Averaging with disturbances and closeness of solutions
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Abstract

We establish that, under appropriate conditions, the solutions of a time-varying system with
disturbances converge uniformly on compact time intervals to the solutions of the system’s average
as the rate of change of time increases to infinity. The notions of “average” used for systems with
disturbances are the “strong” and “weak” averages introduced in [5].

Keywords: (weak and strong) averaging, continuity of solutions.

1 Introduction

Averaging is an important approximate method for analysis of time-varying systems. In its classical
form it applies to ordinary differential equations of the form

x'zf(i,x,e) (1

where € > 0 and where f has an average f,, satisfying a condition like

~—

4T
=1 — >0.
fav(T) Th—)néo T/t f(r,x,0)dr YVt >0

Classical averaging results (see, for example, [1, 2, 3, 6, 8] and references therein) state that, under

appropriate smoothness assumptions on f, the solutions of (1) converge uniformly on compact time
intervals to the solutions of

= fau() (2)

as € tends to zero.! Moreover, if the system (2) has an exponentially stable equilibrium point p that is
an equilibrium point of (1) for small € > 0 then p is an exponentially stable equilibrium point of (1) for
small € > 0.

Except for [5], we are not aware of any results on averaging that consider systems with exogenous
disturbances. However, systems with disturbances occur frequently in control theory. Recently, in
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1Sometimes averaging is applied to systems of the form Z—f = ef(1,z,€) instead of the form (1). In this case, the
convergence of solutions is established on intervals of length proportional to 1/e. This is seen to be an equivalent result
by scaling time as 7 = ¢/e.



[5], two different definitions of average for systems with disturbances (“strong” and “weak” average)
were introduced and results were presented on deducing input-to-state stability (ISS) for a system from
input-to-state stability for the system’s strong or weak average. These results generalize, in a sense, the
exponential stability result mentioned above, as well as more recent stability results based on averaging,
like in [7].

In this note we also study systems with disturbances that possess a weak or strong average (see
Definitions 1 and 2, respectively). In particular, we study systems of the form

i=f (ixwu) 3)

where w is the exogenous disturbance and v is a parameter vector with small norm. We use z. ., (¢, to, Zo, w)
to denote the solution of (3) (for given values of €, 1) at time ¢, emanating from x, at the initial time ¢,

under the action of the disturbance w. We are interested in conditions that guarantee that the solutions

of (3) are close, on compact time intervals, to the solutions of (3)’s average which is taken when v = 0.

The average system has the form

Y= fav(va) (4)

where f,, is assumed to be locally Lipschitz. We will not impose any stability assumptions on the
average system. Moreover, for f we will only assume that it is continuous in (z,w,v) uniformly in ¢.
In particular, we do not assume uniqueness of solutions for (3). We assume that w belongs to a set of
functions that is equi-bounded (see Definition 4) for the case of strong averages, or equi-bounded and
equi-uniformly continuous (see Definition 5) for the case of weak averages. We will show, among other
things, that when a trajectory for the averaged system is defined on a given compact time interval, the
trajectories of the actual system converge to that average trajectory uniformly on the compact time
interval.

The paper is organized as follows: In Section 2 we present some preliminary definitions including the
definitions of weak and strong average taken from [5]. Our main results are stated formally in Theorems
1 and 2 of Section 3. In Section 4 we provide the proofs of our theorems.

2 Preliminaries

For our purposes, a function 3 : R>o x R>g — R>¢ is of class-KCL if it is nondecreasing in its first
argument and converging to zero in its second argument. Given a measurable function w, we define its
infinity norm |lwl|  := esssup;>q [w(t)|. If we have [[w|| , < oo, then we write w € Lo.. If w is absolutely

continuous, its derivative is defined almost everywhere and we can write w(t) — w(t,) = ftto w(r)dr.

The following two definitions of strong and weak average for a time-varying system with exogenous
disturbances were introduced in [5]:

Definition 1 (weak average) A locally Lipschitz function fyq : R™ X R™ — R™ is said to be the weak
average of t — f(t,x,w,v) if there exist 3 € KL and T* > 0 such that VT > T* and ¥t > 0 we have?

1

t+T
Jwa(z,w) — —/t f(s,z,w,0)ds

= Sﬁ(max{|x|,|w|,l},T), Vo € R",w € R™. (5)

The weak average of system (3) is then defined as

Y= fwa(y7w)' (6)

2Note that w in the integral is a constant vector.



Definition 2 (strong average) A locally Lipschitz function fsq : R™ x R™ — R" is said to be the
strong average of t — f(t,z,w,v) if there exist § € KL and T* > 0 such that VT > T* and Vit > 0 the
following holds:

1

7 /tHT {fm(x,w(s)) - f(s,:z:,w(S%O)} ds| < (max{m wll 1}7T) , VzeR"weLy. (7)

The strong average of system (3) is then defined as

¥ = fsaly,w). (8)

|

It has been shown in [5] that functions f that have a strong average are, in essence, functions of the

form f(t,z,w,0) = f(t, x) + g(x,w) where f(t,m) has a well-defined (weak) average. More precisely, it
was proved in [5]:

Proposition 1 Suppose that f(t,x,w) is continuous and periodic in t of period Ty > 0. Then, there
exists a strong average fso(x,w) for t — f(t,z,w) if and only if f(t,x,w) can be written as the sum of
a term that is independent of t plus a term that is independent of w and that has a well-defined average.

O

We also need definitions of forward completeness, equi-boundedness and equi-uniform continuity.

Definition 3 Let W be a set of locally essentially bounded functions and let f,, : R™ x R™ — R" be a
continuous function. The system

& = for(z, ) x(0) =z, (9)

is said to be W-forward complete if for each r > 0 and T > 0 there exists R > r such that, for all |x,| <r
and w € W, the solutions of (9) exist and are contained in a closed ball of radius R for all t € [0,T).

Definition 4 Let W be a set of locally essentially bounded functions. The set W is equi-(essentially)
bounded if there exists a strictly positive real number Q such that, for allw € W, ||w||c < ;

Definition 5 Let W be a set of locally essentially bounded functions. The set W is equi-uniformly
continuous if for each p > 0 there exists 6 > 0 such that, for allw € W and all t > 0,

T €10,4] = lwt+7)—w(@)| <p.

Remark 1 A sufficient condition for W to be equi-uniformly continuous is that all w € W are absolutely
continuous (on [0,00)) and there exists a strictly positive real number Q; such that, for all w € W,
[lw]]oo < Q. O

3 Main Results

Our main results give conditions under which the solutions of (3) are close to the solutions of (3)’s weak
or strong average, when these averages exist.

Theorem 1 (Closeness to weak average) Suppose

1. the function t — f(t,z,w,v) is measurable in t for each (x,w,v), the function (x,w,v) —
ft,x,w,v) is continuous in (x,w,v) uniformly in t, and the function t — f(t,0,0,0) is bounded;

2. the set W is equi-(essentially) bounded and equi-uniformly continuous;



3. the weak average of the system (8) exists and is W-forward complete.

*

Then, for each triple (T,6,r) of strictly positive real numbers there exists a triple (e*,v*, u) of strictly
positive real numbers such that, for each e € (0,€*), |[v| < v*, to 2 0, |yo| < r, w € W and each x,
such that |xo — yo| < , each solution xe,(t,to, o, w) of (3) and the solution y(t —to, yo, w) of the weak
average satisfy

| e (b, to, To,w) — Y(t — to, Yo, w)| < & Vt € [to,to + T . (10)

Without the assumption that W is equi-uniformly continuous, the conclusion of Theorem 1 is not
correct, in general. This is demonstrated by the system

t
i = —0.252° + cos () w (11)

€
which was discussed in detail in [5]. There is was shown that the weak average of the system (11) is

g = —0.25y° (12)
t
but the system (11) under the input w,(t) = cos () exhibits finite escape time.
€

Remark 2 Weak averages play an important role in cases when stability of an overall system is to be
investigated by viewing the system as the interconnection of subsystems. In this case, the disturbances
to one subsystem are generated by the states of the other subsystem. Because of this, the disturbances
may be slowly-varying compared to the rate of change of the time-varying signals. An important example
of this is the class of cascaded system (see [5]).

The assumption that W is equi-uniformly continuous can be removed when the strong average exists
and is W-forward complete:

Theorem 2 (Closeness to strong average) Suppose

1. the function t — f(t,z,w,v) is measurable in t for each (x,w,v), the function (x,w,v) —
ft, z,w,v) is continuous in (x,w,v) uniformly in t, and the function t — f(t,0,0,0) is bounded;

2. the set W is equi-(essentially) bounded;

3. the strong average of the system (8) exists and is W-forward complete.

*

Then, for each triple (T,0,r) of strictly positive real numbers there exists a triple (e*,v*, u) of strictly
positive real numbers such that, for each € € (0,€*), |v| < v*, to >0, |yo| < r, w € W and each x, such
that |zo — yo| < u, each solution e, (t,to, o, w) of (3) and the solution y(t — to,ys, w) of the strong
average satisfy

| (t, to, Toy w) — y(t — to, Yo, w)| <& Yt € [to,to + 17 . (13)

The above results can also be applied to average systems that are not W-forward complete. For
example, suppose we are given an initial condition y,, a disturbance w(-), a time interval [t,,t, + 7] and
a bounded domain D such that the solution of the average system y(t — to, o, w) is defined and remains
in D for all t € [to,to + T, and we want to know whether solutions of the system (3) are close to this
particular solution of the average on the interval [to,t, + T, at least for initial conditions that are close
to yo and under the same disturbance w. In this case the system (3) can be modified to be of the form

b= 02)f (irwu) (14)



where ¢ : IR™ — [0, 1] is a locally Lipschitz function with compact support that is equal to one on a
neighborhood of the set

YV={zeR": z=y(t,yo,w), t €[0,T]} . (15)
It follows from the definition of average that the (weak or strong) average of (14) exists and is given by

¥ =4y)fav(y, w) (16)

where f,, is the average of f. Since ¢(y) has compact support, this average is W-forward complete for
all sets W of locally essentially bounded functions. The results of the theorems can then be applied to
conclude closeness of the solutions of (14) to the solutions of (16). Choosing ¢ > 0 small enough in the
theorems so that a é-neighborhood of the set Y is contained in the neighborhood of Y where £(+) is equal
to one, it follows that solutions of (3) are close to the particular solution of the average of (3) on the
interval of consideration, at least for initial conditions that are close.

Similar observations can be used to work with systems that have averages only on certain subsets of
(z,w)-space.

4 Proofs

4.1 Proof of Theorem 1

Step 1: Definition of €*,v* and u

The triple (T, 6, 7) is given. Without loss of generality, assume § < 1. Let R > r come from W-forward
completeness of the weak average (Definition 1) and let 2 come from equi-(essential) boundedness of W
(Definition 4). From the definition of weak average (Definition 1) it follows that there exists L > 0 such
that, for all (z,y) satisfying |z| < R+ 1, |y| < R, and for all w satisfying |w| < Q we have

| fwa (T, W) = fuwa(y,w)| < Llz —y| . (17)

Then define
1 1)
[ = exp (QLT) 3 (18)
and let v* be such that
f Eaz:wl/ —f EchO <L—(52 Viy| <v*, lw <Q, |Jz|] <R+1,t>0
6) b ) 67 ) ) —_ 8{exp(LT)—]_} - b — ) —_ b pe .
(19)

In preparation for defining €*, let § € KL and T* > 0 come from Definition 1 and let T>T* satisfy

2

ﬁ(maX{RJrl,Q},f) §12Tef<p(LT)' (20)

According to the first supposition and Definition 1, the quantity

B = sup max {[f(t.z,w, )], [fualyw)l}  (21)
{120, [z <R+, [yl <R, |[w|<Q, [v|<v* }

is finite. Define

g () =l 1 (L 00 = fun (T (22)



the w; being components, of appropriate dimension, of a vector w. Define W to be the set of functions
w(-) = | wa) (23)

such that @ws € W, and @y, @, are absolutely continuous with [|@ ||es < 1, [|W01]|ee < 2B, ||@2||se < R+1,

and H{DQHOO < B. Let p > 0 be such that, for all w € W and all ¢; > 0,
€ [tirti + p] lexplL(t: = 9)lg (2, @) = g (@t | < > (24)
selotitel = el =a)lg (Gol)) =0 (00 )| = oregir)

This p exists since g is continuous in w uniformly in ¢, W is equi-uniformly continuous and for s = t;
the quantity being bounded in (24) is zero. Then define

*

€" :=min {'2, ~52 } . (25)
T 12(2BT exp(LT))

Step 2: Comparison of solutions

Let € € (0,€), [v| < v*, |yo| <7, to > 0, w € W and consider any . such that |z, — yo| < p. Define
eu(t) = Teu(t, to, To,w) — y(t —to, Yo, w) (26)

and note that |e., (t,)] < p < § <3 < 1. If e, (t)| < 1 for all t € [to,to + T then define £ = t, + 7.
Otherwise, define

t:=1inf{t € [to,to + T] : |ec ()| =1} . (27)

Note that t > t, and e, ,(-) and z. , (-, to, o, w) are defined and absolutely continuous on [to, o +t]. Let
w € W be such that, for all ¢ € [to,1],

wy (t) een(t)
Wa(t) | = | zew(t,to,zo,w) . (28)
ws(t) w(t)

Such a @ € W exists since, for all t € [to, 1], |ec,(t)] < 1. Indeed, since |y(t — to,yo,w)| < R for all
t € [to,to + T, it follows that |z, (¢, to, 2o, w)] < R+ 1 for all t € [to,t]. In turn, it follows from (21)
that, for almost all t € [to, ], |éc,(t)] < 2B and |&c (¢, to, xo, w)| < B.

For almost all ¢ € [to,t] we have (dropping the arguments of signals for notational convenience)

f (zaxe,u7way> - fwa(yaw)

b =
= Uonlewn )= Fualp )+ | (£0000.0) = funlies )] (20)
+ [f (t,x67,,,w,1/> —f (t,xg,l,,w,O)] .
€ €
For the scalar-valued function V () := 3el (t)ec,(t), which is also absolutely continuous on [t,, ], we

52
have V (to) < $p? = exp(—LT)g and, for almost all t € [t,, 1],

Lo?

v t S {exp(LT) — 1}

IN

LV + ez:u |:f (2,385’,/,’[0,0) - fwa(xe,uvw):|
L§?

t
= LVtg <e’“’(“> T S {exp(ZT) — 1)



where we have used the definition of ¢, (19), (22) and (28). By standard comparison theorems it follows
that for all ¢ € [to, ],

V) < exp(LT)V(to)+§+ /t:exp[L(t—s)]g (z,@(s)) ds
< (12+/ttexp[L(t—s)]g (S,@(s)) ds . (31)

Fix t € [to, ] and define k to be the largest nonnegative integer such that k& < té_qff’ . Fori=0,... k,
define #; = t, + ieT” and note that, from the definition of & and (25), we have
52

————— tipn—ti=€el <p. 2
~ 12(2Bexp(LT)) ’ + ¢ P (32)

t*tk<€T

We split the interval of integration in (31) using the times ¢; to obtain

2

V() < % + /t exp[L(t — s)]g (Z,@(S)) ds + Z/

S -
exp[L(t — s)]g (7, w(s)) ds . (33)
tr €
It follows from the definition of W, (21), (22) and (32) that the first integral on the right-hand side of
(33) is bounded as

2

/t explL(t — s)lg (2,(5)) ds < Texp(LT)2B < % (34)

To bound the second integral on the right-hand side of (33), we split the integrand into two pieces: one
that will be used to exploit the two time-scale behavior of g as a function of s and the other that will be
used to exploit the continuity properties of g with respect to s. In the calculation that follows, we will
use the following bound, which is a result of the definition of W, (5), (20), (22) and Hélder’s inequality:

[0 (Gt o

B [ {7 (S Balt), F(0,0) — S (a0, (1)} s

2 (3)

IN

~ N |
T8 (max (R+1,9} ,T) < T o@D

We will also use (24) and (32) and the fact that kel <t —t, < T. We have

k—1

> /tm exp[L(t — s)lg (z,z’ﬁ(s)) ds
i=0 7t
= E exp[L(t —t;) {/tﬁr; (z,@(ti)) ds + _/:Hl {exp[L(ti —3)|g (S,{D(s)) -y (S’{E(ti)) } ds}

A A 52
< LT){ T T <2
< kexp( ){6 2T exp(LT) * € 12Texp(LT)} =% (36)

2

Combining (33), (34) and (36), it follows that V() < % for all t € [to,t]. Since V(t) = el (t)ec (1),

it follows that |e. ,(¢)] < & < 1 for all ¢ € [to,]. From the definition of ¢, it follows that ¢ = ¢, + T so
that |ec, (¢)| < d for all t € [to, to + T]. This establishes the result. O

4.2 Sketch of proof of Theorem 2:

The proof of Theorem 1 follows exactly the same steps as the proof of Theorem 1 with the following
changes:



The value p > 0 in (24) is chosen so that for all w € W we have that s € [ti,t; + p] implies

explL(t, = 5)lg (2. 11(5), Ta(s), By(s) ) — g (2, @1 (t), Dalt:). Wa(s) ) | < mf{pm SNEY

(Note that we are now using

instead of
S ~ ~
g (2 (k). at), wa(t)

which was used in (24).) This p exists since g is continuous in @ uniformly in ¢, W is equi-(essentially)
bounded, w; and ws are absolutely continuous and for s = ¢; the left hand side in (37) is zero.

Then we arrive in the same way as in proof of Theorem 1 at the inequality (33). Moreover, the bound
(34) still holds. Instead of (35) we use:

tit1 s
- euti7 euti7 d
|0 Gttt v ds

) | +T {F (C2ent) w(9).0) = fua (wen (t:), w(s)) | ds

2

< T [ <el——
< T3 (max{R—i— 1,0} ,T) < T o (LT

(38)
which was obtained using the definition of W, (7), (20), (22) and Holder’s inequality. In the same way
as in Theorem 1 and using (38) we can write:

k—1 tita1
Z/ exp[L(t — s)]g (g, ee,y(s),x67y(s),w(s)) ds
i=0 7 ti

k—1 e
= ZZ:;exp[lz(t — ;)] {/t g (27eevV(ti)?xe,V(ti)7w(S)) ds +

i

S

[ ettt = 9l (2 eats) o)) 0 (Zrenlt sl wls)) s |

7

~ 62 - 62 62
<k LT) < €T T < —. 39
< kexp(LT) {6 2T exp(LT) © € 12Texp(LT)} =% (39)
Using now (33), (34) and (39) we obtain that V(¢) < %,Vt € [to,t]. This establishes the result in the
same way as in the proof of Theorem 1. O
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