé(-) is assumed smooth, the sBtis system (46). Similarly, if the product (49) is smaller than
a neighborhood ofr*. In other words, a consequence ofthe system (41) converges slower than the gradient system
Assumption 8 is that there existse KL and a seD such (46).
that for all ¢ > 0 the solutions of (46) satisfy: The first observation is that for sufficiently smalland o
the bound in Theorem 4 holdsr any w. Hence, for fixed
©eD = [t = Al t) (47) a, 6 and P; we have that the larger the, the faster the
Using this auxiliary system, we can state our main result: convergence. In other words, Theorem 4 shows that in our
case study we can achieve arbitrarily fast convergence of
Theorem 4 Suppose that Assumption 8 holds and conside¢he extremum seeking closed loop by makingufficiently
the closed loop system (41) with an arbitrary dithé) large. Simulations in Example 3 verify our analysis. We
for which Assumption 9 holds, whete > 0 is the dither also emphasize that this result is in general not possible to
amplitude. LetD and 3 come from (47). Then, for any strict prove for general dynamic plants. For instance, the results
compact subseD of D and anyv > 0, there existsz* > 0  in Sections Ill and IV that are stated for general dynamical
and 6* > 0 such that for anya € (0,a*], § € (0,6*] and systems provide a similar bound as in (48) under the stronger
anyw > 0 we have that solutions of (41) satisfy: assumption thab is sufficiently small.
- A - - 9 Suppose now that, 4 andw are fixed and we are only
To € D= [3(1)] < B (|Zo], bwa”Falt —to)) +v  (48) interested in how the shape of dither affects the convergenc
A sketch of proof of Theorem 4 can be found in [19].  As we change dither, its (normalized) pow&y changes and
We emphasize that the auxiliary gradient system (46)s we can see from (43) that the square wave will yield
plays a crucial role in terms of achievable performancivice larger normalized power than the sine wave and three
of the extremum seeking controller. Indeed, and g are times larger power than the triangle wave. Consequently, we
independenof the choice of dither and Theorem 4 specifiegan expect twice faster convergence with the square wave
how they affect the achievable domain of attractidrof the than with the sine wave and three times faster convergence
closed loop (41), as well as the speed of convergence via tHtan with the triangle wave. Simulation results in Example
function . 4 that we present in the sequel are consistent with the above
We now discuss Theorem 4 in more detail to explain hov@nalysis.
dither shape affects the domain of attraction, accuracy andNote that Theorem 1 is a weaker version of Theorem 4
convergence speed of the closed loop system. We note tf@k the sine wave dither only. Indeed, Theorem 1 does not
the controller parametefa, §) needs to be tuned appropri- consider arbitrary dither and the domain of attraction and
ately in order for Theorem 4 to hold. convergence estimates are not as sharp as in Theorem 4.
Domain of attractiontt is shown that any dither satisfying For instance, the relationship of convergence rate and the
Assumption 9 can yield a domain of attractidh that is domain of attraction to the auxiliary system (46) was not
an arbitrary strict subset of the domain of attraction of theéhown in Section Ill as this was impossible to do using the
gradient system (46) it and § are sufficiently small. We Lyapunov based proofs used to prove Theorem 1. On the
emphasize that > 0 can be arbitrary and andé do not other hand, using the trajectory based proofs adopted $n thi
depend on it. paper, we can prove tight estimates as outlined in Theorem
Accuracy: The ultimate bound that is quantified by the4. Moreover, in Theorem 1 it was not clear how the dither
number » can be made arbitrarily small by any ditherpowerP; affects the convergence rate of the average system.
satisfying Assumption 9 iz and § are sufficiently small. Note that the functiors in (48) is the same for any dither
Hence, in the limit, all dithers perform equally well in tesm satisfying Assumption 9 and the only difference comes the
of domain of attraction and accuracy. parameters in (49). However, the valuesdadf and §* are
Convergence speedlVe emphasize thaf in (48) is the typically different for different dithers.
same ag3 in (47) for any ditherd(-). The main differencein ~ We note that one can state and prove a more general
speed of convergence comes from the scaling factor withiersion of Theorem 4 that applies to general dynamical plant
the functiong: and in this casé:(-) is an appropriate reference-to-output
9 map. With extra assumptions on the plant dynamics, one can
0-w-a”- Py, (49)  yse singular perturbation theory to prove this more general

2Moreover, all local maxima of(-) are asymptotically stable equilibria result (see fo_r Instance _[17] for a Lyapu_nov ?ased proof '_n
of (46) and all local minima oh(-) are unstable equilibria of (46). the case of sine wave dither). However, in this case we will




need to require thab is sufficiently small. Next, we will discuss the situation whé-) is a quadratic
The following proposition is obvious and it states thatmapping, where we assume = 1. Consider the simplest

the power of the normalized square wave is larger than gossible case of quadratic maps:

equal to the power of any other normalized dither satisfying

Assumption 9. In other words, for fixedl and a for which

(48) holds, the square wave is guaranteed to produce t{g have that

fastest convergence over all dithers with the same amglitud Dh(x)

and frequency.

h(z) = —2? + a1z +ao ,

= 2r+a;

and sincez* = %4, we can write with := z — ™
Proposition 4 Consider arbitrary d(-) satisfying Assump-
tion 9. Then, we have that the power of the normalized dither
satisfies: Hence, the auxiliary gradient system (46) takes the folhgwi
O0<Pi<Py=1. form:

Dh(z+z") = —-2% .

=-2C.
It has been shown in Theorem 4 that the convergence ‘ ¢
speed of the extremum seeking systems depends on thés not hard to show that in this case for arbitrary ditter)
choice the dither shap®,, amplitudea and frequencys  satisfying Assumption 9 we have that the average system is
as well asé. It also is shown that the domain of theof the form:

attraction and accuracy of all dithers are almost the same
a—0

0 -0 Hence, in this special case we have that the average system

various behaviors and simulations to confirm our theorbtic%r any dither satisfying Assumption 9 is globally expo-
findings. Our results should motivate the users of extremum y 9 P 9 y €xp

seeking control to experiment with different dithers in erd nentially stable. Indeed, for square wave, sine wave and

to achieve the desired trade-off between convergence,idom.’%l”"Jlngular wave we have from (4?’) that the following holds
) or all zo € R, t > 0, respectively:
of attraction or accuracy.

= —2a*Pyo7 . (51)

as . In this part, we use examples to illustrate

The fOI;OSjA'ItiEg exre]l_rlnp|l(e illgstragtes :jh;t itr;]creasing t_h?dfre- sq: |#(t)] = exp(—2a6t) |7l
uency of dither while keeping, ¢ an e same yields , . _ N
?aster )éonvergence P ’ Y sin: [5(t)] = exp (—a’dt) |Zo|
' 2
tri: |Z(t)] = exp <§a25t> |Zo] -

Example 3 Consider the quadratic mapping
The square wave produces the fastest speed of convergence
h(x) = —(x +4)? (50) for the average system among all dithers with the same
amplitude. The same can be concluded for the actual system
using the proof of Theorem 4. This suggests that the square-
wave dither should be the prime candidate to use in the ES
system for fast convergence speed, although this dither is
rarely considered in the literature [2]. Indeed, all referes
that we are aware of use a sinusoidal dither signal. The
simulation results shown in Example 4 illustrates that the
convergence speed of extremum seeking controller with the
square wave is fastest among all dithers with the same
amplitude.

whereDh(Z+x*) = —22Z. Itis trivial to see that in this case
D = R and 3(s,t) = se~2* (see Theorem 4). The dither is
chosen to bel(t) = asin(wt). Hence, from (43) we have
P.;, = 1/2. The initial condition is chosen ag, = —2.
When we fixa = 0.5 and é = 0.1, the output response with
different frequencies is shown in Figure 9. It is clear thae t
larger thew is, the faster the convergence is.

Example 4 The simulation is done for the following system
wherew = 1:
& = oh(z + d(t))d(t)

whereh(z) = —(x + 4). In the new coordinatej = x —
z* =z +4, we have

— w10

&= 0h(& +a* 4 d(t))d(t) = —0(z + d(t))d(t).

The averaged system is given in (51). The simulation result i
shown in Figure 10, where = 0.1 andd = 0.5. Simulations

Fig. 9. The output of the ES with different frequencies show that the extremum seeking controller with the square
wave dither converges fastest.
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Fig. 11. Productivity and yield for system (53) with= 3, K, = 0.1.
VI. EXTREMUM SEEKING OF BIOPROCESSES

In this section we consider the steady-states of biopro-
cesses that need to achieve an optimal trade-off between

yield and productivity maximization, see [4]. To illusteat 09
the ideas, consider a single irreversible enzymatic reacti ] Jr
of the formX; — X, with X; the substrate (or reactant) 0.8

and X the product. The reaction takes place in the liquid
phase in a continuous stirred tank reactor. The substrate is
fed into the reactor with a constant concentratiorat a
volumetric flow rateu. The reaction medium is withdrawn

0.7

at the same volumetric flow rate so that the liquid volume 067
V' is kept constant. The process dynamics are described by ; _
the following standard mass-balance state space model: N L —
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1 = —r(z1) + (u/V)(c— x1) (52a)
2 = r(z1) = (u/V)w2 (52b) Fig. 12. Overall performance indedr for system (53) withc = 3,

where z; is the substrate concentration; is the product Xm = 0-1andA=0.5.

concentration and(z1) is the reaction rate (calleknetics.
Obviously this system makes physical sense only in the non-

negative orthant; > 0, z> > 0. Moreover the flow rate:  state performance criteria are considered : pheductivity
(which is the control input) is non-negative by definitiordan 7, is the amount of the product harvested in the outflow per
physically upper-bounded (by the feeding pump capacitynit of time Jp := az, = 7w, (7); theyieldis the amount of

0 < u < u™®. In [4] we investigated two different cases product made per unit of substrate fed to the reactpr:=
depending on the form of the rate functiefi;). The first 22 _— wz(u) . The sensitivity ofJp and .Jy with respect to
one is the Michaelis-Menten kinetics which is the most basig s |Ilustrated in Figure 11. The process must be operated
model for enzymatic reactiongz:) = =L~ with v, the  at a steady-state that achieves a trade-off between yield an

maximal reaction rate anfl’,, the half-saturation constant. productivity. To this end we define an overall performance
To normalise the model we use,V and ’U;Ll as the units index as a convex combination dp and Jy:

of u and time respectively. We also assume that the process

is equipped with an on-line sensor that measures the product. N I
concentrationzs in the outflow. So the normalised model J7(@) = AJp + (1= A)Jy = p2(a) P‘“* T} (54)
becomes

1

iy = — +ule—m1) (53a) for A € [0,1]. This cost function is illustrated in Figure
Ko+ 21 12 where it is readily seen that it has a unique global
iy = T1 — us. (53b maximum u*_. The corresponding optimal steady-state is
K + 1 naturally defined as} = ¢1(u*), 5 = p2(u*).
It can be readily verified that, for any positive constantinp  The kinetic rate functiom(z, ), the dynamical model (52)
flow rateu € (0,u™**], there is a unique steady-state = and the function/y(z) are unknown to the user while the
v1(@), T2 = ¢2(u) that is globally asymptotically stable in goal |s to maximize the composite cost = \uxy + (1 —
the non-negative orthant. A)c~tzo but he does not know thak is a function ofu of

The industrial objective of the process is the production adhe form (54) shown in Figure 12. We apply the extremum
the reaction product. For process optimization, two steadgeeking scheme from Section Il with the following definitio



of the output and input: We consider again the simple model (52) but we now
assume that, in addition to the Michaelis-Menten kinetics,

— — — -1 . = ) 1 . . . . ey -
y = h(z) = duzs + (1 - A)e™ 225 w:= a0 +asin(wt)) 0 oaction rate is subject to exponential substrate i

(55) €S _
where z, is measured) chosen by the designer anrd-) The rate function is as follzwz. .
is a sigmoid function (see [4]). In Figure 13 the operation r(zy) = —2L bt

of the extremum seeking control algorithm is illustrated fo K”f + i
appropriately tuned parameters= 0.02, K6 =1, w =0.1. Whereb andp are two positive constant parameters. The
We see that there is a time scale separation between t¢hamical model is written:

i imbi i i Vm & ,
system itself and the climbing mechanism se predicted by gy = —UmTL—bel +ulc—z1) (56a)
Theorem 1. K+ 21
L UmT1 —ba? 56b
To 7Km T e UL (56b)
07 Depending on the value af € (0,u™%*], the system may
08 Jr have one, two or three steady-states, (¢2) with z; solution
0.7 of: =
061 UmT1 —bz? - _
] ——e t=ulc—T
0.5 K’m + T ( )
04/ andzs =c — 73.
031 The productvityJp = uZ- is represented in Figure 14 as
021 a function ofu. In this exampleJp is clearly a multivalued
o1 function of . However it can be seen that it has a unique
o u global maximum forz = u*. Moreover, the graph of Figure
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Fig. 13. Extremum seeking for system (53) with= 0.02, £k = 1, 1.0
w=0.1. | !]P ™\,
0.8 Dot
[
The following corollary holds for all bioprocesses that 0. Lo
satisfy the following assumption: ' e
(V4 |
0.4-
Assumption 10 The following conditions hold: (i) For each ] /: ;
admissible value of the flow rate the system must have 0.2 s b
a single globally asymptotically stable equilibrium; (ibhe ] :k.\ _
performance cost function must be single-valued and “well- 0Q ‘ ‘u'* 0\6 ; 0;‘

shaped” in the sense that, for the admissible range of flow
rate valuesd < @ < «™%*, it must have a single maximum

value Jr(u*) without any other local extrema. Fig. 14. Productivity.Jp for system (56) withc = 3, vm = 2, Km = 1,
b=0.08, p=3.4
A direct consequence of Theorem 1 is the following:

Corollary 1 For any initial condition (1 (0) > 0, 22(0) > 14 can also be regarded as a bifurcation diagram with respect
0,6(0)) and for anyv > 0, there exist pararr:ete’(m, k:,w/) to the parametet: where the solid branches correspond to
such that, for the closed-loop syst¢&8), (55), (7), 21 (t) = stable equilibria and the dashed branch to unstable egailib

0, z2(t) > 0, 6(t) bounded and Hence it can be seen that the maximum point is located on
a stable branch.
lim sup (|:cl(t) — 7| + |z (t) — 25| + |u(t) — u*|) < Here we assume that the industrial objective is to achieve
t—00 the maximization of the productivityp. A fully satisfactory

Note that the above corollary can be restated in the spirit @peration of the extremum seeking control law (witft) =
Theorem 1 to guarantee semi-global practical convergenagt)x2(t)) can be observed in Figure 15 and Figure 16.
This is a stronger result than the main result in [22] that The result of Figure 15 is expected since we are in
deals only with local convergence. conditions quite similar to the previous case of Section IV.
It was shown in [4] that some bioprocesses may not satisfijhe result of Figure 16 is more informative since here the
Assumption 10 and, in particulatr may turn out to be convergence towards the maximum of the cost function is
multivalued. Such situation is quite natural in the contaixt operated in two successive stages. In a first stage, there
bioreactors and yet it is not covered with any of the pregkentés a fast convergence to the nearest stable state which is
results. A preliminary analysis of this situation was given located on the lower stable brancfiiollowed by a quasi-
[4] and we summarize below. steady-state progression along that branch. Then, when the
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Fig. 15. Extremum seeking for system (56) with= 0.003, £ = 10, Fig. 17. Output signay(¢) : whena is too small, the trajectory is stuck
w = 0.01. on the lower branch.
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Fig. 16. Extremum seeking for system (56) with= 0.003, k = 6, Fig. 18. Extremum seeking for system (56) with= 0.015, k = 6,
w = 0.01. w = 0.01.

state reaches the bifurcation point, there is a fast jump ugactor. Our analysis shows how various tuning parameters
to the good upper branchand a final climbing up to the in the extremum controller affect the overall convergence
maximum point. It is very important to emphasize here thaproperties of the algorithm. Such results will be useful to
in order to get the result of Figure 16, the amplitudef the  practitioners since they provide controller tuning guiickes
dither signal must be large enough. Otherwise, the trajgctothat can ensure larger domains of attraction, faster cenver
of the closed loop system definitely remains stuck on thgence or better accuracy of the extremum seeking algorithms
lower branch at the bifurcation point as shown in Figurel?Voreover, it was shown that global extremum seeking in
On the other side, too large values of the dither amplituderesence of local extrema can be achieved using appropriate
are also prohibited because they produce cyclic trajextorituning of controller parameters.

as shown in Figurel8. From all these observations, we can
conclude that by tuning the amplitude of the dither signal
properly, it is possible to pass through the discontingitie [1] K. J-Astrﬁim and B. Wittenmarkidaptive control (2nd edReading,
of the stable bran(_:hes of th_e cost funCtiO_n and to (_:onvergfz] PhélABAgglysl?rnaergsll\‘/leyK];ggg Real-Time Optimization by Extremum-
to the global maximum. This further motivates tuning the = seeking ControlHoboken, NJ: Wiley-Interscience, 2003.
amplitude of dither in the extremum seeking controller.[3] A. Banaszuk, K.B. Ariyur, M. Krsti¢, C.A. Jacobson, "Aadaptive
While a preliminary analysis of this issue was presented ?2'%%13{‘"1‘9‘2;_23’;2?' of combustion instability’Automatica vol. 40
in [4], a careful analysis and tuning guidelines in this casgs] G. Bastin, D. Nesi¢, Y. Tan and I.M.Y Mareels, “On extram seek-

remain an open research problem. ing in bioprocesses with multivalued cost functions”, Bidinology
Progress, in print, 2009.

E. Biyik and M. Arcak, “Gradient climbing in formation & extremum
seeking and passivity-based coordination ruleRfpc. 46" |EEE
A summary our recent results on dynamical properties of g Conf. Decis. Cont.New Orleans, USA, 2007, pp. 3133-3138.

| f adanti t Ki troll edent 6] P. F. Blackman, “Extremum-seeking regulators”, In J.Westcott,An
class o1 adapuve extremum seeking controllers was presen exposition of adaptive contrdlew York: The Macmillan Company,

and applied to a various models of a continuously stirred  1962.
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