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Abstract— This paper introduces a new definition of stochastic selects the node currently being allowed to transmit and an
protocols for networked control systems (NCS) and the stochastic associated dynamical system that evolves the state variable
analogue of the notion of uniform persistency of excitation of x € X. For spatially separated nodes, this generally means

protocols first presented in [1]. Our framework applies directly o .
to common wireless and wireline NCS, including those built that each node must maintain a copy of the statthat is

on collision-sense multiple access (CSMA) style protocols, with €volved identically by each node. For networks with a large
Ethernet and 802.11a/b/g as prime examples of this class. Wenumber of nodes, mobile nodes that are spatially separated

present conditions for a general class of nonlinear NCS with zcross Varying distances or networks with a Varying number

exogenous disturbances using stochastic proto_col_s in t_he Presenceyt nodes, it may be impractical or impossible to keep the state
of packet dropouts, random packet transmission times and . f fi hronized Il nod

collisions that are sufficient for L, stability from exogenous Information synchronized across all nodes.

disturbance to NCS state with a linear finite expected gain. ~ The alternative is to accept that collisions may occur, detect

Within the same framework, we extend the results of [2] to and recover from them when they do occur and attempt to to

provide an analysis of deterministic protocols, including try-once-  reduce the number that occur by employing various heuristics

discard (TOD), in the presence of random packet dropouts and sjng data available to each node locally. Concrete and familiar

inter-transmission times and provide a stochastic analogue of - . . .

the Lyapunov-theoretic stability properties for network protocols examples of this approach include the famlly Pf collision-sense

introduced therein. multiple access protocols (CSMA) exemplified by Ethernet,
p-persistent CSMA (Bluetooth, 802.11a/b/g) and variants of
ALOHA. See [3] for an overview of these protocols and their

. INTRODUCTION operational characteristics.

The premise of networked control systems (NCS) is to spa—-ghus tfarl, thte d;(scuivsrllon holds ttrue f?\:v b(lzth cgmpu:erl
tially distribute a “traditional” control system across a numb nd controf NEtworks. ére computer networks and contro

of nodesthat exchange data subject to the constraints ofngtvx{orks dnffer radically is in access patterns — ideally, a
shared data channel. These nodes include sensors, actu huous-time control system would have nodes constantly

and units that compute various control laws and the dat{gmsmit_ting sensors values and constantly recei_ving control
channel is typically a wireless or wireline computer networl?’,alues’ n complete contrast o the usugl assumption of access
many examples of which can be found in [3]. For the va short and irregular bursts for nodes in a computer network.
majority of computer networks described in [3], the primar tated explicitly,we assume continuous-time controllers and

constraint on the exchange of data between nodes is that t Qtjtpﬁts ?r:e sut(\:; tl? ath therel I;N il alwayjl be data to
respective channels are exclusive in that the attempt of md@nsmit when the network channel becomes idle. :
than one node to transmit data at a given time will result in his assumption applies to contentionless and contention
data loss. i.e.. a collision protocols in NCS, the key difference being that the latter
Collisio'ns c,an be prevented through the use of (contentioﬁiuges not enforce a particular choice of which link to transmit

less) scheduling protocolsthat decide which node(s) canWhen the channel becomes idle whereas the former does.

transmit and at what times. For example, labeling the Nd%espite the lack of collisions in in contentionless protocols, we
nodes {1, as, ...,ax} round.-robin scheduiing would entail|oresent a unified approach for the analysis of NCS employing

apportioning the channel's tim, cc) into slots {s; := contentionless and contention protopols in the_prgser)ce of
= . : random packet dropouts and random inter-transmission times —
[to,t1), 82 = [t1,t2),...,} such that node:; is permitted ttects that ar ntially attribut f non-ideastochast
to transmit during slots;xn, & = {0,1,...}. Depending ;efvsosrk (?hair?e’lessse ally attributes of hon-ideasfochastic
on the context, this scheduling protocol is also known as . : . .
gp Motivated by the need to design and analyze NCS with

time-division multiplexing or Token Ring. Stability properties . .
of NCS employingp roung-robin scheduglling and za?iogs othéF.OChaSt'C channels in order, for example, to deploy NCS nodes

: . . irelessly, we propose a model of NCS and network protocols
contentionless protocols have been discussed in [1], [4], [ :
halogous to the models presented in [2] and [9].
[5], [6], [7], [8] and [9]. 9 p [2] (9]

A contentionless scheduling protocol can be thought of The NCS design approach adopted in [2], [10], [3], [7], [8],

as a (time-varying) map : [0,00) x X — {1,.., N} that and this paper conS|st.sj gf the foIIowmg steps:
1) design of a stabilizing controller ignoring the network;
This work was supported by the Australian Research Council under the2) and analysis of robustness of stability with respect to
Australian Professional Fellowship & Discovery Grants Scheme. effects that the network introduces.

We assume that every link in the NCS contests access to the



network at either predetermined time-slots or at times at whicbntention protocol, in the sense of our definition, when-
the network is sensed to be idle. This results in two potentiaver attempted transmissions occur “fast enough”. With mild
sources of randomness: additional technical assumptions, we show that a similar

1) At any idle time or transmission slot, either some nodeonclusion holds for a.s. Lyapunov UGES protocols and,
j transmits successfully or a collision results or th# particular, holds for the try-once-discard (TOD) protocol,
transmitted packet is dropped. Denoting the probabilifptroduced in [7], in the presence of random packet dropouts
that a packet is dropped or a collision occursggy we and inter-transmission times. By “fast enough” we mean that
will always assume that the probabilities of successftirere exists a choice of intensityof the transmission process
transmission of links is identically equal ta —p,)/V O @ choice of uniform bound on inter-transmission times
for a V-link NCS using a contention protocol. WhileParameterized by properties of the protocol and the NCS
this is not strictly necessary in our analyses, there is fynamics such that the NCS Is, stable-in-expectation from
reason to statically (off-line) favor any one link ovedisturbance to NCS state with a finite expected gain.
another during contention by adjusting transmission- Our work builds on the NCS analysis approach and the
success probabilities. Contentionless protocols do, hofkotocol description methodology described in [2] and fur-
ever, enforce a particular choice of which link to transmiher developed in [9] for deterministic systems. Notions of
in a given slot eliminating the possibility of a collision.stochastic inter-transmission and delay processes for linear

2) Sensing the network as being idle, synchronizing #§CS are discussed [12] and elsewhere subsequently with
transmissions time-slots or else randomly waiting fdhe analysis framework presented in [13] applying aspects of
a period of time after any of these events to reduﬁOtOCOl and Stablllty ana|YSiS similar in Splrlt to [2] within a
the likelihood of transmission are common features @tochastic setting. The focus in [13] is on NCS that employ
network protocols. These uncertainties can be faithful§ontentionless protocalsas discussed in [1], [4], [2], [5],
modeled with a stochastic (renewal) process. For the $8t [7], [8] and [9] and examines mean-square stability of
of protocols we discuss, it is sufficient to restrict oupt class of NCS perturbed by a Wiener process when the
attention to Poisson processes with some intensioy inter-transmission process is random (a renewal process) and
a class of renewal processes where inter-transmissWhere random data drOpOUtS may OcCcur. This is contrast to the
times are uniformly bounded. results within this paper that focus on a robustness property

In lieu of the notion of a scheduling protocol described in [2}~7 stability-in-expectation) and that considerotocols that

and [9] and the notion of maximum allowable transmissio atisty a.s. stability pr_ope_r'ues. .

interval (MATI), we now have a stochastic process that de- '€ Primary contributions of this paper are the novel

termines when transmissions occur and which link, if any, finition of stochastic protqcols that model typ|cal contention

transmitted at these times. protocols as well as contentionless protocols in the presence of
Within this setup, our analysis framework analyzes th%acket dropouts in the NCS setting together with several pro-

input-output, stability (I0S) of NCS (in expectation), thetocol examples that can be modeled in this way; development

essence of which is that outputs (or state) of an NCS veri f an extension of _the Lyapunov_ UGES property and_ ana lysis
roach pursued in [2] for non-ideal NCS; characterization of

a robustness property with respect to exogenous disturbancgs. tochasti | £ unif st f excitai
We stress that it is only the network protocol and channel dela% stochastic anajogue ot uniform persistency of excitation —

that induces randomness in our models and that the exogen S finite cover time prope.r'Fy; anq devglopmen.t. of _several
disturbances aré, signals as in [2] and [9] consequences of these definitions includibg stability-in-
» .

We show that both contention and contentionless protocc%pectation of the error dynamics of the NCS that decreases (to

verify stochastic analogues of the protocol stability propertigfro) as the expected transmission rate increases (io infinity)

. . . : and development of sufficient conditions fay, stability-in-
ntroduced in [1] and [2], respectively. The contention proto- .
! " in (1] [2] pectively on p pectation of the NCS as a whole.

cols in the sense of our definition, satisfy a property that f&

similar to the property of uniform persistency of excitation The Paper 1S d|\{|ded into five gddmongl sect|0n§: Sectlion
introduced in [1] — that is, links are almost surely (a.s.y introduces notation and technical devices; Section Il in-

transmitted within a finite number of transmissiof's For rodléges ourthmolflel 0{ NCS V\f"th stochas'_uc |mpl:Ises| andd
a V-link NCS in the stochastic setting, the random variabl§f® discuss the key classes ol a.s. covering protocols an
T is closely related to the cover time of W + 1)-vertex a.s Lyapunov UGES protocols in Secyon v and.Secnon Vi
undirected graph and the running time of the Coupon Collectr(ﬁ'SpeCt'Vely' We also present two typical conte.nt|on.protocol
problem! For the contentionless protocols we discuss, ﬂ%(amples that can .be faithfully represented with this mod'el
stability property we examine is that of a.s. Lyapunov uniforr?inOI discuss key differences between the use of contention

global exponential stability (UGES) with obvious parallels t8r°tOCOIS in computer networks an_d control networks as yvell_
the analysis approach pursued in [2] as present an example of a contentionless protocol operating in

Although link cover times and inter-transmission are nO\%1e presence of packet dropouts. We present our main stability

random and, hence, not uniform, we show that if the networﬁsunz fgr c;pnte\rllltllon and ct:.on][entlc;lnless protcl?ols mffSepUt:n
free system isL, stable, the NCS remains so with any and section VI, Tespectively, where we outiine sutlicien
criteria for the protocol and nominal control system such that

1See [11, Section 2.4.1], for instance, for a description of the Coup&he. resultant NCS iSLp _Stable with linear finite expected )
Collector problem. gain from exogenous disturbance to state. A case study is



presented in Section VIII with proofs of the main results are I1l. HYBRID SYSTEM MODEL FORNCS

presented in Section IX before we conclude with some generalye assume that a stabilizing (continuous-time) controller
remarks on analysis framework pursued as well as possiBlgs peen designed ignoring the network and consider general
future extensions of this work in Section X. nonlinear NCS with disturbances wherg> and z¢ are,
respectively, states of the plant and controllgris the plant
output andu is the controller outputj andu are the vectors

of the most recently transmitted plant and controller output
Let M,, denote the set of. x n matrices with zero off- values via the network and is the network-induced error

diagonal entries and diagonal entries in the §et1}. Let defined as (6 —u(®)
a Vb anda A b denote the maximum and minimum of two e(t) = (ﬁ(t)fu(t)) : ®3)

real numbers: andb, respectively. LetD f(t) denote the left- \ye model the NCS as a so-called jump-continuous (hybrid)
handed derivative of : R — R™: system, where jump times and the associated jump or reset
Flt+h) — f(t) maps are both random. Node data (controller and sensor val-
—_— ues) are transmitted at (possibly) random transmission instants
{to,t1,...,t;},% € Nand our NCS model is prescribed by the
whenever the above limit exists. L&[-],P {-} denote the following dynamical and jump equations. In particular, for all
expectation and probability (measure) operators, respectivély: [tic1,tq]:
For any random vecto¢ € R<¢ with distribution p, the

Il. PRELIMINARIES

Dfit) = hj%r%<0 h

associated moment generating function (mgfis given by {UP - thpg’xp’?’wi g;
e = Je\t,xo,Y,w

j(0) = [ explt)uds) = Blexp(e). u=goltzc) y=gr(tze) (6)

y=0 4=0, @)

We use the abbreviatiofid for “independently identically 5nd at each transmission instant

distributed” and the notatioX ~ Exp(}\) to indicate thatX

is an exponentially-distributed random variable wWighX] = e(t)) = Qi(e(ts)), 8
1/\. For distributions orZ., we use the probability generatingwhereQi(')

is arandomjump map. In particular®); may be
function (pgf)y given by Jump map. In p Q: may

the identity in the case where nothing was transmitted or a
collision or dropout occurred.
— n — — X . . .
b(s) = Z s"P{x =mn} = E[sX],s > 0. We consider two main classes of protocatententionand
n=z0 contentionlessprotocols in the presence of random packet

g{opouts and random inter-transmission times that we model
through appropriate definition of the random error jump maps
in (8) and the sequence on transmission instants. Within our

i(t) = h(t,z,w) t€ [ti1,t] 1) modeling _framev_vork, we shall see that it is enough to restrict

L our attention to jump maps of the form

2(t7) = Qi(2(t:)), 2)

e(ty) = Qie(ts),
whereQ;(:) € M,,_ is a sequence of random maps.,; —t; ~

Exp()), iid and by z(t;) we mean “evaluated just after thelOF contention protocols, wher; is an iid sequence of
. w1 ' diagonal matrices with entries drawn from the é@t1} and,
jump”: z2(t;7) = lmg_, s>¢; 2(8).

Fix p € [1,00]. For clarity of the presentation, we assum(feor contentionless protocols in the presence of dropouts, jump

enough regularity om for the existence of an absolutelyrnaps of the form:

continuous functior(t, o, zo, w) such thats z (¢, to, zo, w) = e(t]) = qih(ise(t;)) + (1 — gi)e(ts),
h(t,z,w),t € [to,a],a > 0 for every initial condition(¢y, zo)
and anyw € L,. It is then clear how to generate the trajector
process of (1)-(2) with the initializatiotty, zo):

We will be considering systems with stochastic impulses
the form:

where h is a deterministic jump map (e.g., as in [2]) and
¢; is an iid sequence of Bernoulli random variables. These
classes of protocols together with the sequence of transmission

t instants are collectively referred to astchastic protocol
z(t) = 2(to) +/ h(s,z(s),w(s))ds,t € (to,t1), The effect of the stochastic protocol on the error is such
fo that if the mth to nth nodes are successfully transmitted at
wherez(s) := z(s, to, 20, w(s)) and inductively, transmission insta}rﬂ; the corresponding components of error,
én,---,em, €Xperience a “jump”. It may be the case that
¢ a single logical node (a “link”) consists of several sensors
2(t) = Qi(2(t:)) +/t‘ his, 2(s), w(s))ds,t € (ti; tiva), or several actuators or both with the transmission of that

link having the effect of setting multiple components of
wherez(s) := z(s, t;, Qi(2(t;)), w(s)). Note that Zeno solu- to zero. It may also be the case that the network allows
tions are a.s. not possible sin®e{t;,;; —t;, =0} = 0. the transmission of more than one node at each transmission



and our model allows for this extra degree of freedom. For 1) the inter-transmission continuous-time dynamics in (9)

transmission of nodesnth to nth nodes, we will always
assume that, (t),...,en(t]) = 0 and, henceQ;(e) =

and (10) are prescribed on a sequence of intervals
[t;—1,t;] of random lengths not necessarily uniformly

lak;le, wherea,; = 0 for k = j € [n,m]U{k # j} bounded by a constant, i.e., the notion of MATI does not
and 1 elsewhere. We group the nodes that are transmitted always make sense for the inter-transmission processes
together into logical links, associating a partition of size we consider; and,

denoted bye;, = (e;1,e42,...,¢,), Of the error vectore 2) the scheduling protocol (error jump map) (11) is a
such that we can write = (ej,...,ey). We say that the particular random linear map, where we admit the
NCS hasV links andzz/:1 v; hodes. Note that this is purely possibility of ; = I with non-zero probability equal

a notational convenience and simplifies the description of to the probability of packet dropout and collision. We
scheduling protocols and the NCS itself. We combine the  believe that this a new and novel approach to modeling
controller and plant states into a vecter= (zp,z¢c) and contention protocols on non-ideal network channels.
similarly to [2, pp. 1653], assumingp, gc are a.e.C?, for Definition 4.1: For a V-link NCS, abstractly, we define a
example, we can rewrite (4)-(8): contention protocol as a discrete Markov ch&jn subordi-
nated by a renewal procésa/(t) such that

”T_ = fltzew) tEltio,til ©) 1) Q; € M,,. are iid randomn, x n. with associated link
e=g(t,z,e,w) telti,t] (10) and collision probabilities given by
e(ty) = Qi(e(ts)) (11)

P {Qz = Mz} = Pi-

wherex € R"= e € R™, w € R™ . Implicit in this definition
is that there are no (pure) propagation delays. Transmissior?) The sequence of arrival timgs; };cy is defined induc-
at time ¢; results in the instant reset of the relevant error  tively by:
component to zero. We appeal to the robustness properties
verified by the class of systems considered to assert that the
results in this paper remain true for sufficiently small delays.

With respect to (4)-(8) and (9)-(11), we further assume that
the sequence of (attempted) transmission tifies;cy is such

to = 7o,
wherer, ~ Exp()) and for each > 0,

ti =ti—1 + 7,

thatt; ;1 —t; is exponentially distributed for afl and analyze

two classes of jump maps in (8) and (11) which we explore

in the proceeding sections.

IV. CONTENTION PROTOCOLS

7; ~ Exp()), where the sequendg;} is iid. We set

0 telo,tg)
N(t)z{ k tG[tk—Olatk)v

hence,N(t) is a Poisson process with intensity

Essentially, ther; denotes the wait time after the arrival of a

By a.co_nten.uon protocol, we mean the sequence of randcaycket (before a new transmission begins). Where not other-
transmission times together with iid random jump maps wise stated, we will henceforth assume tRafQ; — My} —

that aree-independent with reference to (11). That@, are pr " 3/ (1 _ oy /Vikj £ 0 ie., each link is
(2 J - s vy Sy

lid random matrices taking values in the f|_n|te set,, = equally likely to be transmitted successfully. As alluded to in
{Mo, M., My}, whereMy = I, and M; is such that 0 introduction, this assumption is not strictly necessary for
our analyses, however, any other distribution of probabilities
results in astatic choice of priorities amongst links where one
link may be favored over another during contention. There
We make this definition more precise shortly. The intuitiomay be examples of NCS that would benefit from such an
behind this model is that at a transmission titneeither some adjustment of relative link priorities offline in terms of required
link j will acquire the channel and have its component of transmission rates or greater robustness of stability but as these
set to zero, that is, choices are made offline and not in response to the evolution
N N o of the NCS state online, we believe that the scope of exploiting
ej(ti) = 0,ei(ty) = e(ti),i # j, this degree of freedom is limited.
henceQ; = M, or else more than one node attempted to I [9], the analysis framework defined the notion of uniform
transmit resulting in a collision with remaining unchanged persistency of excitation of a protocol. To say that a protocol
(Q; = M,). Due to random “back-off" times, and wait-Was PEr was to guarantee that every link is visited affer
times inserted into medium access protocols, transmissiansmissions. We pursue a stochastic analogue of that here:
times are potentially random. Collectively, these issues are théP€finition 4.2 (Cover Time)Consider a contention proto-
same issues presented in multi-user access in computer &Ain the sense of Definition 4.1 for H-link protocol and
mobile voice networks though the network access patterns 8gfine
somewhat different. See [3] for an overview. Ny ) ‘
Remark 1:Note that the definition of NCS error given in Ty =min{j = 1:{My,..., Mv} C{Qo,. - Qs h

(3) and the de;criptiop of the NCS in (9)-(11) is similar to 2More precisely, the process of interest is in fact a marked point-process.
that presented in [2] with two key differences: See [14] for an exposition.

Mje:Mj(el,...,ej,...,ev)

= (ela' .. aej—lvovej+17"'7e\/)'



and, inductively fori > 0, as a result of collisions and transmission errors. Other ap-
o proaches to analyzing the effects of dropouts have been stud-
T =min{j 2 0: {My,..., My} C{Qr ;- Qi +j-1} ) jeg including the asynchronous dynamical systems approach
We refer toT; as theith cover time and, collectively the cover(ADR) presented [15] with applications to NCS pursued in
time process. It is clear from our definition ¢f; thatT; is a [16]. Dropouts events are characterized byaée which is
stationary process. essentially an ensemble time-average of the dropout indicator
Definition 4.3 (Covering sequencelet 7; = t;.1 — t;, as function. In principle, assuming that the dropout process is

in Definition 4.1, that isy; are inter-arrival times. We say that€"godic, for example, this is akin to taking an expectation
of the dropout process which we use to characterize the

C@, k) ={(Qj,7j)s- -, (Qr, )}, k>3 probability of dropouts from transmission errors. In practice,

. . : , admitting the possibility of collisions introduces a dependence

is & covering sequence ifiMy,..., My} C Cay (4, k)2 1t of.the probability of dropout on the number of links which is

IS €asy FO see t_hat cover times are simply the lengths égsentially ignored in [15] and [16] as neither work exam-

consecutive .dISJOIn'[ COVErng sequences. ines scheduling amongst links. This paper characterizes the
.Rgma_rk Z-F“’”.‘ our definition of coqtent|on protoc_ols, thebehavior of contention and contentionless protocols through

distribution of T, is given by the solution to the (We'ghted)appropriate definitions of (stochastic) scheduling protocols that

coupon callectors proble_m. When = pj. i,j _7é 0, we have would be difficult or impossible to represent within an ADR
the closed form expression for the expectation: framework

E[T] =VHy/(1-po), (12)

where Hy is the Vth harmonic number and we have droppef Slottedp-Persistent CSMA

the time index: sinceT,, is stationary. We also have the bound What has been referred to as “scheduling” and the as-

for the distribution: sociated scheduling protocols by [9] is generally known as
PIT > 8V I V/(1 < y-(8-1) /(1 — 13 medium access in the pommt_m_ications Ii_terature. CoIIisiQn

{Tn 2 fVInV/(1 = po)} < /(1 =po), (13) sense multiple access with collision detection (CSMA/CD) is

for any 8 > 1. Intuitively, T, = E[T] “most of the time” and DY far the most widely used medium access protocol by virtue

P{T, <} =1. « of the sheer volume of Ethernet and Ethernet-like networking

Our abstract definition of a contention protocol is a model féevices shipped and manufactured each year.

the contention protocols discussed in the introduction and toCSMA/CD is a simple protocol: Links listen for trans-

that end we present two natural examples in this setting. Missions on the the channel. A link wanting to transmit

Definition 4.4 (Almost Surely Finite Cover Timejve say acquires the channel when it senses that the channel is idle.
that a protocol isa.s. coveringor has ara.s. finite cover time When more than one link senses that the channel is idle

if in Definition 4.2 and begins transmission, a collision occurs. At this point,
all transmissions are immediately aborted. There are several
(VieN) P{T; <oc}=1. variants of CSMA/CD that prescribe how transmissions are

: . . . rescheduled and how links initially acquire the channel.
Note that from the preceding discussion, this property IS, : .
o ! . - .~ With slotted p-persistent CSMA, rather than have links
verified by all contention protocols in the sense of Definitio . L . .
41 ransmit whenever the channel is idle, links are only permitted
T ) . o ... . to transmit at prescribed transmission slots that occur every
Remark 3:The property of persistency of excitation within )
. : : . ts > 0 seconds in slotted protocols. At the start of sipf
the context of scheduling protocols discussed in [9] is es- I . : ;
inks S = {i,..,j} intending to transmit acquire the channel

sentially a protocol stability property closely related to th\(/evith a probabiiity of p. If a collision occurs, linksSe are

Lyapunov .UGES and .UGAS stability propertl_es for schedulin ermitted to transmit in the next slot and link$ reschedule
protocols introduced in [2] and [8], respectively. Just as t Bei o
X . ; ; d neir transmissions at slotSsgiq,,- .., Sk+d, ;- The delays
a.s. covering property introduced in this paper is a stochas |§ d,} may be deterministic or iid ranjdom variables
[ f ist f itati f tocols, the Lya-* """ : ) ) ) )
analogue of persistency of excitafion of profoco's, e Ly As alluded to in the introduction, the primary reason that

punov UGES and UGAS properties may be recast withi . .
our framework to asserf,, stability results in the presenceESNIA protocols and, indeed, all contention protocols work

of random data dropouts quite distinct from the unwielgh practice is that the access patterns of computer and voice

L . fetworks are “bursty” in nature. The assumption is that a link
deterministic characterization of dropouts presented [2]. ThiS ) . . : .
T . . will occasionally transmit a burst of information and remain
generalization is pursued in subsequent sections of the paper ~ """~ o
- . : therwise idle. Transmissions are expected to eventually suc-
within essentially the same analysis framework.

The motivation for studying these stochastic analogues %(?ed as links are “infrequently” contending for the channel.

- C The situation is quite different for control networks with
the stability properties Is to naturally exte nd the resuIt; ?ﬁe implication tha? medium access patterns are constant
[2] and [9] to non-ideal networks, that is, networks Wltr}%her than bursty and for slotteptpersistent CSMA, we

random inter-transmission times and random packet dropou . ) .
P P assume that every slot will be in contention. Another key

3The notationCy,, (j, k) refers to the covering sequence of matrigs  difference between computer networks and NCS is in the
with no reference to inter-transmission timesi.e., {Q;, ..., Qx}. treatment of collisions and dropouts. NCS should not buffer



failed transmissions of controller or sensor values but, rather, V. CONTENTIONLESSPROTOCOLS WITHDROPOUTS

attempt to transmit the latest values when a slot is free. ASThe premise of a contentionless protocol is that the network
the maximum number of links contenting slots is constant f@hannel is a resource shared amongst links and that the simul-
every slot, there is no reason for a link to delay transmissiggheous transmission of data by more than one link will result

for any more than one slot after a collision. in data loss. By careful coordination amongst links through
With these assumptions, consideVaink NCS with thep-  the yse of a particular scheduling protocol, contention can be

persistent CSMA protocol. The probabiliy {Q; = M;} that  gliminated completely and the property that only one link can
a.particular link j transmits successfully during thth slot is attempt to transmit at any given instant can be enforced. As

given by alluded to in the introduction, simple round-robin scheduling
P{Qi=M;}=p(1 -p)' amongst links is an example of a contentionless protocol as

It is clear thatP {Q; = M} is maximized wherp = 1/V. are the protocols discussed in [2], including the so-called try-

: : once-discard (TOD) scheduling protocols.
Will h forth =1 h that . A X .
Hll henceforth sel /V and have tha Despite the elimination of contention, NCS employing con-

1 1\V ! (V-1)V-1 tentionless protocols on non-ideal network channels are still
P{Qi=M;} = v (1 - V) - v subject to packet losses and varying inter-transmission times.
With reference to (11), a jump map of the form
Notice that in this “optimal’ case,P{Q; = M;} =
P{Q:=M,} = (V- 1)V-1/VV for i,k # 0 and the e(ty) = h(i,e(t:)) (14)

probabi‘Et_yl of 3_‘i°|”7°’i°” is given byP {Q; = Mo} = 1 - \ag ysed to capture the behavior of the protocol in [2] on an
(V—1)¥=7/V"~". Finally, we assume that slots occur everyye | network and by assigning a probability, to the event
ts > 0 seconds and, hencg;persistent CSMA is a contentionyy,; the channel drops a packet, we model the behavior of the

protocol in the sense of Definition 4.1 where inter-arrival time&rotocol on non-ideal channels in this paper with jump maps
7; and, hencej; andn;, are deterministic. of the form

+\ — o h(s . . .
B. CSMA with Random Waits e(ti’) = qih(i e(t:)) + (1 = gi)e(ts), (15)

Whereas the use of fixed slots tends to improve throughpif€re ¢ is an iid sequence of Bernoulli random variables
and reduce collisions with computer networks e.g., slottdf@t model the dropout process of channel Witg; = 1} =
versus pure ALOHA, the contention by every link at every sidt— Po- Implicit in this discussion is that, as in Section IV, the
forces transmissions to happen in lock-step with NCS netwopRauence of arrival timeg; }ien is defined inductively by:
access patterns with the potential for a collision at every slot.

Suppose that instead of immediately acquiring the channel
with probability p after sensing the channel to be idle or afte¥herero ~ Exp(}) and for eachi > 0,

a new slot arrives, links instead wait a random amount of time ti=ti1 47

before transmitting. In particular, if a particular linkwaits

for a random timen) ~ Exp(\/V) then, P {Q; = M;} = 7~ EXp(}), where the sequencle;} is iid.

(1 —1po)/V,j # 0. The actual wait time before any particular AS in [2], it becomes natural to define the associated
transmission will be given auxiliary discrete-time system for (15):

7 =min{n},...,ny} e(i+1) = qih(ie(i)) + (1 — qi)e(i) i €N, (16)

that is, the link that waits the least gets to transmit first, hencghere the sequencgy; } is defined as in (15). _
7 ~ Exp(\). Assuming the wait times are iid for each link, this AS alluded to in Remark 3, the crux of our NCS analysis

is the the prototypical example of what mean by a stochasfia@mework rests on verifying appropriate stability properties of
(contention) protocol and stochastic channel. the protocol in question and inferring a set of sufficient condi-

In the presence of transmission errogs, is generally tions from which robust stability of the NCS can be concluded.
nonzero and, conceptually-persistent CSMA and CSMA For contention protocols, the protocol stability property is that

with random waits are essentially the same save for the fQt2 Protocol being a.s covering. For contentionless protocols,

that the transmission process is truly random with the lattdf€ introduce the following definition with respect to system

While CSMA with random waits can be thought of as 516)' o _
protocol in its own right when the random waits are enforced Definition 5.1 (Almost surely Lyapunov UGES protocols):

explicitly in the implementation, it can also be thought of aket W : N x R" — R, be given and suppose that is
sequence of nonegative iid random variables such that,

a model of medium access with NCS access patterns white . Y

using a class of CSMA wireless protocols. Delays in signdt:@2 > 0 such that the following conditions h?le_ for the
detection, multi-path effects and varying processor loads medifcrete-time system (16) for allc N and alle & R™:

that I_inks rs;\re %nly prlegared t_gltrans(;nitlahfter s;]on;]e delay Iup_on arle] < W(i,e) < asle] (17)
sensing the channel being idle and although the cumulative 1 h(s < e V(i 1
effects of these delays may not be exponentially distributed, Wi +1,h(i,e)) < ki (i, €) (18)
the principle remains the same. Efri] <1 (19)

to = 7o,



then we say that (16) (equivalently, the contentionless proforotocols lead ta., stable NCS when appropriate conditions
col) is almost surely uniformly globally exponentially stableare imposed on transmission rates and the nominal system.

(a.s UGES) with Lyapunov functidi. Intuitively, and despite the presence of collisions, random
Before discussing implications of this definition, we present@acket dropouts and random inter-arrival times, it seems
motivating example: natural to expect that the stability of the NCS (4)-(8) for

Example 5.2 (Try-Once-Discard)fhe TOD protocol was high enough “average” transmission rates and in light of the
introduced in [7] and can be expressed with a model of tlzes. cover times of contention protocols and in analogy with
form (16) where persistently exciting scheduling protocols, this stability ought
to be robust in arl., sense. In fact, if we relax our notion of
“L, stability” to “L,, stability-in-expectation”, we can prove
and ¥ (e) = diag{t1 (€) L, , - . ., v (€)1, }, with I, identity & positive result in that direction.

) . . 1/
matrices of dimension; and Recall that||y[to, ]|, := (ﬂto y(s)Pds) " for p e [1,00)

1, if j = min(arg max; |e;|) and [|y[to, t]||c = esssup{|y(s)| : s € [to, ]} and consider

Yile) =9 0. otherwise. the NCS (1)-(2) initialized al(to, z9) with input w and a

) N . ) prescribed outpuy = g(t, z). We say that (1)-(2) i€, stable-
As in [2][Proposition 5], we setV(i,e) = [e| and claim that jy_expectation fromw to y with expected gainy if
TOD is a.s Lyapunov UGES whenever the probability of a

dropout, p, is such that 3K = 0: Eljylto, t]ll, < Klz0| + vE[w(to, ]|
V-1 The statez of (1)-(2) is said to beL, to L, detectable-in-
po + (1= po) 7 < 1. (20)  expectation from outpuy with expected gainy if

The inequality (20) is a particular example of a more generalg g > () . E||z[to, ][4 < K]20]
condition that ensures that any Lyapunov UGES protocol in +AElylto, tlll, + vElwlte, ]
the sense of [2] is an a.s Lyapunov UGES for sufficiently low VEllylto, tlllp + vE[wlto, llp-
probability of dropout and admits the following proposition: Note that these are essentially the same notions of stability
Proposition 5.3: Suppose that the protocol (16) on an ideaind detectability employed in [2] and [9]. We stress that, as
channel o = 0 = ¢; = 1) is Lyapunov UGES in the sensedeveloped in this paper, these notions only apply to hybrid sys-
of [2]. That is, there exist$} : N x R" — Rxq, a1,a2 >0, tems of the form (1)-(2), i.e., we insist thatis “essentially”
and0 < ¢ < 1 such that for alli € N and alle € R™<: an L, signal and not a &vy process (c.f. [13]) specifically
arle] < Wi, e) < asle] 1) because we are concerned Wi\th robustness of stabil_ity in the
sense of e.g., [17], whereas a&\y process characterization
W(i+1,h(i,e)) < 6W(i,e). (22)  of disturbances may be more appropriate in modeling sensor
Then (16) is a.s Lyapunov UGES on a non-ideal channely "©!S€ and quantization phenomena. _
0) if \'Nh;le the following reSLthZ are Dstzfi_te_? for ;hle qlte_lay ?nq |rr]1t:cer-
arrival processes presented in Definition 4.1, it is straightfor-
po+(1=po)f <1. (23) ward to extend them to a more general class of processes.
Proof: It is clear that we only need verify (19) to Theorem 6.1:Consider & -link NCS (9)-(11) and suppose
conclude that (16) is a.s Lyapunov UGES with Lyapunothat:

function W. We haver; = ¢ + (1 — ¢) and, hence, 1) the NCS employs a contention scheduling protocol with
E[ri] = (1 —po)6 + po. The result follows immediately as iid cover timesZ; and the inter-arrival process is Poisson
{a:} are iid. n with intensity A and also suppose that the NCS error

Remark 4:The rationale of the introduction of the class dynamics satisfy
of a.s Lyapunov UGES protocols is to provide an analysis
framework for Lyapunov UGES protocols capable of handling g(t,z, e, w) 2 Ae +y(x, w) (24)
random packet dropouts — any Lyapunov UGES protocol is

. o for all (z,e,w) € R™ x R" x R™ and almost all,
automatically an a.s Lyapunov UGES protocol for sufficiently

whereA is a nonnegative symmetric, x n, matrix with

low po. nonnegative entries anfl= G(z) + H(w);
2) system (9) isL, stable-in-expectation fronte, w) to
VI. L, STABILITY OF NCSWITH CONTENTION G(z) with expected gainy for somep € [1, oo]; (10) is

PrROTOCOLS L, to L, detectable-in-expectation frog

The notion ofrobustnes®f various stability properties plays Then, there exists. < oo depending onV, |4|,~, E[T], po)
a fundamental role in practical design and implementati@uch that the NCS i, stable-in-expectation frorw to (z, e)
of control systems as evidenced by the extensive Iiteratur(?1 _
discussing e.g., input-to-state stability (ISH)z, Ho design "Letz = (z1,....2n),y = (v1,...,yn) € R". Thevectorpartial order

. o < < et n < n € g
and variants of robust stability. To that end, [2] and [8] have S g'vef bye <y < (o1 < yl)%\ N =Y ) ande a_nfj_g are
. . . . iven bye := (le1], ..., |len.|)T andt % g(t), respectively. That is; is the
examinedZ,, and input-to-state stability of NCS, reSpeCt'Ve_hgector that results from taking the absolute value of each scalar component
and it was shown in [9] that persistently exciting schedulings e andg does operates analogously on the imagg.of



with a finite linear expected gaih/(1 — v~*). Specifically,A  finite expected gain frony to . In particular, the intensity

solvesy*y < 1 with lower bound (26) yields an expected gain of
._ _E[T|(+p) 1
(A= [ADA = p) v(A(1 = E[x]) = L)’
where, The result follows from the adapted small-gain theorem pre-
. v V—(k—1) sente'd.in the Append'ix under the detectability assumptions
p = (a(l—po)) 1:[ Vi —poa) — (k=D —po)a —1, and finite expected gain of the-subsystem (9).

Remark 5:As the motivation for studying a.s Lyapunov
N 4 UGES comes from the use of Lyapunov UGES protocols on
anda = <(A_|A andA > 1= non-ideal channels, we can restate several of the conditions of
Proof of the results follows from a straightforward extensioftheorem 7.1 in light of Proposition 5.3. Létbe as in (22)
of classical small-gain theorems, Theorem 3.1, and subsequgiy let the probability of packet dropop§ satisfy (23). The
results that are developed in the paper in Section IX. The usygduisite intensity in (26) becomes

detectability assumptions are automatically satisfied wien

is defined as above. While no bounds fbrare given, the A > v+ L (28)
requisite intensity can be found numerically. (1—po)(1—6)
and the resultant gain (27) can be re-expressed in a similar
VII. L, STABILITY OF NCSWITH DETERMINISTIC manner.
PROTOCOLS IN THEPRESENCE OFDROPOUTS Remark 6:As in [2] and [9], in both this and the preced-

In this section, we present the second main result of tHR@ Section, several generalizations and specializations of the
paper which shows that under mild conditions a.s Lyapuné{@bility results are possible. With additional technical assump-
protocols inducel,, stability in expectation of NCS for suffi- tions on the NCS dynamics, one can conclude uniform global
ciently high transmission rates. The result is intended to be¥ponential stability (in expectation) and the assumptions on
stochastic analogue of [2][Theorem 4] where the dependeribe various reset maps can be relaxed so as to infer 1SS-like
of the gain and intensity formulae on the dropout probabilitgroperties in lieu ofZ,, stability as discussed [8]. If we forgo
made explicit. While [2] present sufficient conditions fby, the detectability assumptions in the hypotheses of Theorem 6.1
stability in the presence of (deterministically-characterize@nd Theorem 7.1 we can only infer input-to-output stability in
packet dropouts, we believe the following result is a mo®Xpectation.
natural treatment of dropouts and the conditions are directly
verifiable.

Theorem 7.1:Consider a/-link NCS (9)-(11) operating on
a channel with dropout probabilipy, employs a contentionless As given in [2], the linearized model of an unstable batch
scheduling protocol that is a.s. Lyapunov UGES with Lyd®actor is a two-input-two-output NCS that can be written as:
punov functionW that is locally Lipschitz ine, uniformly in
i where (18) is satisfied with an iid sequenpe } and there
exists L > 0 such that for evgary’ e N, all t,z,w and almost whereCp = [(1) 0 (1) 701}
all e we have that the following holds:

oW (i, ) oaa14 2o o 01 599 0
(Fahotrem) sow.ail, @ A= | T s - [ e]
wherej : R" x R"™ — R is a continuous function ofz, w); The system is controlled by a PI controller with a state-space
and the intensity of the inter-transmission procassatisfies realization prescribed by

VIIl. CASE STUDY: BATCH REACTOR

ip=Apxp+ Bpu y=Cpxp

> LT +L ) (26) tc = Acxc + Bey u=Cczc+ Dcy
1—E[x]
and
Further suppose that system (9)Iig stable from(W,w) to
¢ with finite expected gainy for somep € [1, 00]; (z,w) is Ap = [ 00 } Be — [ 0 1 }
L, detectable fromj with finite expected gain and is L, 0 0 10
detectable fromi? with finite expected gain. Then the NCS 2 0 0 2
(9)-(11) is L, stable fromw to (z,e) with finite expected —Cc = [ 0 8 } —Dc = [ -5 0 } :
linear gain:
AM1—-FE[x])—L 27) Assuming that only the outputs are transmitted via the

network, we have a two link NCSV = 2,v; = vy = 1)

Ml—E[)—L—~"
. with error and state equations
Theorem 7.2:We only sketch a proof as the details are

similar to the proof of [2][Theorem 4]. In view of 9.5, and [ & ] B { Ay A } [ T }

condition (26) the error subsystem (10)-(11)s stable with é Ay Ags e (29)



where (M1i + Mii—1)/2. This process was terminated when
Aui — A < €@ and we set\* « \,, ;.
_| Ar +BB18DCCP BZCC } Ajp = { BpDc } With the samep, and identical initial conditions, the above
c=P © procedure was repeatad00 times and the ensemble average
Ay = — [ Cp 0 ] A Ay =— [ Cp 0 } A of \* to yield the simulation-derived intensity bound.
The expected transmission rate bounds and expected inter-
transmission times are shown in Table | as a function of
(30) dropout_/collisio_n probabilityp, and _plotte_d in Figure 1.
Simulation-derived bounds are also listed in Table I.
and we have For the initial condition used, the bounds obtained via The-
= _ orem 6.1 are within a factor of 4 of simulation-based bounds
é =< Ae+ 7, (31) . I
and, for example, demonstrate that with a 50% probability

wherej = Ay and A = Ay, as Ag is diagonal and has Of dropout/collision, the network must deliver approximately

all nonnegative entries. We assume the NCS uses the CSR##2 kbps (16 x 8 bits) of network throughput to maintaib,
protocol described in Section IV-B and, hence, stability. This is well within the realm of ordinary Ethernet

and 802.11 wireless technology.

The error equation is given by

é = Agse + Agix

E[T]=2-H3/(1—po) =3/(1— po). (32) \
By the small-gain theorem described in Proposition Il, and 800
Theorem 9.4, the batch reactor system will bg stable in
expectation fromw to x if 600
E[T](1+ p)

— 7 <1, (33) 400

(A=1AD( = p)
where~ is the L, gain of » subsystem from the inputto an 200
“auxiliary” output g = Ao .

We compute thd s gain for thex subsystem from the input Do

e to an auxiliary outputds; x which is~y ~ 15.9222 however 0.2 0.4 0.6 0.8 I

We note that t_he galn fromd,, z to Z/N is unity, hence,y Fig. 1. Batch Reactor expected transmission rate bounds for contention
is also the gain from input to outputy and we note that protocols as a function of dropout/collision probability with identical initial

|A] = 15.73. By solving for A numerically in (33), subject to conditions.

the constraint

y s Al o N [ EFA=1/A6)] N | B ]=1/3 ()

1—po 0 | 50.19 0.02 14.77 0.0677

) 0.1 | 57.46 0.017 16.05 0.0623

from Lemma 9.2, we are able to establish expected transgs T g6.52 0.015 18.38 0.0544
mission rate bounds as a function ¢f that ensureL, 0.3 7815 0.013 21.37 0.0468
stability of the batch reactor system The batch reactor syster.4 | 93.63 0.011 25.00 0.0400
with the CSMA protocol was also simulated using expectedV-5 | 115.27 0.0087 31.65 0.0316
transmission rates ofl,oc0) transmissions per second for 8'(; ;gzgi 8'8823 gzgg 8'8?22
po € [0.1,0.8]. The following simulation method was used: 08 30974 0.0032 T 0.00686

1) For each fixedpy and two transmission intensities
Ao = 109 N0 = 1, the NCS was simulated with TABLE |
a (pseudo)-random realization of the inter-transmisSiOMRANSMISSION RATE AND INTER TRANSMISSION TIME BOUNDS A AND
and protocol processes with a fixed initial state. TheE[r] = 1/ ARE DERIVED vIA THEOREM6.1; A AND E[r] = 1/X ARE
simulation was terminated and the NCS deemed unstable DERIVED VIA SIMULATION .
if the norm of the NCS exceeded a time-dependent

threshold of the formi; + K5 exp(— K3t), otherwise it ) o
was deemed to be stable. With the above choices. it isVV€ c€an also consider the example within the context of

expected that NCS with intensities, o, Ao would be _contentionless in protocols. Suppose that the TOD sch_eduling
stable and unstable, respectively. ’ is employed. From [2] we seled¥ (i,e) = |e| and with

2) By bisection on the values of, ;, \;; depending on T€SPect to Remark 5 we hade= \/W»L.: 15.73 andy =
the outcome of subsequent simulations, the smalldst9222 and, hence, the requisite intensity for the conditions
intensity \* resulting in stability can be determined for®f Theorem 7.1 to be verified is
the given realizations of the (pseudo)-random processes A > 108'07.
involved. Specifically, if A;; resulted in instability, 1—=po

Avitr — (Mg M) /20 Augitr <= Augr OF 1IN the  sype tolerance: was chosen such that intensities were equal within five
case the NCS was stable,, ;.1 «— A;i, Aiit1 <  significant figures.




For an ideal channelpf), this corresponds to a transmissiothe random variablé’ be given by
at least once every).25 msecs compared to a maximum T—1
allowable transmission interval (MATI) of.01 secs for the Z = exp(|4] Z 7).
deterministic results presented in [2]- a factor 1068 im- =
provement in favor of the deterministic results. The notion of o
MATI implies that every inter-transmission time isiformly 1henE[Z] is given by
boundedwhereas the intensity (or reciprocal) is an “average v
MATI” — individual inter-transmission times can individually E[Z] = (a(1 — po))Y H
exceed or fall short of the average. Notably, both values fall k=1 V(-
short of the contention protocol figure 6f02 secs. As the N
characterization of dropouts in [2] is markedly different fronf'herea = (A—|A|) whenever
that of this paper, we do not pursue a comparisorpfor- 0. 4]
We can, however, compare contention protocols and TOD in A> —.
the presence of dropouts as presented in this paper and we 1=po
see that the trend is continued fas > 0 e.g., the requisite Proof: Let W = """ !7,. The mgf of W is given by
intensity forp, = 0.5 is over216 for TOD and less than16 =
Iﬁr the coptgntlop protocol. We cannot immediately conclude Elexp(sW)] = bz ( A > 7

at TOD is inferior to essentially to a protocol that transmits A—s

!inks a_lt random when t_he channel is i(_jle. The dispgrity ithat is, the mgf ofi¥’ is the pgf of T evaluated at the mgf of
intensity bounds may simply be an artifact of the differeniy gy \)-distributed random variabfThe result follows by

V—-(k-1)
poar) — (k — 1)(1 = po)a’

stability properties used to characterize each protocol butséttings = Al -
similar relative disparity between TOD and the simpler round- | s myma 9.3:Suppose that; ~ Exp(\). Let T’ be the cover
robin scheduling protocol is evident in the results presentedijme for the sequence (Qo, 7o), .- ., (Qr_1,7r_1)}. Then

[13] and seem to provide some support that PE-like propertigg,e exists\ < o, depending or(V; | A|, po) such that

lead to sharper results.

T-1

H Qi exp(AT;)
1=0

E <1

IX. PROOF OFMAIN RESULTS

The following results imply the stability result presented in  pygof: Letting o = ( A ) from Lemma 9.2 we have
Section VI but are of interest in their own right and constitute A=l4]

the substantial technical differences between this paper and

T-1
[9] despite the superficially similar proof technique. E H Q; exp(AT;)
Lemma 9.1:Let T be the cover time for the sequence =0
{(Qo,70),---,(Qr—1,7r—1)}. Then the following inequality 1% o
holds: < (a(1=po))V H V—(k-1 .
i V(L= poa) — (k — 1)(1 = po)a
T-1 T-1 =
[T Qi exp(Am)| < exp(|A] > ) — 1. DﬁMehﬂﬂhp@::E‘stlQﬂmp@hﬂ.Lﬁnmga—aL
i=0 j=0

and hence,A — oo, in the above bound yieldé — 0.
Proof: The proof is a straightforward generalization oBy the implicit function theorem (see e.g., [19, Theorem 2-

[9, Lemma 7.1]. m 12)) and sinceh is a.e.C!, there exists\ > 0 such that
Remark 7:Assuming aV-link NCS, and letp, denote the 0 < h(V,\,po) < 1. It is straightforward to solve for\
probability of a dropout or collision. Lé#/; denote the number numerically. [ |

of additional transmissions needed to go from having coveredThe following theorem assertg, stability-in-expectation
i — 1 links to i links. ThenW; is geometrically distributed for the e-subsystem and is they key component of the small-

with parametep, ; given by gain-based proof approach that implies Theorem 6.1.
] Theorem 9.4:Suppose that & -link NCS employs a con-
Pgii = (V—-i+ 1A - pO). tention scheduling protocol and satisfies hypothesis 1 of The-
' Vv orem 6.1 with the Poisson intensity chosen as in Lemma
It is clear that the cover tim& can be expressed & = 9.3. That is, we havd& ‘Hf;ol Q;exp(AT;)| < 1. Then for
>°i_, Wi and the pgf is given by: all t > 0 we have, for any € [0, <],
r(s) = (s(1 — po))V ﬁ V—(k-1) 3: K €[0,00) : Ee[0,2]]l, < K[e(0)] + ~vE[5[0, ][],
he1 V(1 —pos) + (k—1)(1 — po)s, where,
__E[T](1+p)
for |s| < 1/po. V= D= AN —p)

Lemma 9.2:Suppose that; ~ Exp()). Let T' be the cover
time for the sequencé(Qo, 1), .., (Qr—1,7r—1)} and let  ®See [18, Example 1.8.13], for instance.



with p < 1 a function of (V;|A|, A\, po). Specifically,p =
E[Z] — 1 whereE[Z] was calculated in Lemma 9.2.

Proof: We write g(s) in place of §(Z(s),w(s)). By
hypothesis, we have

g(t,z,e,w) =¢é < Ae + j(t), (34)
As in in [9, Section VII-A], we have for ali € N
e(t) = Qiexp(A(t; — ti1))e(t; )
cqu [ et - s, @)

ti—1
) . (36)

For all i € N, we can upperbound (35) with
e(t) = Q; exp(AT;) x

<e(ti+_1) + exp(—ATi)/ i exp(A(t; — s))y(s)ds

ti—1

For brevity, defineR; = Q; exp(Ar;). We can immediately

solve the linear recurrence (36) to produce the bound:

/ " exp(At: — 9))ii(s)ds
37)

+mmimg

for all k¥ € N.

We set the disturbance terfjn= 0 and have that

I &i|le0)

ti<Sm

M-—1
< (H pj) 2(0)) (VM eN').  (38)
j=0

With § = 0, De < Ae and for the initial conditiorg(sy) = €,
we have for anys > 0

e(s) < exp(A(s — sg))eo.

Taking the norm of the left and right hand sides of (39) and
using the bound in (38) as the initial condition, we have that
for all M € N*, 0 € (Sp,Sua1), the following bound on
|e| holds:

(Sl <

(39)

M—-1
e(0)] < (H Pj) exp(|A|(0 — Sar))[e(0)]- (40)

Jj=0

Taking the supremum over the interyély, Sy;+1], we obtain

) [e(0)]

(41)

Th—1

[e[Sar, Sarallleo < (H pg) (exp(IAl > i)

=0

for all for all M € N*. Similarly, we can integrate (40) over
the same interval to obtain

By hypothesis, we have fixed the intensity of the transmls—

sion process such that

T-1

E H Q; exp(AT;)

=0
as in Lemma 9.2 and Lemma 9.1. Let=
E‘Hz 0 QZ exp(ATz)‘
{(Qo,70), (Q1,71),- -

{(Qo, T0)s -+ (QT0—1,7'T0—1)},
{(QToaTTo)’ SRR

<E[Z]-1<1,

E[Z] — 1. with

} such that each subsequence

(QTo+T =15 TTo4+Ti—1) }5 - - -

is covering and, hencd); are cover times for the respective

subsequences. To simplify notation, we usg to denote the

ith inter-transmission time in thgth covering sequence i.e.,

Tji = Tiva, WhereG = S1_1 Ty, and letp; be given by

T;—1
I &
=0
Similarly, let@, ; denote theth jump map in thejth covering

sequence and s&k;; = Q;;exp(AT;;). Recall thatT; is
stationary. Define the renewal proceSs(t) by

pj=exp(|A] Y i) —1>

M-1T;-1

:ll’lf{MZOtZ Z ZTj’i}'

j=0 =0

Let Sy be given bySy, = inf{t > 0: Np(t) > M}, that is,
Sy is the time it takes to coveV links M times.

Nrp(t)

< p < 1. Partition the sequence

M-1

1)

=0

le[Sar, Sar41]lli < (

€(0)]
Al

(42)

T]\/] 1
(exp |A‘ Z TA[Z —1)

=0

We can upperbound both the,, andZ; bounds (41) and (42)
by

M-1

1)

=0

Tyv—1
(exp(lAl > TM,¢)>
=0

for p € {1,00}. By our choice of intensityA and in light of
Lemma 9.3 and 9.1E| exp(|A| 31 " mari)| < 1+ p and

sincep; are iid, B[[]}Z, p;] = [1)=; Elp;] = p™, hence,

le[Sar, Smalllp < (

[€(0)]
|A|AT

(43)

_ €0
Bleisu, Sl < 04 g0 (44)
It is also clear that|[e[0, Si]l, < ;4 [e(0)]. SetSy = 0

and we have by linearity oE[],

[e(0)]
A A1

hS)

E[[e[0, ][, <> p7(1+ p)[e(0)]

Jj=0

< 0.

“(i57)



We now setz(0) = 0 in (37) and estimate the contribution With this observation, and taking expectation of the supre-

from the disturbance term to yield: mum of the bound in (46), we have the following:
e(t)) < exp(—Am)x E||7[tk7tk+1H|oo < Elexp(| Al ) exp(—|A|7)] %
k k t;
3 (H Rn> / exp(A(ti — 5))j(s)ds.  (45) (1+ p) Zp ST E[0, 7] 11 Ellglti- 1. ]l
i=0 \n=i i1
Applying the variations of parameters formula to (45), we have + E”SD[O’ :ﬂ'lEHy[t’“’ Bialloo
: Lk+1—iJ . 4
e(0) < eXp(—ATk) p(A(0 — tr))x < E[jp[0, 7]l (1 + p) ;p ST E(glti-n tillos (49)
k
Z HR / exp(A(ti — ))j(s)ds where ¢(s) = exp(|Als) and we have used independence to
=\ tia split the expectation of products into products of expectation.

0 By upperbounding the termxp(|A|(6 — tx)) with exp(|A|7%)
+/ exp(A(0 — s))y(s)ds (46) prior to integrating, theL; bound can be established in
th essentially the same way,

for § € [t tea]. Consider the temll,_, R = Elfefte, tp]|1 < Elexp(|Alm) exp(—|Alre)]x
[I,_; @nexp(AT,) and the associated sequence

k
{@Qu 7). @uin, i), ). (1+0) 3 ot T Bl 0, ] Bl il

i=0
Let Ws — Z;:O,'Tj and letn be given by + EH()O[OvZﬂlqlE”g[tkatk-ﬁ-l]”l
nf{A > 0: Wy > k+i—1}. < Ellel0. 7l (1 + ) S p LB T B0t 1 1], (50)

=0
By Proposition 2.3E[W;] = E[A] - E[T]. Letn* be given by where we have useddttler’s inequality, as in [20, Example
b1 5.2], to split the integrals.
n* = {HJ There is an exact expression Bf|¢[0, 7]||; in terms of the

E[T] mgf of the Exg\) random variabler:
and note thatE[WW,-] = n*E[T] < k+ 1 — i and, hence E|¢[0,7]|l1 = E[exp(|A|7)]/|A| — 1/|A] (51)
n* < E[n]. We now split the product in consideration into 1
products, each of which is associated with a covering sequence . IA] (52)

and a residual product term
and, hence fop € {1, 0},

k To—1 h—1—1 -
ERHZ (go RM) i ( H " 1n) | <£[<)Rﬁ7n> Elfefts, tralllp < 1+p Zp

A=Al &

tilllp-

. . (53)
for some random remainder variable< 7. By linearity of E[-], we sum (53) to obtain an upperbound
By independence of each product and in view of Lemmgh E|je[0, ¢,

9.3 and the fact that is a stopping time fofV,, we can take
expectations as follows:

Ip:

M—-1 k+1
; 7,1 e,y < 3= 3 2 oL HTIBIglt 1l
k=—11=0
E U'Rn =E H Ron| % (54)
= B Applying [9, Appendix, Lemma 1.1] to (54), and taking the

limit as M — oo in the summation, thd. ., and L; norms
can be estimated by

H Rn 1n'

n=0 n=0

L+p =
= Bl g H Rinl - (47) E[[e[0, tm]llp < P |A|E||y ts,tm] HkaOP =l (s5)

n=0 -

_ E[T|(1+p) -
As p < 1, r < Ty andn* < E[n], we have the bound T (A —Ap(a - p)E“y[ts’tM]”P (56)
Either  E||g[ts, ta]llp = 0 or the ratio
< p" (1+p). 48) E|e[0,ta]llp/E|g[ts, tam]ll, is bounded by an expression

that is independent o#/, hence, (56) remains true within

lieu of ¢y, for anyt¢ > 0.



As the L, and L., norms are upperbounded by the sam@/ith the inequality (57) and the initial conditio#(sg) = ey,
expressions, by Theorem 1.6, the error subsysteln table- we have for anys > s
in-expectation for any € [1, co]. ]
Analogously, we prove[a sirlwilar theorem for NCS employ- W(re(s)) < exp(L(s — 50))W(:, €0). (65)
ing contentionless protocols with dropouts. Taking the norm of the left and right hand sides of (65) and
Theorem 9.5:Suppose that &/-link NCS with dropout using the bound in (64) as the initial condition, we have that
probability p, employs a contenionless scheduling protocdbr all M € N, 6 € (¢p,tp11), the following bound on
that is a.s. Lyapunov UGES with Lyapunov functid¥ that W (-, e) holds:
is locally Lipschitz ine, uniformly in i where (18) is satisfied

with an iid sequencdk;} and there existd > 0 such that
for everyi € N, all t, 2, w and almost ale we have that the
following holds:

oW (i, e)
Oe
whereg : R™ x R"™» — R is a continuous function ofx, w);
and the intensity of the inter-transmission procassatisfies
L
1—E[x]
Then error-subsystem (10)-(11) s, stable fromy to W with
finite expected linear gain:
v
AM1—Elx])—L"
Proof: We writeg(s) in place ofg(z(s),w(s)). Inequal-
ity (57) implies’ that

,g<t7x,e7w>> <IW(.e) +lil.  (57)

A > (58)

(59)

LW (i,e(1)) < LW(i,e(t)) + 13

As in in [2, Section X], we have for all € N

(60)

W(i+1,e(t])) < riexp(L(t; — ti—1))W (i, et )
s /t ‘1 exp(L(t; — ))|§(s)|ds. (61)

For all : € N, we can upperbound (61) with

W(i+1,e(t])) < k;exp(LT;) - (W(i,e(tjl))—i—

exp(—LTi)/i exp(L(ti—s))|g(s)|ds>. (62)

ti—1

For brevity, defineR; = k; exp(L7;). We can immediately
solve the linear recurrence (62) to produce the bound:

W(k+1,e(t))) (H R; ) 0))
Fopl-im)Y- (H m) [ et i

(63)

for all k£ € N.
We set the disturbance terjn= 0 and have that fol/ € N,

W (M +1,e(t];)) (HR)

“See [2, Section X] for details.

e(0))  (64)

W(M +1,¢( (HR ) exp(L(0 — tar))W(0,e(0)).

(66)
Taking the supremum over the internjal,, ¢ys4+1], we obtain

IWltar, tarsallloo < (HR ) exp(L7ar)W(0,¢e(0)) (67)

for all for all M € N. Similarly, we can integrate (66) over
the same interval to obtain

W tars taralln < (HR )

(exp(Lrar) = 1) ——==2. (68)

We can upperbound both the,, and L, bounds (67) and (68)
by

W ltar, tara]lp < (HR )

exp(Lrap) W ©6(0)

LAl
for p € {1,00}. As 7; is iid sequence and, is iid sequence
and they are mutually independeft; is an iid sequence and,
hence

E[H Rj| =

(69)

M

11 ER;

J=0

(E[x] - Efexp(L7)))**

(52" oo

where, as in Lemma 9.2, we have used the Btxp(L7)]
is given by evaluation the mgf of evaluated at.. Hence,

A-E[EN\MT W (0,e(0))
, < —_— 71
BIWln il < (520 ) e
It is also clear that||W [0, to]|, < w Sett_; =0

and incrementing the index of summation, we have by linearity
of E[],

W(0,e(0)) i X-E[x]\’

A A1 = A—L
_ W(0,e(0)(A— L)

(1A A1) (A — E[x]) - L)’
where condition (58) ensures that the series summand is
smaller than unity.

E[WI[0, 4], <




We now sete(0) = 0 in (63) and estimate the contributionApplying [9, Appendix, Lemma 1.1] to (54), and taking the

from the disturbance term to yield: limit as M — oo in the summation, thd.., and L; norms
Wk + 1, e(th)) < exp(— L) x can be estimated by
A Eglts. tarllly 5~ (A-El] )"
- E , < 7
> (H Rn> [ et - splatas. BVl < =RETER (STL) 09
i=0 \n=i ti-1 . -
72) _ Eliltetally )
Applying the variations of parameters formula to (72), we have M1 — Efs]) — L
where we have again used the fact that the series sum-
W(k+1,e(0)) < exp(—L7x) exp(L(0 — tx))x mand is smaller than unity in view of condition (58). Either
ko [k t E[lg[ts, talll, = 0 or the ratioE|[e[0, ]|, /El[glts, tarllly
H R, / exp(L(t; — 8))|g(s)|ds is bounded by an expression that is independent/phence,
i=0 \n=i tim1 (56) remains true with in lieu of ¢5, for anyt > 0.

0 . As the L, and L., norms are upperbounded by the same
+ / exp(L(0 — 5))ly(s)lds  (73) expressions, by Theorem 1.6, the error subsystefn istable-

tr . .
. . in-expectation for an 1 . [ |
for 6 € [tr,tr+1]. TKing expectation of the supremum of the P p € [1,09]

bound in (73) yields the following: X. CONCLUSIONS AND FUTURE WORKS

E|Wtk, tk+1]llco < Elexp(L7y) exp(—L7g)] X This paper generalized the notion of persistency of exci-
L E[x] k+1—i tation of scheduling protocols and developed Ian stability

Z ( ) E|l¢[0, L E|G[ti—1, )]l o result suitable for analysis of NCS employing Ethernet and

i=0 A—L Ethernet-like wireless and wireline contention protocols. We

+ El|0[0, 7] |1 El 9tk tes1]] oo introduced the notion of protocol cover times and an abstract

kil kal_i definition of stochastic protocols and demonstrated several

< EHQO[O,T]le <)"E[”]> E||jlti—1.t]]ls, (74) CONSequences that led to the development of the stability
=0 A-L result. We also presented an extension of the Lyapunov UGES

where o(s) = exp(Ls) and we have used independence {grotocol stability property introduced in [2] 'that alloweq the
split the expectation of products into products of expectatioffects of packet dropouts on NCS employing contentionless

: : tocols to be characterized.
By upperbounding the termxp(L(0 — t;)) with exp(L7,) P ' ,
prior to integrating, thelL; bound can be established in The analysis tools and derived bounds compare favorably

essentially the same way, with simulati_ons and demonstrate that Ethernet-like _protocols
and contentionless protocols are capable of ensuring robust
E|W(te, txs1]ll1 < Elexp(Ly,)exp(—L7g)] ¥ stability of systems even in the presence of packet dropouts
k bloi and collisions.
()‘ : E[“]) E| [0, 7)1 E||7[ti—1, t:] |11 Several important extensions of these results seem natural
—\A-L including: extending the results to treat arbitrary random
+ B[]0, 7] |1 E|| §[txs trra]|l1 time-varying delays; consideration of stochastic exogenous
k1 ket 1—i perturbations as well the treatment of a more general class
< Bl|4[0, 7]l Z <)\ . E[K]) E||j[t:_1,4]|l1, (75) Of renewal processes modeling contention protocols and we
—\A-L believe that these extensions are important directions for future

where we have useddttler’s inequality, as in [20, Example research.

5.2], to split the integrals.

As in the proof of Theorem 9.4 we have APPENDIX]
) RIESZ-THORIN INTERPOLATION SYSTEM FOR RANDOM
E[j0[0,7]]1 = I (76) LINEAR OPERATORS

Definition 1.1: Fix a measurable spa¢#, S), an index set
T and a subsetV ¢ ST. Then a functionX : Q — U is
kLo E[x] k+1—i E|g[ti—1, ]l UNST-measurable iff; : O — S is S-measurable for every
E|Wte, trialllp <D < N T > ~ \_7 _° te&T.ThemappingX is called anS-valued (random) process

=0 (77) OnT with paths inU. In an analogous way, we say thatis

By linearity of E[-], we sum (77) to obtain an upperbound? fandomZ, process if|| X;(w)]|,, is S-measurable for every
on E|WI0, tar]|l,: t € T andE|X;| = m, for aI_I tef. We.denote the space

of of randomL, process defined on the index setthat are
M1 ki1 Fbl—i i jointly S-measurable by.; (S, T). The processes we consider
BIWo, ol < S Y ()\ : E[“]) El[glti—1.tilll,  will always be defined orRx, and a commory-algebras.
A—L A—L Henceforth, we writeL7 and drop the dependence &f on
(78) w.

and, hence,

k=—11=0



Definition 1.2: We say thatI’(\) is a random linear oper- for ¢ > 0. This function satisfies

ator onLy, if Elf.(a+ iy)| < exp(ca?) and B|f.(b+ iy)| < exp(eb?)
T\ (af + Bg) =T(Naf +T(N)pBg,

and
forall A € A, all o, 3 € R and all f,g € L;. We henceforth hI;E E sup |fe(x+iy)| =0.
drop the dependenck with the tacit understanding that the YRS asash
operators we consider are random. By application of Lemma 1.3 on sufficiently large rectangles,

Lemma 1.3:Let f : Q x U — C (whereU C C, open) we can conclude that for eache S
be a holomorphic non-constant random function. That is, for 9 9
each fixedw, f(w;-) is holomorphic and non-consant. Then E|fe(2)] < exp(ea”) V exp(eb).
E|f| attains its maximal value on any compdctC U on the |etting e — 0+ competes the proof. ]
boundaryo K O_f K. _ Lemma 1.5:Let py, p1 and p, po < p < p3 be

Proof: Fix w € €, hence, f(w,-) : U — Cis given and consider the simple random function =

holomorphlc and therefore continuous, §dw, )| will aI;o SRy U j A1 jX By XS with ak,; € (c,. |.ak_,j| =1, ap; >
be continuous oi/. The subsefs’ C U is compact and since (, for ‘eachk, {E};} is a pairwise disjoint collection of
|f(w,-)| is continuous onK it must attain a maximum and measurable sets, each of finite measurefgg < € pairwise

a minimum value there. Suppose the maximumfaf. -)| is disjoint with 3" P {S;,} = 1. Suppose thaE||s||, = 1. Let
attained at in the interior of K. By definition there will exist

r > 0 such that the sef, = {z € C: |z — 2|* < r?} C K. 1 1—z+i
ConsiderC,. the border of the previous set parametrized Pz Po p1
counter-clockwise. Sincg(w, -) is holomorphic by hypothe- and define
is, th hy integral formula implies th
sis, the Cauchy integral o1 ula f(ij)s that 5, = zk:zak,jai,/fZXEk‘jXSw
flwz0) = 5= ¢ ———dz (81) j
mJe 2T %0 This family satisfies
a canonical parametrization @, is z = z, + re'r, for 6 € Ellspn, =1 0<R{z} <1

[0, 27r] and, hence,
The proof is trivial since

1 27r »
flw,2z0) = — flw, zo +re'+)db. (82)
2 Jo E/ |s.[Privdz = > " b u(Ey )P {Sk} = E|ls|, = 1.
Taking modulus on both sides and estimating the contour ko
integral yields Theorem 1.6:Letp;,q;, j = 0,1 be exponents in the range

[1,00] and suppose thaty < p;. If T is a random linear
operator defined (at least) on atdependent ofa simple
random proces¥ : Q x t — R™ in L7 that satisfies

E|TXlq, < M;E[X]]p,-

<
|f(w, 20)] < max|f(w, 2)]
but since|f(w, z0)| is @ maximum, the we must have that

‘f((JJ,Zo)| = ZHé%X \f(o.),z)|
i If we definep, and¢; b
In particular, this holds for any’ < r and, hence|f(w, -)| bt led
is constant in the interior of,.. By the Identity Theorem, 1 - 1-¢ + t
f(w,+) is constant throughout/. Thus if the maximum of Dt Do D1

|f(w,-)|is attained in the interior ok, thenf(w, -) is constant and

but this is a contradiction and we must have that the maximum 1_1-t + t

is attained ab K. Since the maximum off(w, -)| is attained qt Qo @

at 0K for eachw € 2, we have that the maximum &|f| is we will have thatT extends to a random bounded-in-
attained a K. expectation linear operator frof,, to Lg,:

n
Lemma 1.4 (Three lines lemma$uppose thaff : Q x C E[TX|q, < ME|X]|p,.

is holomorphic and non-consant in the stSp= {z : « < The operator norm}/;, satisfiesM, < Molfth-

R{z} < b} and bounded for each and Proof: Fix p = py,, 0 < to < 1, fix w € Q and consider
M, = Esup|f(a +it)| and My = Esup | f(a + it)| simple functionss(w, -), s’ on R™ which sat|sf'y.E||s||pt0.: 1
and Hs’Hq;O = 1. Let s,(w,-) and s, be families of simple
then bor  sea functions constructed as in Lemma 1.5, whetgw, ) is
E|f(z +iy)| < Mg~ M~ constructed using;, j = 0,1 and s, is constructed using

/ - H
Proof: We consider the exponentg;, j = 0, 1. By hypothesis,

fe(x +iy) = exp(e(z +iy)?) f(z + iy)M:tiy‘;bea_éitm P(w, 2) = /n s, (2)T's (w, x)dp(z)



is a non-constant analytic function effor each fixedv € Q. Let m = E[T] and defineM; by M; = S, — sm. It is clear

By Lemma 1.5 and the assumption @h that M is a martingale since
Esup|¢(j +iy)| < M;, j=0,1. E[M11|7n] = E[Spt1 — (n+ 1)m| 7]
veR = E[Sp+1]|Fn] — (n+ 1)m
By Lemma 1.4, we can conclude that =m+E[S,|F.] — (n+1)m
=S5, —nm = M,,

E /s’Ts(w,-)du < Myt Mo, _ . I
where F,, is the obvious filtration.

thak i fi
Since,s’ is an arbitrary simple function with unit norm i/, Suppose that is defined by

we can conclude that h=inf{t >0:5, > S'}.
E||Ts||,, < M&*toMfo. It is clear thath is a stopping time for\/. Then
to —

As simple functions (on the product measure space) are dense E[RE[T] = E[Sh).

in L,,, T can be extended to all of} and is bounded in Proof: Fix N > 1 and by the the optional sampling
norm. m theorem, Theorem 2.2, we have
E[Span — (hRAN)m] =0
APPENDIXII = E[Syan] = mE[(h A N)]

PROBABILITY AND STOCHASTIC PROCESSES = S'/m > E[(h A N)

Proposition 2.1: Suppose tha{ X;}¥ | is a set of N iid = ' > mE[(h A N)].
random variables wher® is assumed to be a random variable ] ] ,
independent of eaclt. Let Sy be given by SlnceE[(hAN)} is uniformly bounded by’ /m, we letN —
oo to yield limy_.. E[(h A N)] = E[h] = S’/m and, hence

N — _
S - ZXi; ©3) E[h)m = E[h|E[T] = E[S}]. [ ]
i=1 APPENDIX I
that is, Sy is the random sum of iid random variables. Then SMALL -GAIN ANALYSIS
the mgf of S is given by evaluating the pgf oV at the mgf The following result is a stochastic analogue of [20, Theo-
of X: rem 5.6] and is proved in much the same way.
Elexp(sSn)] = ¥n ((s)), (84) Theorem 3.1:Suppose thatH; : Lp([0,a],R") —

Ly;([0,a], R™) and Hy : L;([0,a], R™) — Ly([0,a],R™) are
where ) and ¢ denote the pgf of N and mgf of X, random operators that satisfy

respectively. - "
Proof: The mgf ofS,, can be evaluated using conditional Ellyill, < viEllellp + 61, ex € Ly([0,a], ") (86)
expectation as follows: Elyzllp < v2Elezllp, + B2, €2 € L([0,a],R™)  (87)

for eacha € [0,00). Suppose further that the system is

Elexp(sSp)|N = n] = Blexp(s(Xy + -+ + Xn)) = ¢(s)", well defined in the sense that for each pair of inputse

hence,E[exp(sSx)|N] = ¢(s)N. Finally, L, (10,a],R™), ug € Ly ([0, a], R™), there exist unique outputs
e1,y2 € Ly([0,a],R") and ez, y1 € L;([0,a],R™). Define
Elexp(sSn)] = E[Elexp(sSn)|N]] u = (u,u2), ¥y = (Y1,y2) ande = (e1,e2). Under the
_ E[(;S(S)N] _ E[ZN}Z—¢(S) = P ((s)). preceding assumptions, the feedback connection (when viewed
- as a mapping froms to y) is finite expected-gaidl,, stable if
B e <l
Theorem 2.2 (Optional Samplingl:et M be a martingale Proof: Assuming existence of solutions on the interval

on some countable index s&twith filtration £, and consider [0, a), we write
Fwo optional timess andr, wherer is bounded. Thed/. is e1 = u1 — (Haes), e =us + (Hiey).
integrable, and

Then,

Elleill, < Elluill, + E[[(Hze2)|lp < Elluill, +12El ezl + B2
See e.g., [21, Theorem 6.12]. < E|uill, + 72 (Eluall, + nElleill, + 51) + B2

Proposition 2.3: Suppose that{7;}7_, is a set ofs iid _ Elle
: . = = + (Ellu1|lp + v2E||uz||, + B2 + )
random variables. Les, be given by neEleill, + (Elluilly +2Elluzlly + B2 + 7261)
Sincevyiys < 1,

Mynr = E[M|F,] as

B S ' 1
S —;Tz. (85) E||€1||p < W(EHulHP—"—’WE”uﬂb"‘ﬂ?+’)/2ﬂ1)



for eacha € [0, c0). Similarly,

1
Efez|, < ﬁ(EHWHp +nE[urllp + B+ 7102)

172

for eacha € [0,00). The proof is complete sincE|e||, <
Ellexll, + Ellea|lp- u
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