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Abstract

New results on set stability and input-to-state stability in pulse-width modulated (PWM)
control systems with disturbances are presented. The results are based on a recent generalization
of two time scale stability theory to differential equations with disturbances. In particular,
averaging theory for systems with disturbances is used to establish the results. The nonsmooth
nature of PWM systems is accommodated by working with upper semicontinuous set-valued
maps, locally Lipschitz inflations of these maps, and locally Lipschitz parameterizations of
locally Lipschitz set-valued maps.
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1 Introduction

Pulse width modulated (PWM) control is a common paradigm in systems where the values of
the actuators are discrete, like {0, 1}. The idea is to maintain a constant frequency of switching
between the values 0 and 1 and to use measurements from the plant to determine the duty ratio,
i.e., the ratio of time spent at 0 to the time spent at 1. This kind of control strategy can be useful
for systems controlled by on-off valves and/or on-off switches. PWM control techniques are used
extensively in state-of-the-art AC-DC converters as well as DC-DC converters [2, 8, 9, 12] which
find wide application in industry.

The main idea used in PWM control, and many other power electronic systems [7], is to model
the switching actuator by its average behavior. While the intuition behind this idea is sound,
classical averaging theory is not suitable for these discontinuous systems. However, Lehman and
Bass [9] have shown how averaging theory can be extended to address switching power electronic
systems when the actuators don’t switch infinitely often on a finite time interval, i.e., they don’t
chatter.

For switching power electronic systems where exogenous disturbances are considered and chat-
tering is allowed, perhaps caused by the exogenous disturbances, there has not been a suitable
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version of averaging stability theory until recently [14]. (Earlier work in this direction can be found
in [10].) In this paper, we will apply the generalized two time scale stability theory of [14] to study
input-to-state stability [11] in PWM control systems.

The paper is organized as follows: In Section 2 we present mathematical preliminaries. PWM
control is introduced in Section 3 and an asymptotic stability result for PWM systems without
disturbances is stated in Theorem 1. Section 4 contains the proof of Theorem 1. Theorem 2 in
Section 5 gives conditions for ISS of PWM systems with disturbances. The proof of Theorem 2 is
sketched in Section 6.

2 Preliminaries

A function α : R≥0 → R≥0 belongs to class-K∞ if it is continuous, zero at zero, strictly increasing
and unbounded. A function β : R≥0×R≥0 → R≥0 is said to belong to class-KL if it is nondecreasing
in it first argument, nonincreasing in its second argument and lims→0+ β(s, t) = limt→∞ β(s, t) = 0.

Given an open set H ⊂ Rn and a compact set A ⊂ H, a continuous function ω : H → R≥0 is
said to be positive definite with respect to A if ω(x) = 0 ⇔ x ∈ A. It is said to be proper with
respect to H if for each sequence xi approaching the boundary of H or approaching infinity, we
have ω(xi) →∞ as i →∞.

The open and closed unit balls are denoted B and B, respectively. Given a set F ⊂ Rn, the
closed convex hull of the set (that is, the smallest closed convex set containing F) is denoted as
coF .

For a function f : Rm × Rn → Rr, we define

f(y,B) :=
{
w : w = f(y, x) , x ∈ B}

. (1)

A set-valued map F : Rn → (subsets of Rn) is upper semicontinuous if for each x and ε > 0
there exists δ > 0 such that

F (x + δB) ⊆ F (x) + εB (2)

where x+δB denotes the ball of radius δ around the point x. A set-valued map FL : Rn → (subsets
of Rn) is said to be locally Lipschitz if, for each x there exists a neighborhood U of x and L > 0
such that

x1, x2 ∈ U =⇒ FL(x1) ⊆ FL(x2) + L|x1 − x2|B . (3)

If a set-valued map is locally Lipschitz then it is upper semicontinuous. For the notion of a
measurable set-valued map, we refer the reader to [1, Section 8.1]. We will use the integral of a
set-valued map which corresponds to the set of integrals of integrable selections from the set-valued
map. See [1, Section 8.6].

For a discontinuous differential equation

ẋ = f(x, t) (4)

where f is locally bounded and measurable, the generalized Krasovksii, respectively Filippov, so-
lutions of (4) correspond to the solutions of the differential inclusion

ẋ ∈ F (x, t) :=
⋂

δ>0

cof(x + δB, t) (5)
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respectively
ẋ ∈ F (x, t) :=

⋂

δ>0

⋂

meas(N)=0

cof((x + δB\N), t) . (6)

(The set-valued maps on the right-hand sides are upper semicontinuous in x. See, e.g., [4, p. 85].)
The generalized solution concepts of Filippov and Krasovskii agree for the systems that we consider
in the sequel. For a general comparison, see [6].

3 Pulse width modulated control

In pulse width modulated control systems, the closed-loop system can typically be written in the
form

ẋ = ε

[
f(x) +

m∑

i=1

gi(x)u(hi(x)− pi(t))

]
(7)

where ε is a small positive parameter, u : R → [0, 1] is the unit step function (u(0) = 1), the
functions hi : Rn → [0, 1], f and gi are continuous, and the functions pi : R→ [0, 1] are measurable,
bounded and periodic with period one. Often they have the form pi(t) = t mod 1, as in Figure
1. (Actually, the period of pi is typically parameterized by ε and the system (7) represents the
original system in a transformed time scale.)

t1 2

1

Figure 1: A typical (triangle) switching signal pi(t) in PWM control systems.

The behavior of the closed-loop system hinges on the nondecreasing, possibly discontinuous
functions

v 7→ σi(v) :=
∫ 1

0
u(v − pi(t))dt = meas {t ∈ [0, 1] : v ≥ pi(t)} (8)

which takes values in [0, 1], and its corresponding upper semicontinuous set-valued map

v 7→ Si(v) :=
⋂

µ>0

co σi(v + µB) . (9)

At points v where σi(·) is continuous, we have Si(v) = {σi(v)}. The upper semicontinuity of Si is
standard, since Si is constructed in the same way that a Filippov or Krasovskii differential inclusion
is constructed.

If pi(t) ≡ 0 then σi(v) = u(v) = 1
2 [sgn(v) + 1] and the closed-loop system (7) can be related to

sliding mode control. If, on the other hand, pi(t) = t mod 1, as in Figure 1, we have Si(v) = {v}
for all v ∈ [0, 1]. For example, on the interval [0, 1], u(0.8 − (t mod 1)) spends 0.8 seconds at the
value 1 and 0.2 seconds at the value 0, and the integral over the period [0, 1] is equal to 0.8. This
situation is illustrated in Figure 2.
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u(0.8− pi(t))

t21

1

Figure 2: Duty ratio for v = 0.8 using pi(t) = t mod 1.

The main result in pulse width modulated control systems of the form (7) is the following:
Since ε > 0 is small, the state x changes slowly compared to pi and so the effect of pi on (7) can
be averaged, as in (8), and the analysis reduced to the analysis of the system

ẋ ∈ f(x) +
m∑

i=1

gi(x)Si(hi(x)) (10)

which becomes simply

ẋ = f(x) +
m∑

i=1

gi(x)hi(x) (11)

when pi(t) = t mod 1, using that hi takes values in [0, 1].
The following formal statement is enabled by the results in [14]:

Theorem 1 Suppose the functions f , gi, hi are continuous and that for (10) the compact set A is
asymptotically stable with basin of attraction H. Under these conditions, the set H is open and

• for each continuous function ω : H → R≥0 that is positive definite with respect to A and
proper with respect to H, there exists β ∈ KL,

• and, for each δ > 0 and compact K ⊂ H, there exists ε∗ > 0

such that
ε ∈ (0, ε∗] , x(t◦) ∈ K =⇒

the (generalized Krasovskii/Filippov) solutions of (7) exist for all t ≥ t◦ and satisfy

ω(x(t)) ≤ β ( ω(x(t◦)) , ε(t− t◦) ) + δ, ∀t ≥ t◦ . (12)

4 Proof of main result

4.1 The function β

As we have asserted above, the set valued map

x 7→ f(x) +
m∑

i=1

gi(x)Si(hi(x)) =: F (x) (13)
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is upper semicontinuous, and for each x, is nonempty, compact and convex. According to [13,
Proposition 3], the set H is open and for each ω : H → R≥0 that is continuous, positive definite
with respect to A and proper with respect to H, there exists β◦ ∈ KL such that all solutions of the
system (10) that start in H satisfy

ω(x(t)) ≤ β◦(ω(x(0)), t) ∀t ≥ 0 . (14)

The general averaging results in [14] give conditions under which the bound (14), which holds for
the averaged system, also holds with an arbitrarily small offset for the actual system. To use the
explicit sufficient conditions given in [14], F (·) should be locally Lipschitz rather than just upper
semicontinuous. The next computations are aimed at obtaining a bound like (14) for a system
ẋ ∈ FL(x) where F (x) ⊆ FL(x) and FL is locally Lipschitz.

According to the combination of [13, Proposition 2, Theorem 3, and Theorem 1], there exist
α1, α2 ∈ K∞ and a smooth function V : H → R≥0 such that, for all x ∈ H,

α1(ω(x)) ≤ V (x) ≤ α2(ω(x)) (15)

and
max

w∈F (x)
〈∇V (x), w〉 ≤ −V (x) . (16)

Define
β(s, t) := α−1

1

(
α2(s)e−

t
2

)
. (17)

4.2 The value ε∗

4.2.1 Embedding (10) in a Lipschitz system

Let δ > 0 and the compact set K ⊂ H be given. Using that ω is proper with respect to H and
perhaps by enlarging K and thereby considering a larger set of initial conditions, we can assume
without loss of generality that, with the definition

c := max
x∈K

ω(x) , (18)

we have
{x : ω(x) ≤ δ} ⊆ K , & δ ≤ 2α−1

1 ◦ α2(c) . (19)

Using (17), it follows that δ/2 ≤ β(c, 0).
Following the proof of [13, Lemma 18], which relies on the continuity of x 7→ ∇V (x), there exist

two strictly positive real numbers ρ1 and ρ2 such that, with the definitions

F1(x) := coF (x + ρ1B) + ρ1B (20)

and
F2(x) := coF1(x + ρ2B) + ρ2B , (21)

we have

α1

(
δ

2

)
≤ V (x) ≤ α2(c) =⇒ max

w2∈F2(x)
〈∇V (x), w2〉 ≤ −1

2
V (x) . (22)
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Using [13, Lemma 8], there exists a set-valued map FL : Rn → (subsets of Rn) with nonempty
compact, convex values that is locally Lipschitz and satisfies

F1(x) ⊆ FL(x) ⊆ F2(x) ∀x . (23)

Combining (22) and (23) we have

α1

(
δ

2

)
≤ V (x) ≤ α2(c) =⇒ max

w∈FL(x)
〈∇V (x), w〉 ≤ −1

2
V (x) . (24)

It follows, like in [11, p. 441], that the solutions of

ẋ ∈ εFL(x) (25)

starting in K satisfy

ω(x(t)) ≤ max
{

β(ω(x(0)), εt) ,
δ

2

}
∀t ≥ 0 . (26)

4.2.2 Embedding (7) in a continuous system with average contained in FL

We define U(s) :=
⋂

µ>0

co u (s + µB), i.e.,

U(s) =





1 s > 0

0 s < 0

[0, 1] s = 0

(27)

and note that the Krasovskii/Filippov solutions of (7) correspond to the solutions of

ẋ ∈ ε

[
f(x) +

m∑

i=1

gi(x)U(hi(x)− pi(t))

]
=: εF̃ (x, t) . (28)

We define
X := {x : ω(x) ≤ β(c, 0)} . (29)

It follows from the properties of ω that X is a compact subset of H, and thus there exists ν > 0 be
such that

C := X + νB ⊂ H . (30)

Claim 1 There exist M > 0 and a set-valued map (x, t) 7→ F̃c(x, t) such that

1.
(x, t) ∈ C × R =⇒ F̃ (x, t) ⊆ F̃c(x, t) ⊆ MB ; (31)

2. F̃c(x, t) is nonempty, compact and convex for each (x, t) ∈ C × R;

3. the mapping t 7→ F̃c(x, t) is measurable for each x ∈ C;
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4. for each ε̃ > 0 there exists δ̃ > 0 such that

x1, x2 ∈ C , |x1 − x2| ≤ δ̃ =⇒ F̃c(x1, t) ⊆ F̃c(x2, t) + ε̃B ; (32)

5. there exists T ∗ > 0 such that

(x, t◦) ∈ C × R , T ≥ T ∗ =⇒ 1
T

∫ T

0
F̃c(x, t + t◦)dt ⊆ FL(x) . (33)

Proof of claim: We define

M := max
x∈C

(
|f(x)|+

m∑

i=1

|gi(x)|
)

. (34)

Recall the value ρ1 used in (20). We define

Uc(s) =





0 s < −ρ1

2[
0,

2s

ρ1
+ 1

]
s ∈

[
−ρ1

2
, 0

]

[
2s

ρ1
, 1

]
s ∈

[
0,

ρ1

2

]

1 s >
ρ1

2

(35)

and

F̃c(x, t) := f(x) +
m∑

i=1

gi(x)Uc(hi(x)− pi(t)) . (36)

It is clear that items 2 and 3 of the claim hold. Since

U(s) ⊆ Uc(s) ⊆ U
(
s +

ρ1

2
B

)
∀s (37)

it follows from (28) and (34) that (31) holds. Moreover, since the set-valued mapping Uc is globally
Lipschitz with Lipschitz constant 2/ρ1 and the functions f , gi and hi are continuous, and thus
uniformly continuous on C, it follows that item 4 holds.

It remains to establish item 5. Since

1
T

∫ T

0
F̃c(x, t + t◦)dt = f(x) +

m∑

i=1

gi(x)
1
T

∫ T

0
Uc(hi(x)− pi(t + t◦))dt (38)

and (13), (20) and (23) hold, it is enough to show that there exists T ∗ > 0 such that for all t◦ ∈ R,
v ∈ R and T ≥ T ∗,

1
T

∫ T

0
Uc(v − pi(t + t◦))dt ⊆ Si(v + ρ1B) + ρ1B . (39)

We claim that this condition holds with T ∗ = 2ρ−1
1 . To see this we first observe, using the second

inclusion in (37), the definition of σi(·) in (8), and the definition of Si in (9) that
∫ 1

0
Uc(v − pi(t))dt ⊆

∫ 1

0
U

(
v − pi(t) +

ρ1

2
B

)
dt

⊆
[
σi

(
v − 3

4
ρ1

)
, σi

(
v +

3
4
ρ1

)]

⊆ Si(v + ρ1B) .

(40)
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Next, we break the integral on the left-hand side of (39) into integration over the intervals [0, 1],
[1, 2], . . ., [n− 1, n], [n, T ] where n is the largest integer not larger than T , and we denote the value
of the jth integral by wj for j = 1, . . . , n + 1. Since Uc(s) ⊆ U

(
s + 1

2ρ1B
) ⊆ [0, 1] for all s, it

follows that |wj | ≤ 1 for all j = 1, . . . , n + 1. Also, using (40) and that pi(·) is periodic with period
one, wj ∈ Si(v + ρ1B) for all j = 1, . . . , n. Since Si(v + ρ1B) is convex by definition, the convex
combination n−1

∑n
j=1 wi ∈ Si(v + ρ1B). So, using T ≥ 2ρ−1

1 , the integral on the left-hand side of
(39) can be written as

T−1
n+1∑

j=1

wi = n−1
n∑

j=1

wi + (T−1 − n−1)
n∑

j=1

wi + T−1wn+1

∈ Si(v + ρ1B) +
(
T−1(T − n) + T−1

)B
⊆ Si(v + ρ1B) + 2T−1B
⊆ Si(v + ρ1B) + ρ1B ,

(41)

i.e., (39) holds. ¥

4.2.3 Working with enlarged systems

We now have arrived at the situation where we have that:

1. the trajectories of (7) that remain in C = X + νB are subsumed by the trajectories of the
system

ẋ ∈ εF̃c(x, t) ⊆ εMB (42)

where F̃c(·, t) is continuous uniformly in t, and F̃c(x, ·) is measurable.

2. the trajectories of
ẋavg ∈ εFL(xavg) , (43)

where FL is locally Lipschitz, satisfy

xavg(0) ∈ K =⇒ ω(xavg(t)) ≤ max
{

β(ω(xavg(0)), εt) ,
δ

2

}
. (44)

In particular, the trajectories of (43) don’t leave the compact set X ;

3. on C and for sufficiently large T , the set-valued maps F̃c and FL are related by

1
T

∫ T

0
F̃c(x, t + t◦)dt ⊆ FL(x) . (45)

These conditions lead to the following statement:

Proposition 1 There exists T ∗ > 0 and for each T ≥ T ∗ there exists ε∗ > 0 such that for each
ε ∈ (0, ε∗], each x◦ ∈ K, each t◦ ∈ R and each solution x(·) of (42) satisfying x(t◦) = x◦ there
exists a solution xavg(·) of (43) satisfying x(t◦) = x◦ and

ω(x(t)) ≤ ω(xavg(t)) +
δ

2
∀t ∈

[
t◦, t◦ +

T

ε

]
(46)
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and

x(t) ∈ K ∀t ∈
[
t◦ +

T ∗

ε
, t◦ +

T

ε

]
. (47)

We defer the proof of Proposition 1. First we will show how it gets used to prove the bound (12)
for the trajectories of (42) starting in K, and hence enables the proof of Theorem 1.

Claim 2 For sufficiently small ε, the bound (12) holds for the trajectories of (42) starting in K.

Proof. Let T ∗ > 0 come from Proposition 1, and recall the definition of c in (18). Let T ≥ T ∗ be
such that

β(c, τ) ≤ δ

2
∀τ ∈

[
T

2
,∞

)
. (48)

Let ε∗ > 0 come from Proposition 1 for this T . Let ε ∈ (0, ε∗]. Now we have, for all t ∈ [t◦, t◦+T/ε],

ω(x(t)) ≤ ω(xavg(t)) +
δ

2
≤ max

{
β(ω(x◦), ε(t− t◦)) ,

δ

2

}
+

δ

2
.

(49)

Using (48) it also follows that for t ∈ [t◦ + T/(2ε), t◦ + T/ε],

ω(x(t)) ≤ δ (50)

and x(t◦ + T/(2ε)) ∈ K. The above argument can now be applied repeatedly to obtain

ω(x(t)) ≤ δ ∀t ∈ [t◦ + T/(2ε),∞) . (51)

The conclusion then follows by combining (49) and (51). ¥

Remark 4.1 This proof technique is illustrated graphically in Figure 3. The solid line, in both
plots, is the graph of ω(x(t)) (on a time scale with ε = 1 and time indicated relative to t◦). Over
the initial T seconds, ω(x(t)) is compared to ω(xavg(t)), indicated by the dashed graph in the upper
plot, where xavg(·) is a solution of the averaged system that is close to x(·). After information about
ω(x(t)) over the first T seconds is derived, a new close solution of the average system is introduced
and considered for T seconds starting T/2 seconds after the original initial time. This solution is
indicated by the dashed curve in the lower plot. It gives information about ω(x(t)) between T and
3T/2. This process is continued iteratively, as suggested by the vertical dashed line at the bottom
of the figure, to arrive at the conclusion about ω(x(t)) for all time. ¥

4.3 Proof of Proposition 1

We make use of the following result, which is a combination of [1, Theorem 9.6.2, Theorem 9.7.1].

Lemma 1 If F : Rn × R → (subsets of Rn) has compact, convex values and is such that F (·, t)
is continuous (respectively, locally Lipschitz) uniformly in t and F (x, ·) is measurable then there
exists a function f : Rn × R× Rn → Rn such that

1. f(x, t,B) = F (x, t);
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Figure 3: Graphical illustration of proof technique for Claim 2.

2. f(·, t, d) is continuous (respectively, locally Lipschitz) uniformly in d ∈ B and t;

3. f(x, ·, d) is measurable;

4. f(x, t, ·) is continuous.

Via what is known as Filippov’s lemma (see [3, Exercise 3.7.20] or [1, Theorem 8.2.10]), it can be
shown that the solutions of ẋ ∈ F (x, t) are the same as the solutions of ẋ = f(x, t, d(t)), where d(·)
ranges over the set of measurable functions taking values in B.

Lemma 2 (Filippov (special case)) Assume f : Rn × R × Rn → Rn has the properties in the
conclusion of Lemma 1. Let x(·) be absolutely continuous and satisfy, for almost all t,

ẋ(t) ∈ f(x(t), t,B) . (52)

Then there exists a measurable function d : R→ B such that, for almost all t,

ẋ(t) = f(x(t), t, d(t)) . (53)

Remark 4.2 In the notation of [3, Exercise 3.7.20], ϕ : R × Rn → Rn is given by ϕ(t, u) =
ẋ(t) − f(x(t), t, u) (with ẋ(t) defined arbitrarily in f(x(t), t,B) for times (a set, if nonempty, of
measure zero) where it is not otherwise defined), and Γ = B. ¥

Using the above results, we now know that the enlarged problem is the same as the problem
where we have that:
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1. the trajectories of (7) that remain in C = X + νB are subsumed by the trajectories of

ẋ = εfc(x, t, d) ⊆ εMB (54)

where d : R → B is measurable, fc(·, t, d) is continuous, uniformly in t and d, fc(x, ·, d) is
measurable, fc(x, t, ·) is continuous;

2. the trajectories of
ẋavg = εf`(xavg, e) (55)

where e : R → B is measurable, f` is locally Lipschitz, satisfy (44); in particular, the trajec-
tories of (55) don’t leave the compact set X ;

3. on C and for T sufficiently large, fc and f` are related by: for each measurable d : R→ B, T
and t◦, there exists e ∈ B such that

1
T

∫ T

0
fc(x, t + t◦, d(t))dt = f`(x, e) . (56)

In this situation, the result of Proposition 1 follows from (the proof of) [14, Proposition 8].

5 Input-to-state stability results

It is clear from the development of the proof that it should be straightforward to handle the
situation where certain types of disturbances d appear explicitly in the differential equation (7).
For example, we could consider

ẋ = ε

[
f(x, df , ds) +

m∑

i=1

gi(x, ds)u(hi(x, ds)− pi(t))

]
(57)

where df : R → Vf represents an arbitrary, measurable function and ds : R → Vs is “slowly
varying”. We will denote these classes of functions Df and Ds,ε respectively. More precisely (cf.
[14, Assumptions 1 and 2]):

Assumption 1 The sets Vs and Vf are compact.

Assumption 2 The set Ds,ε is such that

1. it is shift invariant, i.e., if t 7→ ds(t) belongs to Ds,ε then t 7→ ds(t + t◦) belongs to Ds,ε for
all t◦.

2. For each T > 0 and ρ > 0 there exists ε∗ > 0 such that, for all ε ∈ (0, ε∗],

ds ∈ Ds,ε =⇒ |ds(t)− ds(0)| ≤ ρ ∀t ∈ [0, T ] . (58)

For simplicity, we will assume:

Assumption 3 The functions f , gi and hi are locally Lipschitz and pi(t) = t mod 1.

11



In this case, the natural “averaged” system to consider is

ẋ = ε

[
f(x, df , ds) +

m∑

i=1

gi(x, ds)sat01(hi(x, ds))

]
. (59)

Here we enforce that hi takes values in [0, 1] by passing hi through the function sat01 defined to be
the nondecreasing function that is linear on [0, 1] and with range [0, 1]. In fact, the actual average
system that we will consider is

ẋ = ε

[
f(x, df , ds) +

m∑

i=1

gi(x, ds)sat01(hi(x, ds) + e)

]
=: εfavg(x, df , ds, e) (60)

where e is measurable and takes values in ρ3B where ρ3 > 0 is arbitrarily small. We will use E to
denote this class of functions. We note that favg is locally Lipschitz. We assume:

Assumption 4 Given continuous, positive semidefinite functions ωo and ωi and the function β ∈
KL such that

1. ωo is proper with respect to H;

2. the trajectories of the system (60) satisfy (compare with (26) or (44))

ωo(x(t)) ≤ max {β(ωo(x(0)), εt), ||ωi(df , ds)||∞} (61)

for all initial conditions in an open set H and all measurable (df , ds, e) ∈ Df ×Ds,ε × E.

Remark 5.1 We note that ωi(·, ·) may be strictly positive to account for the fact that e does not
appear explicitly in the bound (61). E.g., we may have

ωi(df , ds) = ω̃i(df , ds) + γ(ρ3) (62)

where γ(·) and ω̃i(·, ·) are positive definite, and ρ3 represents the worst case infinity norm for e ∈ E.
¥

We can then make the following statement:

Theorem 2 Under the Assumptions 1-4, for each δ > 0 and compact set K ⊂ H there exists ε∗ > 0
such that

ε ∈ (0, ε∗] , x(t◦) ∈ K , (df , ds) ∈ Df ×Ds,ε =⇒ (63)

the (generalized Krasovskii/Filippov) solutions of (57) exist for all t ≥ t◦ and satisfy

ωo(x(t)) ≤ max {β(ωo(x(t◦)), ε(t− t◦)), ||ωi(df , ds)||∞}+ δ . (64)
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6 Proof of Theorem 2

We follow the proof of Theorem 1, however ω (which now is ωo) and β are already given and the
averaged system is already locally Lipschitz. Therefore, after taking the definition of c from (18), we
pick up the proof at Section 4.2.2. We define U(s) as in (27) and note that the Krasovskii/Filippov
solutions of (57) correspond to the solutions of (cf. (28))

ẋ ∈ ε

[
f(x, df , ds) +

m∑

i=1

gi(x, ds)U(hi(x, ds)− pi(t))

]
=: εF̃ (x, t, df , ds) (65)

We define (cf. (29))

X :=
{

x : ωo(x) ≤ max
{

β(c, 0), max
(df ,ds)∈Vf×Vs

ωi(df , ds)
}}

. (66)

Like before, it follows from the properties of ω◦ that X is a compact subset of H, and thus there
exists ν > 0 be such that (cf. (30))

C := X + νB ⊂ H . (67)

We define Φ to be the set of measurable functions taking values in B. Then we have the following
claim, which parallels Claim 1:

Claim 3 There exist M > 0 and a map (x, t, df , ds, φ) 7→ f̃c(x, t, df , ds, φ) such that

1.

(x, t, df , ds) ∈ C × R× Vf × Vs =⇒ F̃ (x, t, df , ds) ⊆ f̃c(x, t, df , ds,B) ⊆ MB (68)

2. the mapping (x, df , ds, φ) 7→ f̃c(x, t, df , ds, φ) is continuous for each t;

3. the mapping t 7→ f̃c(x, t, df , ds, φ) is measurable for each (x, df , ds, φ) ∈ C × Vf × Vs × B;

4. for each ε̃ > 0, there exists δ̃ > 0 such that

(x1, x2, df , ds, φ) ∈ C × C × Vf × Vs × B , |x1 − x2| ≤ δ̃ =⇒ (69)∣∣∣f̃c(x1, t, df , ds, φ)− f̃c(x2, t, df , ds, φ)
∣∣∣ ≤ ε̃ ;

5. for each ρ > 0 there exists T ∗ > 0 such that for each

(x, t◦, ds, df , φ) ∈ C × R× Vs ×Df × Φ , T ≥ T ∗

there exists e ∈ E such that
∣∣∣∣
∫ T

0

[
f̃c(x, t + t◦, df (t), ds, φ(t))− favg(x, df (t), ds, e(t))

]
dt

∣∣∣∣ ≤ ρT . (70)
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Proof. The proof of this claim is like the proof of Claim 1 with the extra step that we explicitly
parameterize the set-valued map Uc(s) defined in (35) using the function

uc(s, φ) =
1
2

[
sat01

(
2s

ρ1

)
+ 1

]
+

1
2

max
{

1− 2|s|
ρ1

, 0
}

φ . (71)

We note that s 7→ uc(s, φ) is globally Lipschitz uniformly in φ ∈ B, and

U(s) ⊆ uc(s,B) ⊆ U
(
s +

ρ1

2
B

)
. (72)

We define

fc(x, t, df , ds, φ) := f(x, df , ds) +
m∑

i=1

gi(x, ds)uc(hi(x, ds)− pi(t), φ) (73)

and

M = max
(x,df ,df )∈C×Vf×Vs

(
|f(x, df , ds)|+

m∑

i=1

|gi(x, ds)|
)

. (74)

The first four conditions of the claim follow immediately from Assumption 3 and the properties of
uc.

Finally, the last condition of the claim is established by following the calculations (38)-(41) at
the end of the proof of Claim 1, using the fact that uc(s,B) = Uc(s). ¥

At this point we have the analogy of Proposition 1, which follows from (the proof of) [14,
Proposition 8], and then the analogy of Claim 2 to complete the proof of Theorem 2. ¥

7 Conclusion

Pulse width modulation is an important control technique used extensively in state-of-the-art AC-
DC converters as well as DC-DC converters such as the boost and buck converters. The control
design intuition behind pulse width modulation is often based on an averaging approach, but a
rigorous justification of averaging techniques as a design tool is highly nontrivial because of the
discontinuous nature of the resulting control schemes. The present paper provides a mathematically
sound framework for the (input-to-state) stability analysis of pulse width modulated control systems
via averaging techniques. Crucial ingredients in our analysis are a recent generalization of two time
scale stability results for systems with disturbances [14] and methods from nonsmooth systems
theory.
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