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Abstract— This paper introduces a new definition of stochastic
protocols for networked control systems (NCS) and the stochastic
analogue of the notion of uniform persistency of excitation of
protocols first presented in [1]. Our framework applies directly
to common wireless and wireline NCS, including those built
on collision-sense multiple access (CSMA) style protocols, with
Ethernet and 802.11a/b/g as prime examples of this class. We
present conditions for a general class of nonlinear NCS with
exogenous disturbances using stochastic protocols in the presence
of packet dropouts, random packet transmission times and
collisions that are sufficient for Lp stability from exogenous
disturbance to NCS state with a linear finite expected gain.
Within the same framework, we extend the results of [2] to
provide an analysis of deterministic protocols, including try-once-
discard (TOD), in the presence of random packet dropouts and
inter-transmission times and provide a stochastic analogue of
the Lyapunov-theoretic stability properties for network protocols
introduced therein.

I. INTRODUCTION

The premise of networked control systems (NCS) is to spa-
tially distribute a “traditional” control system across a number
of nodesthat exchange data subject to the constraints of a
shared data channel. These nodes include sensors, actuators
and units that compute various control laws and the data
channel is typically a wireless or wireline computer network,
many examples of which can be found in [3]. For the vast
majority of computer networks described in [3], the primary
constraint on the exchange of data between nodes is that the
respective channels are exclusive in that the attempt of more
than one node to transmit data at a given time will result in
data loss, i.e., a collision.

Collisions can be prevented through the use of (contention-
less) scheduling protocolsthat decide which node(s) can
transmit and at what times. For example, labeling the NCS
nodes{a1, a2, ..., aN}, round-robin scheduling would entail
apportioning the channel’s time[0,∞) into slots {s1 :=
[t0, t1), s2 := [t1, t2), . . . , } such that nodeai is permitted
to transmit during slotsi+kN , k = {0, 1, . . . }. Depending
on the context, this scheduling protocol is also known as
time-division multiplexing or Token Ring. Stability properties
of NCS employing round-robin scheduling and various other
contentionless protocols have been discussed in [1], [4], [2],
[5], [6], [7], [8] and [9].

A contentionless scheduling protocol can be thought of
as a (time-varying) maph : [0,∞) × X → {1, .., N} that
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selects the node currently being allowed to transmit and an
associated dynamical system that evolves the state variable
x ∈ X. For spatially separated nodes, this generally means
that each node must maintain a copy of the statex that is
evolved identically by each node. For networks with a large
number of nodes, mobile nodes that are spatially separated
across varying distances or networks with a varying number
of nodes, it may be impractical or impossible to keep the state
information synchronized across all nodes.

The alternative is to accept that collisions may occur, detect
and recover from them when they do occur and attempt to to
reduce the number that occur by employing various heuristics
using data available to each node locally. Concrete and familiar
examples of this approach include the family of collision-sense
multiple access protocols (CSMA) exemplified by Ethernet,
p-persistent CSMA (Bluetooth, 802.11a/b/g) and variants of
ALOHA. See [3] for an overview of these protocols and their
operational characteristics.

Thus far, the discussion holds true for both computer
and control networks. Where computer networks and control
networks differ radically is in access patterns – ideally, a
continuous-time control system would have nodes constantly
transmitting sensors values and constantly receiving control
values, in complete contrast to the usual assumption of access
in short and irregular bursts for nodes in a computer network.
Stated explicitly,we assume continuous-time controllers and
plant outputs are such that there will always be data to
transmit when the network channel becomes idle.

This assumption applies to contentionless and contention
protocols in NCS, the key difference being that the latter
does not enforce a particular choice of which link to transmit
when the channel becomes idle whereas the former does.
Despite the lack of collisions in in contentionless protocols, we
present a unified approach for the analysis of NCS employing
contentionless and contention protocols in the presence of
random packet dropouts and random inter-transmission times –
effects that are essentially attributes of non-ideal orstochastic
network channels.

Motivated by the need to design and analyze NCS with
stochastic channels in order, for example, to deploy NCS nodes
wirelessly, we propose a model of NCS and network protocols
analogous to the models presented in [2] and [9].

The NCS design approach adopted in [2], [10], [5], [7], [8],
and this paper consists of the following steps:

1) design of a stabilizing controller ignoring the network;
2) and analysis of robustness of stability with respect to

effects that the network introduces.
We assume that every link in the NCS contests access to the



network at either predetermined time-slots or at times at which
the network is sensed to be idle. This results in two potential
sources of randomness:

1) At any idle time or transmission slot, either some node
j transmits successfully or a collision results or the
transmitted packet is dropped. Denoting the probability
that a packet is dropped or a collision occurs byp0, we
will always assume that the probabilities of successful
transmission of links is identically equal to(1− p0)/V
for a V -link NCS using a contention protocol. While
this is not strictly necessary in our analyses, there is no
reason to statically (off-line) favor any one link over
another during contention by adjusting transmission-
success probabilities. Contentionless protocols do, how-
ever, enforce a particular choice of which link to transmit
in a given slot eliminating the possibility of a collision.

2) Sensing the network as being idle, synchronizing to
transmissions time-slots or else randomly waiting for
a period of time after any of these events to reduce
the likelihood of transmission are common features of
network protocols. These uncertainties can be faithfully
modeled with a stochastic (renewal) process. For the set
of protocols we discuss, it is sufficient to restrict our
attention to Poisson processes with some intensityλ or
a class of renewal processes where inter-transmission
times are uniformly bounded.

In lieu of the notion of a scheduling protocol described in [2]
and [9] and the notion of maximum allowable transmission
interval (MATI), we now have a stochastic process that de-
termines when transmissions occur and which link, if any, is
transmitted at these times.

Within this setup, our analysis framework analyzes the
input-outputLp stability (IOS) of NCS (in expectation), the
essence of which is that outputs (or state) of an NCS verify
a robustness property with respect to exogenous disturbances.
We stress that it is only the network protocol and channel delay
that induces randomness in our models and that the exogenous
disturbances areLp signals as in [2] and [9].

We show that both contention and contentionless protocols
verify stochastic analogues of the protocol stability properties
introduced in [1] and [2], respectively. The contention proto-
cols in the sense of our definition, satisfy a property that is
similar to the property of uniform persistency of excitation
introduced in [1] – that is, links are almost surely (a.s.)
transmitted within a finite number of transmissionsT . For
a V -link NCS in the stochastic setting, the random variable
T is closely related to the cover time of an(V + 1)-vertex
undirected graph and the running time of the Coupon Collector
problem.1 For the contentionless protocols we discuss, the
stability property we examine is that of a.s. Lyapunov uniform
global exponential stability (UGES) with obvious parallels to
the analysis approach pursued in [2].

Although link cover times and inter-transmission are now
random and, hence, not uniform, we show that if the network-
free system isLp stable, the NCS remains so with any

1See [11, Section 2.4.1], for instance, for a description of the Coupon
Collector problem.

contention protocol, in the sense of our definition, when-
ever attempted transmissions occur “fast enough”. With mild
additional technical assumptions, we show that a similar
conclusion holds for a.s. Lyapunov UGES protocols and,
in particular, holds for the try-once-discard (TOD) protocol,
introduced in [7], in the presence of random packet dropouts
and inter-transmission times. By “fast enough” we mean that
there exists a choice of intensityλ of the transmission process
or a choice of uniform bound on inter-transmission times
parameterized by properties of the protocol and the NCS
dynamics such that the NCS isLp stable-in-expectation from
disturbance to NCS state with a finite expected gain.

Our work builds on the NCS analysis approach and the
protocol description methodology described in [2] and fur-
ther developed in [9] for deterministic systems. Notions of
stochastic inter-transmission and delay processes for linear
NCS are discussed [12] and elsewhere subsequently with
the analysis framework presented in [13] applying aspects of
protocol and stability analysis similar in spirit to [2] within a
stochastic setting. The focus in [13] is on NCS that employ
contentionless protocols, as discussed in [1], [4], [2], [5],
[6], [7], [8] and [9] and examines mean-square stability of
a class of NCS perturbed by a Wiener process when the
inter-transmission process is random (a renewal process) and
where random data dropouts may occur. This is contrast to the
results within this paper that focus on a robustness property
(Lp stability-in-expectation) and that considerprotocols that
satisfy a.s. stability properties.

The primary contributions of this paper are the novel
definition of stochastic protocols that model typical contention
protocols as well as contentionless protocols in the presence of
packet dropouts in the NCS setting together with several pro-
tocol examples that can be modeled in this way; development
of an extension of the Lyapunov UGES property and analysis
approach pursued in [2] for non-ideal NCS; characterization of
the stochastic analogue of uniform persistency of excitation –
the a.s. finite cover time property; and development of several
consequences of these definitions includingLp stability-in-
expectation of the error dynamics of the NCS that decreases (to
zero) as the expected transmission rate increases (to infinity)
and development of sufficient conditions forLp stability-in-
expectation of the NCS as a whole.

The paper is divided into five additional sections: Section
II introduces notation and technical devices; Section III in-
troduces our model of NCS with stochastic impulses and
we discuss the key classes of a.s. covering protocols and
a.s Lyapunov UGES protocols in Section IV and Section V,
respectively. We also present two typical contention protocol
examples that can be faithfully represented with this model
and discuss key differences between the use of contention
protocols in computer networks and control networks as well
as present an example of a contentionless protocol operating in
the presence of packet dropouts. We present our main stability
results for contention and contentionless protocols in Section
VI and Section VII, respectively, where we outline sufficient
criteria for the protocol and nominal control system such that
the resultant NCS isLp stable with linear finite expected
gain from exogenous disturbance to state. A case study is



presented in Section VIII with proofs of the main results are
presented in Section IX before we conclude with some general
remarks on analysis framework pursued as well as possible
future extensions of this work in Section X.

II. PRELIMINARIES

Let Mn denote the set ofn × n matrices with zero off-
diagonal entries and diagonal entries in the set{0, 1}. Let
a ∨ b and a ∧ b denote the maximum and minimum of two
real numbersa andb, respectively. LetDf(t) denote the left-
handed derivative off : R→ Rn:

Df(t) = lim
h→0,h<0

f(t+ h)− f(t)
h

whenever the above limit exists. LetE[·],P {·} denote the
expectation and probability (measure) operators, respectively.
For any random vectorξ ∈ Rd with distribution µ, the
associated moment generating function (mgf)µ̂ is given by

µ̂(t) =
∫

exp(tx)µ(dx) = E[exp(tξ)].

We use the abbreviationiid for “independently identically
distributed” and the notationX ∼ Exp(λ) to indicate thatX
is an exponentially-distributed random variable withE[X] =
1/λ. For distributions onZ+, we use the probability generating
function (pgf)ψ given by

ψ(s) =
∑
n≥0

snP {χ = n} = E[sχ], s > 0.

We will be considering systems with stochastic impulses of
the form:

ż(t) = h(t, z, w) t ∈ [ti−1, ti] (1)

z(t+i ) = Qi(z(ti)), (2)

whereQi(·) ∈Mnz is a sequence of random maps,ti+1−ti ∼
Exp(λ), iid and by z(t+i ) we mean “evaluated just after the
jump”: z(t+i ) = lims→ti,s>ti

z(s).
Fix p ∈ [1,∞]. For clarity of the presentation, we assume

enough regularity onh for the existence of an absolutely
continuous functionz(t, t0, z0, w) such thatddtz(t, t0, z0, w) =
h(t, z, w), t ∈ [t0, a], a > 0 for every initial condition(t0, z0)
and anyw ∈ Lp. It is then clear how to generate the trajectory
process of (1)-(2) with the initialization(t0, z0):

z(t) = z(t0) +
∫ t

t0

h(s, z(s), w(s))ds, t ∈ (t0, t1),

wherez(s) := z(s, t0, z0, w(s)) and inductively,

z(t) = Qi(z(ti)) +
∫ t

ti

h(s, z(s), w(s))ds, t ∈ (ti, ti+1),

wherez(s) := z(s, ti, Qi(z(ti)), w(s)). Note that Zeno solu-
tions are a.s. not possible sinceP {ti+1 − ti = 0} = 0.

III. H YBRID SYSTEM MODEL FORNCS

We assume that a stabilizing (continuous-time) controller
has been designed ignoring the network and consider general
nonlinear NCS with disturbances wherexP and xC are,
respectively, states of the plant and controller;y is the plant
output andu is the controller output;̂y and û are the vectors
of the most recently transmitted plant and controller output
values via the network ande is the network-induced error
defined as

e(t) :=
(

ŷ(t)−y(t)
û(t)−u(t)

)
. (3)

We model the NCS as a so-called jump-continuous (hybrid)
system, where jump times and the associated jump or reset
maps are both random. Node data (controller and sensor val-
ues) are transmitted at (possibly) random transmission instants
{t0, t1, . . . , ti}, i ∈ N and our NCS model is prescribed by the
following dynamical and jump equations. In particular, for all
t ∈ [ti−1, ti]:

ẋP = fP (t, xP , û, w) (4)

ẋC = fC(t, xC , ŷ, w) (5)

u = gC(t, xC) y = gP (t, xP ) (6)
˙̂y = 0 ˙̂u = 0, (7)

and at each transmission instantti,

e(t+i ) = Qi(e(ti)), (8)

whereQi(·) is a randomjump map. In particular,Qi may be
the identity in the case where nothing was transmitted or a
collision or dropout occurred.

We consider two main classes of protocols:contentionand
contentionlessprotocols in the presence of random packet
dropouts and random inter-transmission times that we model
through appropriate definition of the random error jump maps
in (8) and the sequence on transmission instants. Within our
modeling framework, we shall see that it is enough to restrict
our attention to jump maps of the form

e(t+i ) = Qie(ti),

for contention protocols, whereQi is an iid sequence of
diagonal matrices with entries drawn from the set{0, 1} and,
for contentionless protocols in the presence of dropouts, jump
maps of the form:

e(t+i ) = qih(i, e(ti)) + (1− qi)e(ti),

where h is a deterministic jump map (e.g., as in [2]) and
qi is an iid sequence of Bernoulli random variables. These
classes of protocols together with the sequence of transmission
instants are collectively referred to as astochastic protocol.

The effect of the stochastic protocol on the error is such
that if themth to nth nodes are successfully transmitted at
transmission instantti the corresponding components of error,
en, . . . , em, experience a “jump”. It may be the case that
a single logical node (a “link”) consists of several sensors
or several actuators or both with the transmission of that
link having the effect of setting multiple components ofe
to zero. It may also be the case that the network allows
the transmission of more than one node at each transmission



and our model allows for this extra degree of freedom. For
transmission of nodesmth to nth nodes, we will always
assume thaten(t+i ), . . . , em(t+i ) = 0 and, hence,Qi(e) =
[akj ]e, where akj = 0 for k = j ∈ [n,m] ∪ {k 6= j}
and 1 elsewhere. We group the nodes that are transmitted
together into logical links, associating a partition of sizesi,
denoted byei = (ei1, ei2, . . . , eisi

), of the error vectore
such that we can writee = (e1, . . . , eV ). We say that the
NCS hasV links and

∑V
i=1 vi nodes. Note that this is purely

a notational convenience and simplifies the description of
scheduling protocols and the NCS itself. We combine the
controller and plant states into a vectorx = (xP , xC) and
similarly to [2, pp. 1653], assuminggP , gC are a.e.C1, for
example, we can rewrite (4)-(8):

ẋ = f(t, x, e, w) t ∈ [ti−1, ti] (9)

ė = g(t, x, e, w) t ∈ [ti−1, ti] (10)

e(t+i ) = Qi(e(ti)) (11)

wherex ∈ Rnx , e ∈ Rne , w ∈ Rnw . Implicit in this definition
is that there are no (pure) propagation delays. Transmission
at time ti results in the instant reset of the relevant error
component to zero. We appeal to the robustness properties
verified by the class of systems considered to assert that the
results in this paper remain true for sufficiently small delays.

With respect to (4)-(8) and (9)-(11), we further assume that
the sequence of (attempted) transmission times{ti}i∈N is such
that ti+1− ti is exponentially distributed for alli and analyze
two classes of jump maps in (8) and (11) which we explore
in the proceeding sections.

IV. CONTENTION PROTOCOLS

By a contention protocol, we mean the sequence of random
transmission times together with iid random jump mapsQi

that aree-independent with reference to (11). That is,Qi are
iid random matrices taking values in the finite setMne

=
{M0,M1, . . . ,MV }, whereM0 = Ine

andMj is such that

Mje = Mj(e1, . . . , ej , . . . , eV )
= (e1, . . . , ej−1,0, ej+1, . . . , eV ).

We make this definition more precise shortly. The intuition
behind this model is that at a transmission timeti, either some
link j will acquire the channel and have its component ofe
set to zero, that is,

ej(t+i ) = 0, ei(t+i ) = e(ti), i 6= j,

henceQi = Mj or else more than one node attempted to
transmit resulting in a collision withe remaining unchanged
(Qi = M0). Due to random “back-off” times, and wait-
times inserted into medium access protocols, transmission
times are potentially random. Collectively, these issues are the
same issues presented in multi-user access in computer and
mobile voice networks though the network access patterns are
somewhat different. See [3] for an overview.

Remark 1:Note that the definition of NCS error given in
(3) and the description of the NCS in (9)-(11) is similar to
that presented in [2] with two key differences:

1) the inter-transmission continuous-time dynamics in (9)
and (10) are prescribed on a sequence of intervals
[ti−1, ti] of random lengths not necessarily uniformly
bounded by a constant, i.e., the notion of MATI does not
always make sense for the inter-transmission processes
we consider; and,

2) the scheduling protocol (error jump map) (11) is a
particular random linear map, where we admit the
possibility of Qi = I with non-zero probability equal
to the probability of packet dropout and collision. We
believe that this a new and novel approach to modeling
contention protocols on non-ideal network channels.

Definition 4.1: For a V -link NCS, abstractly, we define a
contention protocol as a discrete Markov chainQi subordi-
nated by a renewal process2 N(t) such that

1) Qi ∈Mne
are iid randomne × ne with associated link

and collision probabilities given by

P {Qi = Mi} = pi.

2) The sequence of arrival times{ti}i∈N is defined induc-
tively by:

t0 = τ0,

whereτ0 ∼ Exp(λ) and for eachi > 0,

ti = ti−1 + τi,

τi ∼ Exp(λ), where the sequence{τi} is iid. We set

N(t) =
{

0 t ∈ [0, t0)
k t ∈ [tk−1, tk),

hence,N(t) is a Poisson process with intensityλ.
Essentially, theτi denotes the wait time after the arrival of a
packet (before a new transmission begins). Where not other-
wise stated, we will henceforth assume thatP {Qi = Mk} =
P {Qi = Mj} = (1 − p0)/V, k, j 6= 0 i.e., each link is
equally likely to be transmitted successfully. As alluded to in
the introduction, this assumption is not strictly necessary for
our analyses, however, any other distribution of probabilities
results in astaticchoice of priorities amongst links where one
link may be favored over another during contention. There
may be examples of NCS that would benefit from such an
adjustment of relative link priorities offline in terms of required
transmission rates or greater robustness of stability but as these
choices are made offline and not in response to the evolution
of the NCS state online, we believe that the scope of exploiting
this degree of freedom is limited.

In [9], the analysis framework defined the notion of uniform
persistency of excitation of a protocol. To say that a protocol
wasPET was to guarantee that every link is visited afterT
transmissions. We pursue a stochastic analogue of that here:

Definition 4.2 (Cover Time):Consider a contention proto-
col in the sense of Definition 4.1 for aV -link protocol and
define

T0 = min{j ≥ 1 : {M1, . . . ,MV } ⊂ {Q0, . . . , Qj−1}}

2More precisely, the process of interest is in fact a marked point-process.
See [14] for an exposition.



and, inductively fori > 0,

Ti = min{j ≥ 0 : {M1, . . . ,MV } ⊂ {QTi−1 , . . . , QTi−1+j−1}}.

We refer toTi as theith cover time and, collectively the cover
time process. It is clear from our definition ofQi thatTi is a
stationary process.

Definition 4.3 (Covering sequence):Let τi = ti+1 − ti, as
in Definition 4.1, that is,τi are inter-arrival times. We say that

C(j, k) = {(Qj , τj), . . . , (Qk, τk)}, k ≥ j

is a covering sequence iff{M1, . . . ,MV } ⊂ C(1)(j, k).3 It
is easy to see that cover times are simply the lengths of
consecutive disjoint covering sequences.

Remark 2:From our definition of contention protocols, the
distribution of Tn is given by the solution to the (weighted)
coupon collectors problem. Whenpi = pj , i, j 6= 0, we have
the closed form expression for the expectation:

E[T ] = V HV /(1− p0), (12)

whereHV is theV th harmonic number and we have dropped
the time indexn sinceTn is stationary. We also have the bound
for the distribution:

P {Tn ≥ βV lnV/(1− p0)} ≤ V −(β−1)/(1− p0), (13)

for anyβ > 1. Intuitively, Tn = E[T ] “most of the time” and
P {Tn <∞} = 1. /
Our abstract definition of a contention protocol is a model for
the contention protocols discussed in the introduction and to
that end we present two natural examples in this setting.

Definition 4.4 (Almost Surely Finite Cover Time):We say
that a protocol isa.s. coveringor has ana.s. finite cover time
if in Definition 4.2

(∀i ∈ N) P {Ti <∞} = 1.

Note that from the preceding discussion, this property is
verified by all contention protocols in the sense of Definition
4.1.

Remark 3:The property of persistency of excitation within
the context of scheduling protocols discussed in [9] is es-
sentially a protocol stability property closely related to the
Lyapunov UGES and UGAS stability properties for scheduling
protocols introduced in [2] and [8], respectively. Just as the
a.s. covering property introduced in this paper is a stochastic
analogue of persistency of excitation of protocols, the Lya-
punov UGES and UGAS properties may be recast within
our framework to assertLp stability results in the presence
of random data dropouts quite distinct from the unwieldy
deterministic characterization of dropouts presented [2]. This
generalization is pursued in subsequent sections of the paper
within essentially the same analysis framework.

The motivation for studying these stochastic analogues of
the stability properties is to naturally extend the results of
[2] and [9] to non-ideal networks, that is, networks with
random inter-transmission times and random packet dropouts

3The notationC(1)(j, k) refers to the covering sequence of matricesQi

with no reference to inter-transmission timesτi i.e., {Qj , . . . , Qk}.

as a result of collisions and transmission errors. Other ap-
proaches to analyzing the effects of dropouts have been stud-
ied including the asynchronous dynamical systems approach
(ADR) presented [15] with applications to NCS pursued in
[16]. Dropouts events are characterized by arate which is
essentially an ensemble time-average of the dropout indicator
function. In principle, assuming that the dropout process is
ergodic, for example, this is akin to taking an expectation
of the dropout process which we use to characterize the
probability of dropouts from transmission errors. In practice,
admitting the possibility of collisions introduces a dependence
of the probability of dropout on the number of links which is
essentially ignored in [15] and [16] as neither work exam-
ines scheduling amongst links. This paper characterizes the
behavior of contention and contentionless protocols through
appropriate definitions of (stochastic) scheduling protocols that
would be difficult or impossible to represent within an ADR
framework.

A. Slottedp-Persistent CSMA

What has been referred to as “scheduling” and the as-
sociated scheduling protocols by [9] is generally known as
medium access in the communications literature. Collision
sense multiple access with collision detection (CSMA/CD) is
by far the most widely used medium access protocol by virtue
of the sheer volume of Ethernet and Ethernet-like networking
devices shipped and manufactured each year.

CSMA/CD is a simple protocol: Links listen for trans-
missions on the the channel. A link wanting to transmit
acquires the channel when it senses that the channel is idle.
When more than one link senses that the channel is idle
and begins transmission, a collision occurs. At this point,
all transmissions are immediately aborted. There are several
variants of CSMA/CD that prescribe how transmissions are
rescheduled and how links initially acquire the channel.

With slotted p-persistent CSMA, rather than have links
transmit whenever the channel is idle, links are only permitted
to transmit at prescribed transmission slots that occur every
ts > 0 seconds in slotted protocols. At the start of slotsk,
links S = {i, .., j} intending to transmit acquire the channel
with a probability of p. If a collision occurs, linksSc are
permitted to transmit in the next slot and linksSc reschedule
their transmissions at slots{sk+di

, . . . , sk+dj
}. The delays

{di, . . . , dj} may be deterministic or iid random variables.
As alluded to in the introduction, the primary reason that

CSMA protocols and, indeed, all contention protocols work
in practice is that the access patterns of computer and voice
networks are “bursty” in nature. The assumption is that a link
will occasionally transmit a burst of information and remain
otherwise idle. Transmissions are expected to eventually suc-
ceed as links are “infrequently” contending for the channel.

The situation is quite different for control networks with
the implication that medium access patterns are constant
rather than bursty and for slottedp-persistent CSMA, we
assume that every slot will be in contention. Another key
difference between computer networks and NCS is in the
treatment of collisions and dropouts. NCS should not buffer



failed transmissions of controller or sensor values but, rather,
attempt to transmit the latest values when a slot is free. As
the maximum number of links contenting slots is constant for
every slot, there is no reason for a link to delay transmission
for any more than one slot after a collision.

With these assumptions, consider aV -link NCS with thep-
persistent CSMA protocol. The probabilityP {Qi = Mj} that
a particular link j transmits successfully during theith slot is
given by

P {Qi = Mj} = p(1− p)V−1.

It is clear thatP {Qi = Mj} is maximized whenp = 1/V .
Will henceforth setp = 1/V and have that

P {Qi = Mj} =
1
V

(
1− 1

V

)V−1

=
(V − 1)V−1

V V
.

Notice that in this “optimal” case,P {Qi = Mj} =
P {Qi = Mk} = (V − 1)V−1/V V for i, k 6= 0 and the
probability of a collision is given byP {Qi = M0} = 1 −
(V −1)V−1/V V−1. Finally, we assume that slots occur every
ts > 0 seconds and, hence,p-persistent CSMA is a contention
protocol in the sense of Definition 4.1 where inter-arrival times
τi and, hence,δi andηi, are deterministic.

B. CSMA with Random Waits

Whereas the use of fixed slots tends to improve throughput
and reduce collisions with computer networks e.g., slotted
versus pure ALOHA, the contention by every link at every slot
forces transmissions to happen in lock-step with NCS network
access patterns with the potential for a collision at every slot.

Suppose that instead of immediately acquiring the channel
with probabilityp after sensing the channel to be idle or after
a new slot arrives, links instead wait a random amount of time
before transmitting. In particular, if a particular linkj waits
for a random timeη′j ∼ Exp(λ/V ) then, P {Qi = Mj} =
(1− p0)/V, j 6= 0. The actual wait time before any particular
transmission will be given

τ = min{η′1, . . . , η′V }

that is, the link that waits the least gets to transmit first, hence,
τ ∼ Exp(λ). Assuming the wait times are iid for each link, this
is the the prototypical example of what mean by a stochastic
(contention) protocol and stochastic channel.

In the presence of transmission errors,p0 is generally
nonzero and, conceptually,p-persistent CSMA and CSMA
with random waits are essentially the same save for the fact
that the transmission process is truly random with the latter.
While CSMA with random waits can be thought of as a
protocol in its own right when the random waits are enforced
explicitly in the implementation, it can also be thought of as
a model of medium access with NCS access patterns while
using a class of CSMA wireless protocols. Delays in signal
detection, multi-path effects and varying processor loads mean
that links are only prepared to transmit after some delay upon
sensing the channel being idle and although the cumulative
effects of these delays may not be exponentially distributed,
the principle remains the same.

V. CONTENTIONLESSPROTOCOLS WITHDROPOUTS

The premise of a contentionless protocol is that the network
channel is a resource shared amongst links and that the simul-
taneous transmission of data by more than one link will result
in data loss. By careful coordination amongst links through
the use of a particular scheduling protocol, contention can be
eliminated completely and the property that only one link can
attempt to transmit at any given instant can be enforced. As
alluded to in the introduction, simple round-robin scheduling
amongst links is an example of a contentionless protocol as
are the protocols discussed in [2], including the so-called try-
once-discard (TOD) scheduling protocols.

Despite the elimination of contention, NCS employing con-
tentionless protocols on non-ideal network channels are still
subject to packet losses and varying inter-transmission times.
With reference to (11), a jump map of the form

e(t+i ) = h(i, e(ti)) (14)

was used to capture the behavior of the protocol in [2] on an
ideal network and by assigning a probability,p0, to the event
that the channel drops a packet, we model the behavior of the
protocol on non-ideal channels in this paper with jump maps
of the form

e(t+i ) = qih(i, e(ti)) + (1− qi)e(ti), (15)

where qi is an iid sequence of Bernoulli random variables
that model the dropout process of channel withP {qi = 1} =
1−p0. Implicit in this discussion is that, as in Section IV, the
sequence of arrival times{ti}i∈N is defined inductively by:

t0 = τ0,

whereτ0 ∼ Exp(λ) and for eachi > 0,

ti = ti−1 + τi,

τi ∼ Exp(λ), where the sequence{τi} is iid.
As in [2], it becomes natural to define the associated

auxiliary discrete-time system for (15):

e(i+ 1) = qih(i, e(i)) + (1− qi)e(i) i ∈ N, (16)

where the sequence{qi} is defined as in (15).
As alluded to in Remark 3, the crux of our NCS analysis

framework rests on verifying appropriate stability properties of
the protocol in question and inferring a set of sufficient condi-
tions from which robust stability of the NCS can be concluded.
For contention protocols, the protocol stability property is that
of a protocol being a.s covering. For contentionless protocols,
we introduce the following definition with respect to system
(16):

Definition 5.1 (Almost surely Lyapunov UGES protocols):
Let W : N × Rne → R≥0 be given and suppose thatκi is
a sequence of nonegative iid random variables such that,
a1, a2 > 0 such that the following conditions hold for the
discrete-time system (16) for alli ∈ N and alle ∈ Rne :

a1|e| ≤W (i, e) ≤ a2|e| (17)

W (i+ 1, h(i, e)) ≤ κiW (i, e) (18)

E[κi] < 1 (19)



then we say that (16) (equivalently, the contentionless proto-
col) is almost surely uniformly globally exponentially stable
(a.s UGES) with Lyapunov functionW .
Before discussing implications of this definition, we present a
motivating example:

Example 5.2 (Try-Once-Discard):The TOD protocol was
introduced in [7] and can be expressed with a model of the
form (16) where

h(e) = (I −Ψ(e))e

andΨ(e) = diag{ψ1(e)Iv1 , . . . , ψV (e)IvV
}, with Ivj

identity
matrices of dimensionvj and

ψj(e) =
{

1, if j = min(arg maxj |ej |)
0, otherwise.

As in [2][Proposition 5], we setW (i, e) = |e| and claim that
TOD is a.s Lyapunov UGES whenever the probability of a
dropout,p0 is such that

p0 + (1− p0)

√
V − 1
V

< 1. (20)

The inequality (20) is a particular example of a more general
condition that ensures that any Lyapunov UGES protocol in
the sense of [2] is an a.s Lyapunov UGES for sufficiently low
probability of dropout and admits the following proposition:

Proposition 5.3:Suppose that the protocol (16) on an ideal
channel (p0 = 0 ⇒ qi = 1) is Lyapunov UGES in the sense
of [2]. That is, there existsW : N×Rne → R≥0, a1, a2 > 0,
and0 ≤ θ < 1 such that for alli ∈ N and alle ∈ Rne :

a1|e| ≤W (i, e) ≤ a2|e| (21)

W (i+ 1, h(i, e)) ≤ θW (i, e). (22)

Then (16) is a.s Lyapunov UGES on a non-ideal channel (p0 ≥
0) if

p0 + (1− p0)θ < 1. (23)

Proof: It is clear that we only need verify (19) to
conclude that (16) is a.s Lyapunov UGES with Lyapunov
function W . We haveκi = qiθ + (1 − qi) and, hence,
E[κi] = (1 − p0)θ + p0. The result follows immediately as
{qi} are iid.

Remark 4:The rationale of the introduction of the class
of a.s Lyapunov UGES protocols is to provide an analysis
framework for Lyapunov UGES protocols capable of handling
random packet dropouts – any Lyapunov UGES protocol is
automatically an a.s Lyapunov UGES protocol for sufficiently
low p0.

VI. Lp STABILITY OF NCS WITH CONTENTION

PROTOCOLS

The notion ofrobustnessof various stability properties plays
a fundamental role in practical design and implementation
of control systems as evidenced by the extensive literature
discussing e.g., input-to-state stability (ISS),H2, H∞ design
and variants of robust stability. To that end, [2] and [8] have
examinedLp and input-to-state stability of NCS, respectively
and it was shown in [9] that persistently exciting scheduling

protocols lead toLp stable NCS when appropriate conditions
are imposed on transmission rates and the nominal system.

Intuitively, and despite the presence of collisions, random
packet dropouts and random inter-arrival times, it seems
natural to expect that the stability of the NCS (4)-(8) for
high enough “average” transmission rates and in light of the
a.s. cover times of contention protocols and in analogy with
persistently exciting scheduling protocols, this stability ought
to be robust in anLp sense. In fact, if we relax our notion of
“Lp stability” to “Lp stability-in-expectation”, we can prove
a positive result in that direction.

Recall that‖y[t0, t]‖p :=
(∫ t

t0
|y(s)|pds

)1/p

for p ∈ [1,∞)
and ‖y[t0, t]‖∞ = ess.sup{|y(s)| : s ∈ [t0, t]} and consider
the NCS (1)-(2) initialized at(t0, z0) with input w and a
prescribed outputy = g(t, z). We say that (1)-(2) isLp stable-
in-expectation fromw to y with expected gainγ if

∃K ≥ 0 : E‖y[t0, t]‖p ≤ K|z0|+ γE‖w[t0, t]‖p.

The statez of (1)-(2) is said to beLp to Lq detectable-in-
expectation from outputy with expected gainγ if

∃K ≥ 0 : E‖z[t0, t]‖q ≤ K|z0|
+ γE‖y[t0, t]‖p + γE‖w[t0, t]‖p.

Note that these are essentially the same notions of stability
and detectability employed in [2] and [9]. We stress that, as
developed in this paper, these notions only apply to hybrid sys-
tems of the form (1)-(2), i.e., we insist thatw is “essentially”
an Lp signal and not a L̀evy process (c.f. [13]) specifically
because we are concerned with robustness of stability in the
sense of e.g., [17], whereas a Lèvy process characterization
of disturbances may be more appropriate in modeling sensor
noise and quantization phenomena.

While the following results are stated for the delay and inter-
arrival processes presented in Definition 4.1, it is straightfor-
ward to extend them to a more general class of processes.

Theorem 6.1:Consider aV -link NCS (9)-(11) and suppose
that:

1) the NCS employs a contention scheduling protocol with
iid cover timesTi and the inter-arrival process is Poisson
with intensity λ and also suppose that the NCS error
dynamics satisfy4

g(t, x, e, w) � Ae+ ỹ(x,w) (24)

for all (x, e, w) ∈ Rnx × Rne × Rnw and almost allt,
whereA is a nonnegative symmetricne×ne matrix with
nonnegative entries and̃y = G(x) +H(w);

2) system (9) isLp stable-in-expectation from(e, w) to
G(x) with expected gainγ for somep ∈ [1,∞]; (10) is
Lp to Lp detectable-in-expectation from̃y;

Then, there existsλ < ∞ depending on(V, |A|, γ,E[T ], p0)
such that the NCS isLp stable-in-expectation fromw to (x, e)

4Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. The vectorpartial order
� is given byx � y ⇐⇒ (x1 ≤ y1) ∧ · · · ∧ (xn ≤ yn) ande andg are

given bye := (|e1|, . . . , |ene |)T andt
g7→ g(t), respectively. That is,e is the

vector that results from taking the absolute value of each scalar component
of e andg does operates analogously on the image ofg.



with a finite linear expected gain1/(1− γγ∗). Specifically,λ
solvesγ∗γ < 1 with

γ∗ =
E[T ](1 + ρ)

(λ− |A|)(1− ρ)
,

where,

ρ = (α(1− p0))V
V∏

k=1

V − (k − 1)
V (1− p0α)− (k − 1)(1− p0)α

− 1,

andα =
(

λ
λ−|A|

)
andλ > |A|

1−p0
.

Proof of the results follows from a straightforward extension
of classical small-gain theorems, Theorem 3.1, and subsequent
results that are developed in the paper in Section IX. The usual
detectability assumptions are automatically satisfied whenỹ
is defined as above. While no bounds forλ are given, the
requisite intensity can be found numerically.

VII. Lp STABILITY OF NCS WITH DETERMINISTIC

PROTOCOLS IN THEPRESENCE OFDROPOUTS

In this section, we present the second main result of this
paper which shows that under mild conditions a.s Lyapunov
protocols induceLp stability in expectation of NCS for suffi-
ciently high transmission rates. The result is intended to be a
stochastic analogue of [2][Theorem 4] where the dependence
of the gain and intensity formulae on the dropout probability
made explicit. While [2] present sufficient conditions forLp

stability in the presence of (deterministically-characterized)
packet dropouts, we believe the following result is a more
natural treatment of dropouts and the conditions are directly
verifiable.

Theorem 7.1:Consider aV -link NCS (9)-(11) operating on
a channel with dropout probabilityp0 employs a contentionless
scheduling protocol that is a.s. Lyapunov UGES with Lya-
punov functionW that is locally Lipschitz ine, uniformly in
i where (18) is satisfied with an iid sequence{κi} and there
existsL ≥ 0 such that for everyi ∈ N, all t, x, w and almost
all e we have that the following holds:〈

∂W (i, e)
∂e

, g(t, x, e, w)
〉
≤ LW (i, e) + |ỹ|, (25)

whereỹ : Rne×Rnw → R is a continuous function of(x,w);
and the intensity of the inter-transmission processλ satisfies

λ >
γ + L

1−E[κ]
. (26)

Further suppose that system (9) isLp stable from(W,w) to
ỹ with finite expected gainγ for somep ∈ [1,∞]; (x,w) is
Lp detectable fromỹ with finite expected gain ande is Lp

detectable fromW with finite expected gain. Then the NCS
(9)-(11) is Lp stable fromw to (x, e) with finite expected
linear gain:

λ(1− E[κ])− L
λ(1− E[κ])− L− γ

. (27)

Theorem 7.2:We only sketch a proof as the details are
similar to the proof of [2][Theorem 4]. In view of 9.5, and
condition (26) the error subsystem (10)-(11) isLp stable with

finite expected gain from̃y to W . In particular, the intensity
lower bound (26) yields an expected gain of

1
γ(λ(1− E[κ])− L)

.

The result follows from the adapted small-gain theorem pre-
sented in the Appendix under the detectability assumptions
and finite expected gain of thex-subsystem (9).

Remark 5:As the motivation for studying a.s Lyapunov
UGES comes from the use of Lyapunov UGES protocols on
non-ideal channels, we can restate several of the conditions of
Theorem 7.1 in light of Proposition 5.3. Letθ be as in (22)
and let the probability of packet dropoutp0 satisfy (23). The
requisite intensity in (26) becomes

λ >
γ + L

(1− p0)(1− θ)
(28)

and the resultant gain (27) can be re-expressed in a similar
manner.

Remark 6:As in [2] and [9], in both this and the preced-
ing section, several generalizations and specializations of the
stability results are possible. With additional technical assump-
tions on the NCS dynamics, one can conclude uniform global
exponential stability (in expectation) and the assumptions on
the various reset maps can be relaxed so as to infer ISS-like
properties in lieu ofLp stability as discussed [8]. If we forgo
the detectability assumptions in the hypotheses of Theorem 6.1
and Theorem 7.1 we can only infer input-to-output stability in
expectation.

VIII. C ASE STUDY: BATCH REACTOR

As given in [2], the linearized model of an unstable batch
reactor is a two-input-two-output NCS that can be written as:

ẋP = APxP +BPu y = CPxP

whereCP =
[

1 0 1 −1
0 1 0 0

]
AP =

[ 1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

]
BP =

[
0 0

5.679 0
1.136 −3.146
1.136 0

]
.

The system is controlled by a PI controller with a state-space
realization prescribed by

ẋC = ACxC +BCy u = CCxC +DCy

and

AC =
[

0 0
0 0

]
BC =

[
0 1
1 0

]
−CC =

[
2 0
0 8

]
−DC =

[
0 2
−5 0

]
.

Assuming that only the outputs are transmitted via the
network, we have a two link NCS (V = 2, v1 = v2 = 1)
with error and state equations[

ẋ
ė

]
=
[
A11 A12

A21 A22

] [
x
e

]
(29)



where

A11 =
[
AP +BPDCCP BPCC

BCCP AC

]
A12 =

[
BPDC

BC

]
A21 = −

[
CP 0

]
A11 A22 = −

[
CP 0

]
A12.

The error equation is given by

ė = A22e+A21x (30)

and we have

ė � Ae+ ỹ, (31)

where ỹ = A21x andA = A22, asA22 is diagonal and has
all nonnegative entries. We assume the NCS uses the CSMA
protocol described in Section IV-B and, hence,

E[T ] = 2 ·H2/(1− p0) = 3/(1− p0). (32)

By the small-gain theorem described in Proposition II, and
Theorem 9.4, the batch reactor system will beLp stable in
expectation fromw to x if

E[T ](1 + ρ)
(λ− |A|)(1− ρ)

γ < 1, (33)

whereγ is theLp gain ofx subsystem from the inpute to an
“auxiliary” output ỹ = A21x.

We compute theL2 gain for thex subsystem from the input
e to an auxiliary outputA21x which is γ ≈ 15.9222 however
we note that the “gain” fromA21x to ỹ is unity, hence,γ
is also the gain from inpute to output ỹ and we note that
|A| = 15.73. By solving forλ numerically in (33), subject to
the constraint

λ >
|A|

1− p0

from Lemma 9.2, we are able to establish expected trans-
mission rate bounds as a function ofp0 that ensureLp

stability of the batch reactor system The batch reactor system
with the CSMA protocol was also simulated using expected
transmission rates of[1,∞) transmissions per second for
p0 ∈ [0.1, 0.8]. The following simulation method was used:

1) For each fixedp0 and two transmission intensities
λu,0 = 109, λl,0 = 1, the NCS was simulated with
a (pseudo)-random realization of the inter-transmission
and protocol processes with a fixed initial state. The
simulation was terminated and the NCS deemed unstable
if the norm of the NCS exceeded a time-dependent
threshold of the formK1 +K2 exp(−K3t), otherwise it
was deemed to be stable. With the above choices, it is
expected that NCS with intensitiesλu,0, λl,0 would be
stable and unstable, respectively.

2) By bisection on the values ofλu,i, λl,i depending on
the outcome of subsequent simulations, the smallest
intensityλ∗ resulting in stability can be determined for
the given realizations of the (pseudo)-random processes
involved. Specifically, if λl,i resulted in instability,
λl,i+1 ← (λl,i + λu,i)/2, λu,i+1 ← λu,i, or in the
case the NCS was stable,λu,i+1 ← λl,i, λl,i+1 ←

(λl,i + λl,i−1)/2. This process was terminated when
λu,i − λl,i < ε5 and we setλ∗ ← λu,i.

With the samep0 and identical initial conditions, the above
procedure was repeated1000 times and the ensemble average
of λ∗ to yield the simulation-derived intensity bound.

The expected transmission rate bounds and expected inter-
transmission times are shown in Table I as a function of
dropout/collision probabilityp0 and plotted in Figure 1.
Simulation-derived bounds are also listed in Table I.

For the initial condition used, the bounds obtained via The-
orem 6.1 are within a factor of 4 of simulation-based bounds
and, for example, demonstrate that with a 50% probability
of dropout/collision, the network must deliver approximately
922 kbps (116×8 bits) of network throughput to maintainLp

stability. This is well within the realm of ordinary Ethernet
and 802.11 wireless technology.

0.2 0.4 0.6 0.8 1
p0

200

400

600

800

lλ

Fig. 1. Batch Reactor expected transmission rate bounds for contention
protocols as a function of dropout/collision probabilityp0 with identical initial
conditions.

p0 λ E[τ ] = 1/λ (s) λ∗ E[τ∗] = 1/λ∗ (s)
0 50.19 0.02 14.77 0.0677

0.1 57.46 0.017 16.05 0.0623
0.2 66.52 0.015 18.38 0.0544
0.3 78.15 0.013 21.37 0.0468
0.4 93.63 0.011 25.00 0.0400
0.5 115.27 0.0087 31.65 0.0316
0.6 147.71 0.0068 37.74 0.0265
0.7 201.74 0.0049 61.35 0.0163
0.8 309.74 0.0032 145.77 0.00686

TABLE I

TRANSMISSION RATE AND INTER-TRANSMISSION TIME BOUNDS λ AND

E[τ ] = 1/λ ARE DERIVED VIA THEOREM 6.1;λ AND E[τ ] = 1/λ ARE

DERIVED VIA SIMULATION .

We can also consider the example within the context of
contentionless in protocols. Suppose that the TOD scheduling
is employed. From [2] we selectW (i, e) = |e| and with
respect to Remark 5 we haveθ =

√
1/2, L = 15.73 andγ =

15.9222 and, hence, the requisite intensity for the conditions
of Theorem 7.1 to be verified is

λ >
108.07
1− p0

.

5The toleranceε was chosen such that intensities were equal within five
significant figures.



For an ideal channel (p0), this corresponds to a transmission
at least once every9.25 msecs compared to a maximum
allowable transmission interval (MATI) of0.01 secs for the
deterministic results presented in [2]– a factor of1.08 im-
provement in favor of the deterministic results. The notion of
MATI implies that every inter-transmission time isuniformly
boundedwhereas the intensity (or reciprocal) is an “average
MATI” – individual inter-transmission times can individually
exceed or fall short of the average. Notably, both values fall
short of the contention protocol figure of0.02 secs. As the
characterization of dropouts in [2] is markedly different from
that of this paper, we do not pursue a comparison forp0 > 0.
We can, however, compare contention protocols and TOD in
the presence of dropouts as presented in this paper and we
see that the trend is continued forp0 > 0 e.g., the requisite
intensity forp0 = 0.5 is over216 for TOD and less than116
for the contention protocol. We cannot immediately conclude
that TOD is inferior to essentially to a protocol that transmits
links at random when the channel is idle. The disparity in
intensity bounds may simply be an artifact of the different
stability properties used to characterize each protocol but a
similar relative disparity between TOD and the simpler round-
robin scheduling protocol is evident in the results presented in
[13] and seem to provide some support that PE-like properties
lead to sharper results.

IX. PROOF OFMAIN RESULTS

The following results imply the stability result presented in
Section VI but are of interest in their own right and constitute
the substantial technical differences between this paper and
[9] despite the superficially similar proof technique.

Lemma 9.1:Let T be the cover time for the sequence
{(Q0, τ0), . . . , (QT−1, τT−1)}. Then the following inequality
holds: ∣∣∣∣∣

T−1∏
i=0

Qi exp(Aτi)

∣∣∣∣∣ ≤ exp(|A|
T−1∑
j=0

τi)− 1.

Proof: The proof is a straightforward generalization of
[9, Lemma 7.1].

Remark 7:Assuming aV -link NCS, and letp0 denote the
probability of a dropout or collision. LetWi denote the number
of additional transmissions needed to go from having covered
i − 1 links to i links. ThenWi is geometrically distributed
with parameterpg,i given by

pg,i =
(V − i+ 1)(1− p0)

V
.

It is clear that the cover timeT can be expressed asT =∑V
i=1Wi and the pgf is given by:

ψT (s) = (s(1− p0))V
V∏

k=1

V − (k − 1)
V (1− p0s) + (k − 1)(1− p0)s,

for |s| < 1/p0.
Lemma 9.2:Suppose thatτi ∼ Exp(λ). Let T be the cover

time for the sequence{(Q0, τ0), . . . , (QT−1, τT−1)} and let

the random variableZ be given by

Z = exp(|A|
T−1∑
j=0

τi).

ThenE[Z] is given by

E[Z] = (α(1− p0))V
V∏

k=1

V − (k − 1)
V (1− p0α)− (k − 1)(1− p0)α

,

whereα =
(

λ
λ−|A|

)
whenever

λ >
|A|

1− p0
.

Proof: Let W =
∑T−1

j=0 τi. The mgf ofW is given by

E[exp(sW )] = ψT

(
λ

λ− s

)
,

that is, the mgf ofW is the pgf ofT evaluated at the mgf of
an Exp(λ)-distributed random variable.6 The result follows by
settings = |A|.

Lemma 9.3:Suppose thatτi ∼ Exp(λ). Let T be the cover
time for the sequence{(Q0, τ0), . . . , (QT−1, τT−1)}. Then
there existsλ <∞, depending on(V, |A|, p0) such that

E

∣∣∣∣∣
T−1∏
i=0

Qi exp(Aτi)

∣∣∣∣∣ < 1.

Proof: Lettingα =
(

λ
λ−|A|

)
, from Lemma 9.2 we have,

E

∣∣∣∣∣
T−1∏
i=0

Qi exp(Aτi)

∣∣∣∣∣
< (α(1− p0))V

V∏
k=1

V − (k − 1)
V (1− p0α)− (k − 1)(1− p0)α

− 1.

Defineh(V, λ, p0) = E
∣∣∣∏T−1

i=0 Qi exp(Aτi)
∣∣∣. Letting α → 1,

and hence,λ → ∞, in the above bound yieldsh → 0.
By the implicit function theorem (see e.g., [19, Theorem 2-
12]) and sinceh is a.e.C1, there existsλ > 0 such that
0 < h(V, λ, p0) < 1. It is straightforward to solve forλ
numerically.

The following theorem assertsLp stability-in-expectation
for the e-subsystem and is they key component of the small-
gain-based proof approach that implies Theorem 6.1.

Theorem 9.4:Suppose that aV -link NCS employs a con-
tention scheduling protocol and satisfies hypothesis 1 of The-
orem 6.1 with the Poisson intensityλ chosen as in Lemma
9.3. That is, we haveE

∣∣∣∏T−1
i=0 Qi exp(Aτi)

∣∣∣ < 1. Then for

all t ≥ 0 we have, for anyp ∈ [0,∞],

∃ : K ∈ [0,∞) : E‖e[0, t]‖p ≤ K|e(0)|+ γE‖ỹ[0, t]‖p,

where,

γ =
E[T ](1 + ρ)

(λ− |A|)(1− ρ)

6See [18, Example 1.8.13], for instance.



with ρ < 1 a function of (V, |A|, λ, p0). Specifically,ρ =
E[Z]− 1 whereE[Z] was calculated in Lemma 9.2.

Proof: We write ỹ(s) in place of ỹ(x(s), w(s)). By
hypothesis, we have

g(t, x, e, w) = ė � Ae+ ỹ(t), (34)

As in in [9, Section VII-A], we have for alli ∈ N

e(t+i ) � Qi exp(A(ti − ti−1))e(t+i−1)

+Qi

∫ ti

ti−1

exp(A(ti − s))ỹ(s)ds. (35)

For all i ∈ N, we can upperbound (35) with

e(t+i ) � Qi exp(Aτi)×(
e(t+i−1) + exp(−Aτi)

∫ ti

ti−1

exp(A(ti − s))ỹ(s)ds

)
. (36)

For brevity, defineRi = Qi exp(Aτi). We can immediately
solve the linear recurrence (36) to produce the bound:

e(t+k ) �

(
k∏

i=0

Ri

)
e(0)

+ exp(−Aτk)
k∑

i=0

(
k∏

n=i

Rn

)∫ ti

ti−1

exp(A(ti − s))ỹ(s)ds

(37)

for all k ∈ N.
By hypothesis, we have fixed the intensity of the transmis-

sion process such that

E

∣∣∣∣∣
T−1∏
i=0

Qi exp(Aτi)

∣∣∣∣∣ ≤ E[Z]− 1 < 1,

as in Lemma 9.2 and Lemma 9.1. Letρ = E[Z] − 1. with

E
∣∣∣∏T−1

i=0 Qi exp(Aτi)
∣∣∣ ≤ ρ < 1. Partition the sequence

{(Q0, τ0), (Q1, τ1), . . . } such that each subsequence

{(Q0, τ0), . . . , (QT0−1, τT0−1)},
{(QT0 , τT0), . . . , (QT0+T1−1, τT0+T1−1)}, . . .

is covering and, hence,Tj are cover times for the respective
subsequences. To simplify notation, we useτj,i to denote the
ith inter-transmission time in thejth covering sequence i.e.,
τj,i = τi+G, whereG =

∑j−1
k=0 Tk, and letρj be given by

ρj = exp(|A|
Tj−1∑
i=0

τj,i)− 1 ≥

∣∣∣∣∣∣
Tj−1∏
i=0

Ri

∣∣∣∣∣∣ .
Similarly, letQj,i denote theith jump map in thejth covering
sequence and setRj,i = Qj,i exp(Aτj,i). Recall thatTj is
stationary. Define the renewal processNT (t) by

NT (t) = inf{M ≥ 0 : t ≥
M−1∑
j=0

Tj−1∑
i=0

τj,i}.

Let SM be given bySM = inf{t ≥ 0 : NT (t) ≥M}, that is,
SM is the time it takes to coverV links M times.

We set the disturbance term̃y ≡ 0 and have that

|e(S+
M )| ≤

∣∣∣∣∣∣
∏

ti≤SM

Ri

∣∣∣∣∣∣ |e(0)|

≤

M−1∏
j=0

ρj

 |e(0)|
(
∀M ∈ N+

)
. (38)

With ỹ = 0, De � Ae and for the initial conditione(s0) = e0,
we have for anys ≥ 0

e(s) � exp(A(s− s0))e0. (39)

Taking the norm of the left and right hand sides of (39) and
using the bound in (38) as the initial condition, we have that
for all M ∈ N+, θ ∈ (SM , SM+1), the following bound on
|e| holds:

|e(θ)| ≤

M−1∏
j=0

ρj

 exp(|A|(θ − SM ))|e(0)|. (40)

Taking the supremum over the interval[SM , SM+1], we obtain

‖e[SM , SM+1]‖∞ ≤

M−1∏
j=0

ρj

(exp(|A|
TM−1∑

i=0

τM,i)

)
|e(0)|

(41)

for all for all M ∈ N+. Similarly, we can integrate (40) over
the same interval to obtain

‖e[SM , SM+1]‖1 ≤

M−1∏
j=0

ρj

×
(

exp(|A|
TM−1∑

i=0

τM,i)− 1

)
|e(0)|
|A|

. (42)

We can upperbound both theL∞ andL1 bounds (41) and (42)
by

‖e[SM , SM+1]‖p ≤

M−1∏
j=0

ρj

×
(

exp(|A|
TM−1∑

i=0

τM,i)

)
|e(0)|
|A| ∧ 1

, (43)

for p ∈ {1,∞}. By our choice of intensityλ and in light of
Lemma 9.3 and 9.1,E| exp(|A|

∑TM−1
i=0 τM,i)| < 1 + ρ and

sinceρj are iid,E[
∏M

j=1 ρj ] =
∏M

j=1E[ρj ] = ρM , hence,

E‖e[SM , SM+1]‖p ≤ ρM (1 + ρ)
|e(0)|
|A| ∧ 1

. (44)

It is also clear thatE‖e[0, S1]‖p ≤ 1+ρ
|A|∧1 |e(0)|. Set S0 = 0

and we have by linearity ofE[·],

E‖e[0, t]‖p ≤
∞∑

j=0

ρj(1 + ρ)|e(0)| =
(

1 + ρ

1− ρ

)
|e(0)|
|A| ∧ 1

≤ ∞.



We now sete(0) = 0 in (37) and estimate the contribution
from the disturbance term to yield:

e(t+k ) � exp(−Aτk)×
k∑

i=0

(
k∏

n=i

Rn

)∫ ti

ti−1

exp(A(ti − s))ỹ(s)ds. (45)

Applying the variations of parameters formula to (45), we have

e(θ) � exp(−Aτk) exp(A(θ − tk))×
k∑

i=0

(
k∏

n=i

Rn

)∫ ti

ti−1

exp(A(ti − s))ỹ(s)ds

+
∫ θ

tk

exp(A(θ − s))ỹ(s)ds (46)

for θ ∈ [tk, tk+1]. Consider the term
∏k

n=iRn =∏k
n=iQn exp(Aτn) and the associated sequence

{(Qn, τn), (Qn+1, τn+1), . . . }.

Let Ws =
∑s

j=0 Tj and letn̂ be given by

inf{n̂ ≥ 0 : Wn̂ ≥ k + i− 1}.

By Proposition 2.3,E[Wn̂] = E[n̂] ·E[T ]. Let n∗ be given by

n∗ =
⌊
k + 1− i

E[T ]

⌋
and note thatE[Wn∗ ] = n∗E[T ] ≤ k + 1 − i and, hence
n∗ ≤ E[n̂]. We now split the product in consideration intôn
products, each of which is associated with a covering sequence
and a residual product term

k∏
n=i

Rn =

(
T0−1∏
n=0

R0,n

)
· · ·

Tn̂−1−1∏
n=0

Rn̂−1,n

 ·( r∏
n=0

Rn̂,n

)

for some random remainder variabler < Tn̂.
By independence of each product and in view of Lemma

9.3 and the fact that̂n is a stopping time forWs, we can take
expectations as follows:

E

∣∣∣∣∣
k∏

n=i

Rn

∣∣∣∣∣ = E

∣∣∣∣∣
T0−1∏
n=0

R0,n

∣∣∣∣∣×
E

∣∣∣∣∣∣
Tn̂−1−1∏

n=0

Rn̂−1,n

∣∣∣∣∣∣ ·E
∣∣∣∣∣

r∏
n=0

Rn̂,n

∣∣∣∣∣
= ρE[n̂] ·E

∣∣∣∣∣
r∏

n=0

Rn̂,n

∣∣∣∣∣ . (47)

As ρ < 1, r < Tn̂ andn∗ ≤ E[n̂], we have the bound

E

∣∣∣∣∣
k∏

n=i

Rn

∣∣∣∣∣ ≤ ρn∗(1 + ρ). (48)

With this observation, and taking expectation of the supre-
mum of the bound in (46), we have the following:

E‖e[tk, tk+1]‖∞ ≤ E[exp(|A|τk) exp(−|A|τk)]×

(1 + ρ)
k∑

i=0

ρb
k+1−i
E[T ] cE‖ϕ[0, τi]‖1E‖ỹ[ti−1, ti]‖∞

+ E‖ϕ[0, τk]‖1E‖ỹ[tk, tk+1]‖∞

≤ E‖ϕ[0, τ ]‖1(1 + ρ)
k+1∑
i=0

ρb
k+1−i
E[T ] cE‖ỹ[ti−1, ti]‖∞, (49)

whereϕ(s) = exp(|A|s) and we have used independence to
split the expectation of products into products of expectation.
By upperbounding the termexp(|A|(θ− tk)) with exp(|A|τk)
prior to integrating, theL1 bound can be established in
essentially the same way,

E‖e[tk, tk+1]‖1 ≤ E[exp(|A|τk) exp(−|A|τk)]×

(1 + ρ)
k∑

i=0

ρb
k+1−i
E[T ] cE‖ϕ[0, τi]‖1E‖ỹ[ti−1, ti]‖1

+ E‖ϕ[0, τk]‖1E‖ỹ[tk, tk+1]‖1

≤ E‖ϕ[0, τ ]‖1(1 + ρ)
k+1∑
i=0

ρb
k+1−i
E[T ] cE‖ỹ[ti−1, ti]‖1, (50)

where we have used Ḧolder’s inequality, as in [20, Example
5.2], to split the integrals.

There is an exact expression forE‖ϕ[0, τ ]‖1 in terms of the
mgf of the Exp(λ) random variableτ :

E‖ϕ[0, τ ]‖1 = E[exp(|A|τ)]/|A| − 1/|A| (51)

=
1

λ− |A|
(52)

and, hence forp ∈ {1,∞},

E‖e[tk, tk+1]‖p ≤
1 + ρ

λ− |A|

k+1∑
i=0

ρb
k+1−i
E[T ] cE‖ỹ[ti−1, ti]‖p.

(53)
By linearity of E[·], we sum (53) to obtain an upperbound

on E‖e[0, tM ]‖p:

E‖e[0, tM ]‖p ≤
1 + ρ

λ− |A|

M−1∑
k=−1

k+1∑
i=0

ρb
k+1−i
E[T ] cE‖ỹ[ti−1, ti]‖p.

(54)
Applying [9, Appendix, Lemma 1.1] to (54), and taking the
limit as M → ∞ in the summation, theL∞ andL1 norms
can be estimated by

E‖e[0, tM ]‖p ≤
1 + ρ

λ− |A|
E‖ỹ[ts, tM ]‖p

∞∑
k=0

ρb
k

E[T ]c (55)

=
E[T ](1 + ρ)

(λ− |A|)(1− ρ)
E‖ỹ[ts, tM ]‖p (56)

Either E‖ỹ[ts, tM ]‖p = 0 or the ratio
E‖e[0, tM ]‖p/E‖ỹ[ts, tM ]‖p is bounded by an expression
that is independent ofM , hence, (56) remains true witht in
lieu of tM for any t ≥ 0.



As theL1 andL∞ norms are upperbounded by the same
expressions, by Theorem 1.6, the error subsystem isLp stable-
in-expectation for anyp ∈ [1,∞].

Analogously, we prove a similar theorem for NCS employ-
ing contentionless protocols with dropouts.

Theorem 9.5:Suppose that aV -link NCS with dropout
probability p0 employs a contenionless scheduling protocol
that is a.s. Lyapunov UGES with Lyapunov functionW that
is locally Lipschitz ine, uniformly in i where (18) is satisfied
with an iid sequence{κi} and there existsL ≥ 0 such that
for every i ∈ N, all t, x, w and almost alle we have that the
following holds:〈

∂W (i, e)
∂e

, g(t, x, e, w)
〉
≤ LW (i, e) + |ỹ|, (57)

whereỹ : Rne×Rnw → R is a continuous function of(x,w);
and the intensity of the inter-transmission processλ satisfies

λ >
L

1−E[κ]
. (58)

Then error-subsystem (10)-(11) isLp stable fromỹ toW with
finite expected linear gain:

1
λ(1− E[κ])− L

. (59)

Proof: We write ỹ(s) in place ofỹ(x(s), w(s)). Inequal-
ity (57) implies7 that

d

dt
W (i, e(t)) ≤ LW (i, e(t)) + |ỹ| (60)

As in in [2, Section X], we have for alli ∈ N

W (i+ 1, e(t+i )) ≤ κi exp(L(ti − ti−1))W (i, e(t+i−1))

+ κi

∫ ti

ti−1

exp(L(ti − s))|ỹ(s)|ds. (61)

For all i ∈ N+, we can upperbound (61) with

W (i+ 1, e(t+i )) ≤ κi exp(Lτi) ·
(
W (i, e(t+i−1))+

exp(−Lτi)
∫ ti

ti−1

exp(L(ti − s))|ỹ(s)|ds

)
. (62)

For brevity, defineRi = κi exp(Lτi). We can immediately
solve the linear recurrence (62) to produce the bound:

W (k + 1, e(t+k )) ≤

(
k∏

i=0

Ri

)
W (0, e(0))

+ exp(−Lτk)
k∑

i=0

(
k∏

n=i

Rn

)∫ ti

ti−1

exp(L(ti − s))ỹ(s)ds

(63)

for all k ∈ N.
We set the disturbance term̃y ≡ 0 and have that forM ∈ N,

W (M + 1, e(t+M )) ≤

 M∏
j=0

Rj

W (0, e(0)) (64)

7See [2, Section X] for details.

With the inequality (57) and the initial conditione(s0) = e0,
we have for anys ≥ s0

W (·, e(s)) ≤ exp(L(s− s0))W (·, e0). (65)

Taking the norm of the left and right hand sides of (65) and
using the bound in (64) as the initial condition, we have that
for all M ∈ N, θ ∈ (tM , tM+1), the following bound on
W (·, e) holds:

W (M + 1, e(θ)) ≤

 M∏
j=0

Rj

 exp(L(θ − tM ))W (0, e(0)).

(66)
Taking the supremum over the interval[tM , tM+1], we obtain

‖W [tM , tM+1]‖∞ ≤

 M∏
j=0

Rj

 exp(LτM )W (0, e(0)) (67)

for all for all M ∈ N. Similarly, we can integrate (66) over
the same interval to obtain

‖W [tM , tM+1]‖1 ≤

 M∏
j=0

Rj

×
(exp(LτM )− 1)

W (0, e(0))
L

. (68)

We can upperbound both theL∞ andL1 bounds (67) and (68)
by

‖W [tM , tM+1]‖p ≤

 M∏
j=0

Rj

×
exp(LτM )

W (0, e(0))
L ∧ 1

, (69)

for p ∈ {1,∞}. As τi is iid sequence andκi is iid sequence
and they are mutually independent,Rj is an iid sequence and,
hence

E[
M∏

j=0

Rj ] =
M∏

j=0

E[Rj ] = (E[κ] ·E[exp(Lτ)])M+1

=
(
λ ·E[κ]
λ− L

)M+1

, (70)

where, as in Lemma 9.2, we have used the factE[exp(Lτ)]
is given by evaluation the mgf ofτ evaluated atL. Hence,

E‖W [tM , tM+1]‖p ≤
(
λ ·E[κ]
λ− L

)M+1
W (0, e(0))
|A| ∧ 1

. (71)

It is also clear thatE‖W [0, t0]‖p ≤ W (0,e(0))
|A|∧1 . Set t−1 = 0

and incrementing the index of summation, we have by linearity
of E[·],

E‖W [0, t]‖p ≤
W (0, e(0))
|A| ∧ 1

∞∑
j=0

(
λ ·E[κ]
λ− L

)j

=
W (0, e(0))(λ− L)

(|A| ∧ 1)(λ(1−E[κ])− L)
,

where condition (58) ensures that the series summand is
smaller than unity.



We now sete(0) = 0 in (63) and estimate the contribution
from the disturbance term to yield:

W (k + 1, e(t+k )) ≤ exp(−Lτk)×
k∑

i=0

(
k∏

n=i

Rn

)∫ ti

ti−1

exp(L(ti − s))|ỹ(s)|ds.

(72)

Applying the variations of parameters formula to (72), we have

W (k + 1, e(θ)) ≤ exp(−Lτk) exp(L(θ − tk))×
k∑

i=0

(
k∏

n=i

Rn

)∫ ti

ti−1

exp(L(ti − s))|ỹ(s)|ds

+
∫ θ

tk

exp(L(θ − s))|ỹ(s)|ds (73)

for θ ∈ [tk, tk+1]. Tking expectation of the supremum of the
bound in (73) yields the following:

E‖W [tk, tk+1]‖∞ ≤ E[exp(Lτk) exp(−Lτk)]×
k∑

i=0

(
λ ·E[κ]
λ− L

)k+1−i

E‖ϕ[0, τi]‖1E‖ỹ[ti−1, ti]‖∞

+ E‖ϕ[0, τk]‖1E‖ỹ[tk, tk+1]‖∞

≤ E‖ϕ[0, τ ]‖1
k+1∑
i=0

(
λ ·E[κ]
λ− L

)k+1−i

E‖ỹ[ti−1, ti]‖∞, (74)

whereϕ(s) = exp(Ls) and we have used independence to
split the expectation of products into products of expectation.
By upperbounding the termexp(L(θ − tk)) with exp(Lτk)
prior to integrating, theL1 bound can be established in
essentially the same way,

E‖W [tk, tk+1]‖1 ≤ E[exp(Lτk) exp(−Lτk)]×
k∑

i=0

(
λ ·E[κ]
λ− L

)k+1−i

E‖ϕ[0, τi]‖1E‖ỹ[ti−1, ti]‖1

+ E‖ϕ[0, τk]‖1E‖ỹ[tk, tk+1]‖1

≤ E‖ϕ[0, τ ]‖1
k+1∑
i=0

(
λ ·E[κ]
λ− L

)k+1−i

E‖ỹ[ti−1, ti]‖1, (75)

where we have used Ḧolder’s inequality, as in [20, Example
5.2], to split the integrals.

As in the proof of Theorem 9.4 we have

E‖ϕ[0, τ ]‖1 =
1

λ− L
(76)

and, hence,

E‖W [tk, tk+1]‖p ≤
k+1∑
i=0

(
λ ·E[κ]
λ− L

)k+1−i E‖ỹ[ti−1, ti]‖p
λ− L

.

(77)
By linearity of E[·], we sum (77) to obtain an upperbound

on E‖W [0, tM ]‖p:

E‖W [0, tM ]‖p ≤
M−1∑
k=−1

k+1∑
i=0

(
λ ·E[κ]
λ− L

)k+1−i E‖ỹ[ti−1, ti]‖p
λ− L

.

(78)

Applying [9, Appendix, Lemma 1.1] to (54), and taking the
limit as M → ∞ in the summation, theL∞ andL1 norms
can be estimated by

E‖W [0, tM ]‖p ≤
E‖ỹ[ts, tM ]‖p

λ− L

∞∑
k=0

(
λ ·E[κ]
λ− L

)k

(79)

=
E‖ỹ[ts, tM ]‖p
λ(1− E[κ])− L

, (80)

where we have again used the fact that the series sum-
mand is smaller than unity in view of condition (58). Either
E‖ỹ[ts, tM ]‖p = 0 or the ratioE‖e[0, tM ]‖p/E‖ỹ[ts, tM ]‖p
is bounded by an expression that is independent ofM , hence,
(56) remains true witht in lieu of tM for any t ≥ 0.

As theL1 andL∞ norms are upperbounded by the same
expressions, by Theorem 1.6, the error subsystem isLp stable-
in-expectation for anyp ∈ [1,∞].

X. CONCLUSIONS AND FUTURE WORKS

This paper generalized the notion of persistency of exci-
tation of scheduling protocols and developed anLp stability
result suitable for analysis of NCS employing Ethernet and
Ethernet-like wireless and wireline contention protocols. We
introduced the notion of protocol cover times and an abstract
definition of stochastic protocols and demonstrated several
consequences that led to the development of the stability
result. We also presented an extension of the Lyapunov UGES
protocol stability property introduced in [2] that allowed the
effects of packet dropouts on NCS employing contentionless
protocols to be characterized.

The analysis tools and derived bounds compare favorably
with simulations and demonstrate that Ethernet-like protocols
and contentionless protocols are capable of ensuring robust
stability of systems even in the presence of packet dropouts
and collisions.

Several important extensions of these results seem natural
including: extending the results to treat arbitrary random
time-varying delays; consideration of stochastic exogenous
perturbations as well the treatment of a more general class
of renewal processes modeling contention protocols and we
believe that these extensions are important directions for future
research.

APPENDIX I
RIESZ-THORIN INTERPOLATION SYSTEM FORRANDOM

L INEAR OPERATORS

Definition 1.1: Fix a measurable space(S,S), an index set
T and a subsetU ⊂ ST . Then a functionX : Ω → U is
U ∩ST -measurable iffXt : Ω→ S is S-measurable for every
t ∈ T . The mappingX is called anS-valued (random) process
on T with paths inU . In an analogous way, we say thatX is
a randomLp process if‖Xt(ω)‖p is S-measurable for every
t ∈ T and E|Xt| = m, for all t ∈ T . We denote the space
of of randomLp process defined on the index setT that are
jointly S-measurable byLr

p(S, T ). The processes we consider
will always be defined onR≥0 and a commonσ-algebraS.
Henceforth, we writeLr

p and drop the dependence ofX on
ω.



Definition 1.2: We say thatT (λ) is a random linear oper-
ator onLr

p if

T (λ)(αf + βg) = T (λ)αf + T (λ)βg,

for all λ ∈ Λ, all α, β ∈ R and allf, g ∈ Lr
p. We henceforth

drop the dependenceλ with the tacit understanding that the
operators we consider are random.

Lemma 1.3:Let f : Ω × U → C (whereU ⊆ C, open)
be a holomorphic non-constant random function. That is, for
each fixedω, f(ω; ·) is holomorphic and non-consant. Then
E|f | attains its maximal value on any compactK ⊆ U on the
boundary∂K of K.

Proof: Fix ω ∈ Ω, hence, f(ω, ·) : U → C is
holomorphic and therefore continuous, so|f(ω, ·)| will also
be continuous onU . The subsetK ⊂ U is compact and since
|f(ω, ·)| is continuous onK it must attain a maximum and
a minimum value there. Suppose the maximum of|f(ω, ·)| is
attained atz0 in the interior ofK. By definition there will exist
r > 0 such that the setSr =

{
z ∈ C : |z − z0|2 ≤ r2

}
⊂ K.

ConsiderCr the border of the previous set parametrized
counter-clockwise. Sincef(ω, ·) is holomorphic by hypothe-
sis, the Cauchy integral formula implies that

f(ω, z0) =
1

2πi

∮
C

f(ω, z)
z − z0

dz (81)

a canonical parametrization ofCr is z = z0 + rei θ
r , for θ ∈

[0, 2πr] and, hence,

f(ω, z0) =
1

2πr

∫ 2πr

0

f(ω, z0 + rei θ
r )dθ. (82)

Taking modulus on both sides and estimating the contour
integral yields

|f(ω, z0)| ≤ max
z∈Cr

|f(ω, z)|

but since|f(ω, z0)| is a maximum, the we must have that

|f(ω, z0)| = max
z∈Cr

|f(ω, z)|.

In particular, this holds for anyr′ ≤ r and, hence,|f(ω, ·)|
is constant in the interior ofSr. By the Identity Theorem,
f(ω, ·) is constant throughoutU . Thus if the maximum of
|f(ω, ·)| is attained in the interior ofK, thenf(ω, ·) is constant
but this is a contradiction and we must have that the maximum
is attained at∂K. Since the maximum of|f(ω, ·)| is attained
at ∂K for eachω ∈ Ω, we have that the maximum ofE|f | is
attained at∂K.

Lemma 1.4 (Three lines lemma):Suppose thatf : Ω × C
is holomorphic and non-consant in the stripS = {z : a ≤
<{z} ≤ b} and bounded for eachω and

Ma = E sup |f(a+ it)| andMb = E sup |f(a+ it)|

then
E|f(x+ iy)| ≤M

b−x
b−a

a M
x−a
b−a .

b

Proof: We consider

fε(x+ iy) = exp(ε(x+ iy)2)f(x+ iy)M
x+iy−b

b−a
a M

a−(x+iy)
b−a

b

for ε > 0. This function satisfies

E|fε(a+ iy)| ≤ exp(εa2) andE|fε(b+ iy)| ≤ exp(εb2)

and
lim

y→±∞
E sup

a≤x≤b
|fε(x+ iy)| = 0.

By application of Lemma 1.3 on sufficiently large rectangles,
we can conclude that for eachz ∈ S

E|fε(z)| ≤ exp(εa2) ∨ exp(εb2).

Letting ε→ 0+ competes the proof.
Lemma 1.5:Let p0, p1 and p, p0 < p < p1 be

given and consider the simple random functions =∑
k

∑
j αk,jak,jχEk,j

χSk
, with αk,j ∈ C, |αk,j | = 1, ak,j >

0, for each k, {Ek,j} is a pairwise disjoint collection of
measurable sets, each of finite measure and{Sk} ∈ Ω pairwise
disjoint with

∑
P {Sk} = 1. Suppose thatE‖s‖p = 1. Let

1
pz

=
1− z
p0

+
z

p1

and define

sz =
∑

k

∑
j

αk,ja
p/pz

k,j χEk,j
χSk

.

This family satisfies

E‖sz‖p<{z} = 1, 0 < <{z} < 1.

The proof is trivial since

E
∫
|sz|p<{z}dz =

∑
k

∑
j

ap
k,jµ(Ek,j)P {Sk} = E‖s‖p = 1.

Theorem 1.6:Let pj , qj , j = 0, 1 be exponents in the range
[1,∞] and suppose thatp0 < p1. If T is a random linear
operator defined (at least) on andindependent ofa simple
random processX : Ω× t→ Rn in Lr

1 that satisfies

E‖TX‖qj ≤MjE‖X‖pj .

If we definept andqt by

1
pt

=
1− t
p0

+
t

p1

and
1
qt

=
1− t
q0

+
t

q1

we will have that T extends to a random bounded-in-
expectation linear operator fromLpt

to Lqt
:

E‖TX‖qt
≤MtE‖X‖pt

.

The operator norm,Mt, satisfiesMt ≤M1−t
0 M t

1.
Proof: Fix p = pt0 , 0 < t0 < 1, fix ω ∈ Ω and consider

simple functionss(ω, ·), s′ on Rn which satisfyE‖s‖pt0
= 1

and ‖s′‖q′t0 = 1. Let sz(ω, ·) and s′z be families of simple
functions constructed as in Lemma 1.5, wheresz(ω, ·) is
constructed usingpj , j = 0, 1 and s′z is constructed using
the exponentsq′j , j = 0, 1. By hypothesis,

φ(ω, z) =
∫

Rn

s′z(x)Tsz(ω, x)dµ(x)



is a non-constant analytic function ofz for each fixedω ∈ Ω.
By Lemma 1.5 and the assumption onT ,

E sup
y∈R
|φ(j + iy)| ≤Mj , j = 0, 1.

By Lemma 1.4, we can conclude that

E
∣∣∣∣∫ s′Ts(ω, ·)dµ

∣∣∣∣ ≤M1−t0
0 M t0

1 .

Since,s′ is an arbitrary simple function with unit norm inLq′ ,
we can conclude that

E‖Ts‖qt0
≤M1−t0

0 M t0
1 .

As simple functions (on the product measure space) are dense
in Lpt

, T can be extended to all ofLr
p and is bounded in

norm.

APPENDIX II
PROBABILITY AND STOCHASTIC PROCESSES

Proposition 2.1:Suppose that{Xi}Ni=1 is a set ofN iid
random variables whereN is assumed to be a random variable
independent of eachX. Let SN be given by

SN =
N∑

i=1

Xi, (83)

that is,SN is the random sum of iid random variables. Then
the mgf ofSN is given by evaluating the pgf ofN at the mgf
of X:

E[exp(sSN )] = ψN (φ(s)), (84)

where ψN and φ denote the pgf ofN and mgf of X,
respectively.

Proof: The mgf ofSn can be evaluated using conditional
expectation as follows:

E[exp(sSn)|N = n] = E[exp(s(X1 + · · ·+Xn)) = φ(s)n,

hence,E[exp(sSN )|N ] = φ(s)N . Finally,

E[exp(sSN )] = E[E[exp(sSN )|N ]]

= E[φ(s)N ] = E[zN ]z=φ(s) = ψN (φ(s)).

Theorem 2.2 (Optional Sampling):Let M be a martingale
on some countable index setT with filtration F , and consider
two optional timesσ andτ , whereτ is bounded. ThenMτ is
integrable, and

Mσ∧τ = E[Mτ |Fσ] a.s.

See e.g., [21, Theorem 6.12].
Proposition 2.3:Suppose that{Ti}si=1 is a set of s iid

random variables. LetSs be given by

Ss =
s∑

i=1

Ti. (85)

Let m = E[T ] and defineMs by Ms = Ss − sm. It is clear
thatM is a martingale since

E[Mn+1|Fn] = E[Sn+1 − (n+ 1)m|Fn]
= E[Sn+1|Fn]− (n+ 1)m
= m+ E[Sn|Fn]− (n+ 1)m
= Sn − nm = Mn,

whereFn is the obvious filtration.
Suppose thath is defined by

h = inf{t ≥ 0 : St ≥ S′}.

It is clear thath is a stopping time forM . Then

E[h]E[T ] = E[Sh].

Proof: Fix N > 1 and by the the optional sampling
theorem, Theorem 2.2, we have

E[Sh∧N − (h ∧N)m] = 0
⇒ E[Sh∧N ] = mE[(h ∧N)]
⇒ S′/m ≥ E[(h ∧N)]
⇒ S′ ≥ mE[(h ∧N)].

SinceE[(h∧N)] is uniformly bounded byS′/m, we letN →
∞ to yield limN→∞E[(h ∧N)] = E[h] = S′/m and, hence
E[h]m = E[h]E[T ] = E[Sh].

APPENDIX III
SMALL -GAIN ANALYSIS

The following result is a stochastic analogue of [20, Theo-
rem 5.6] and is proved in much the same way.

Theorem 3.1:Suppose thatH1 : Lr
p([0, a],Rn) →

Lr
p([0, a],Rm) andH2 : Lr

p([0, a],Rm) → Lr
p([0, a],Rn) are

random operators that satisfy

E‖y1‖p ≤ γ1E‖e1‖p + β1, e1 ∈ Lr
p([0, a],Rn) (86)

E‖y2‖p ≤ γ2E‖e2‖p + β2, e2 ∈ Lr
p([0, a],Rm) (87)

for each a ∈ [0,∞). Suppose further that the system is
well defined in the sense that for each pair of inputsu1 ∈
Lr

p([0, a],Rn), u2 ∈ Lr
p([0, a],Rm), there exist unique outputs

e1, y2 ∈ Lr
p([0, a],Rn) and e2, y1 ∈ Lr

p([0, a],Rm). Define
u = (u1, u2), y = (y1, y2) and e = (e1, e2). Under the
preceding assumptions, the feedback connection (when viewed
as a mapping fromu to y) is finite expected-gainLp stable if
γ1γ2 < 1.

Proof: Assuming existence of solutions on the interval
[0, a), we write

e1 = u1 − (H2e2), e2 = u2 + (H1e1).

Then,

E‖e1‖p ≤ E‖u1‖p + E‖(H2e2)‖p ≤ E‖u1‖p + γ2E‖e2‖p + β2

≤ E‖u1‖p + γ2(E‖u2‖p + γ1E‖e1‖p + β1) + β2

= γ1γ2E‖e1‖p + (E‖u1‖p + γ2E‖u2‖p + β2 + γ2β1).

Sinceγ1γ2 < 1,

E‖e1‖p ≤
1

1− γ1γ2
(E‖u1‖p + γ2E‖u2‖p + β2 + γ2β1)



for eacha ∈ [0,∞). Similarly,

E‖e2‖p ≤
1

1− γ1γ2
(E‖u2‖p + γ1E‖u1‖p + β1 + γ1β2)

for eacha ∈ [0,∞). The proof is complete sinceE‖e‖p ≤
E‖e1‖p + E‖e2‖p.

REFERENCES
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