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Abstract

The paper studies semi-global practical input-to-state stability (SGP-
ISS) of a parameterized family of discrete-time systems that may arise
when an approximate discrete-time model of a sampled-data system
with disturbances is used for controller design. It is shown under ap-
propriate conditions that if the solutions of the time varying family of
discrete-time systems with disturbances converge uniformly on com-
pact time intervals to the solutions of the average family of discrete-
time systems, then ISS of the average family of systems implies SGP-
ISS of the original family of systems. A trajectory based approach is
utilized to establish the main result.

1 Introduction

Sampled-data systems currently attract a lot of attention in the literature
(see [1, 2, 4]). The presence of a sampler in the closed loop makes sampled-
data systems time-varying even if the plant and controller are time invariant.
This complicates the analysis of sampled-data systems, especially when the
plant is nonlinear.

Recently, a prescriptive framework for stabilization of sampled-data non-
linear systems via their approximate discrete-time models was proposed
in [9]. Within the above framework, one typically needs to verify uniform
stability properties of a family of approximate discrete-time models that are
parameterized with a sampling period. For instance, it was shown in [9] that
if a family of approximate discrete-time models is uniformly globally asymp-
totically stable and a certain consistency condition holds, then the family of
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exact discrete-time models is semi-globally practically stable in the sampling
period. Semi-global practical stability of the exact discrete-time models im-
plies under weak conditions the same property for the actual sampled-data
system, see [10]. Similar results were presented in [8] to provide conditions
for semi-global practical input-to-state stability of sampled-data nonlinear
systems.

The main goal of this paper is to present an averaging technique that
can be used to conclude semi-global ISS of parameterized families of discrete
time systems. Our results are fully consistent with the framework in [8] and
they are a useful addition to the toolbox for analysis and design of sampled-
data nonlinear systems.

Averaging methods for analysis of difference equations that depend on
a small parameter have a long history. Most averaging results in the lit-
erature focus on stability properties of averaged and original systems, as
presented in [3,14]. Solo [14] proves that if the linearization of the averaged
system is exponentially stable, then there exists a unique solution of the
original system in a neighborhood of the equilibrium point of the averaged
system. Moreover, if the equilibrium points of both systems are identi-
cal, then the original system is locally exponentially stable. We note that
these results all focus on local exponential stability of non-parameterized
discrete-time systems [5, 7, 16]. Such results are useful in situations when
the exact discrete-time model of the sampled-data system is known. We are
not aware of discrete-time averaging results for systems with disturbances,
which is the main focus of our paper. Moreover, our results can be used to-
gether with [8] to analyze ISS of sampled-data nonlinear systems for which
we can not compute the exact discrete-time model, and we need to use an
approximate model for stability analysis or controller design.

Our results are closely related to the recent averaging techniques for
continuous-time systems with disturbances given in [11] where ISS was in-
vestigated. In particular, we provide results similar to [11] for parameter-
ized discrete-time systems. Using the notions of strong and weak averages
that were introduced in [11], we present conditions under which ISS of the
strong average implies SGP-ISS of the family of time-varying parameterized
discrete-time systems. Using the notion of weak averages, we prove similar
results where we conclude an ISS like property that requires derivatives of
disturbances to be bounded.

The paper is organized as follows. Section 2 contains mathematical pre-
liminaries. We present the main results in Sections 3 and 4, and an appli-
cation of main results in Section 5. A summary is given in the last section.
Technique lemmas are proved in the Appendix.



2 Preliminaries

A function γ : R≥0 → R≥0 is of class-G if it is zero at zero, continuous
and nondecreasing. A function ϕ : R≥0 × R≥0 → R≥0 is of class-GG if
it is zero at zero, continuous and nondecreasing in both arguments. A
function β : R≥0 × R≥0 → R≥0 is of class of KL if it is continuous and
nondecreasing from zero in its first argument, and converging to zero in its
second argument, and a continuous function α : R≥0 → R≥0 is of class of K
if it is of class-G and strictly increasing.

We often use sampled versions of a given continuous-time function. Given
a function w : R≥0 → Rn and a positive sampling period τ > 0, we
define its sampled version as wτ := {w(kτ) : k ∈ N} but we omit the
subscript τ for notational simplicity. Then, we define its infinity norm as
‖w‖∞ := maxk≥0 |w(kτ)| and we write w ∈ L∞ if ‖w‖∞ ≤ r < ∞.

Consider a family of time varying discrete-time systems parameterized
by the sampling time interval τ > 0:

∆x

∆k
= Fτ (kτ, x, w) ∆k = τ, (1)

where x ∈ Rn is the state, ∆x := x(kτ + ∆k)− x(kτ), k ≥ 0. Suppose that
the function Fτ (s, x, w) is locally Lipschitz in x and w uniformly in small τ
and s ≥ 0 and Fτ (s, 0, 0) is uniformly bounded in small τ and s ≥ 0.

We also investigate the family of parameterized discrete-time systems
that depends on a small parameter ε > 0:

∆x

∆k
= Fτ

(
kτ

ε
, x, w

)
∆k = τ. (2)

Remark 1 Our results are strongly motivated by the results in [8, 9]. In-
deed, our results can be used together with [8] to design controllers achieving
ISS for nonlinear sampled-data systems for which the exact discrete-time
model can not be analytically computed and we have to use an approximate
discrete-time model for controller design and stability analysis. More pre-
cisely, consider a nonlinear sampled-data plant with disturbances

ẋ = f(t, x, u, w) , (3)

where we assume that u(t) = u(kτ),∀t ∈ [kτ, (k + 1)τ) and for simplicity
also w(t) = w(kτ),∀t ∈ [kτ, (k + 1)τ). τ > 0 is the sampling period. If
we want to carry out a controller design in discrete-time then we need to
compute the (exact) discrete-time model of the plant:

x(k + 1) = F e
τ (kτ, x(k), u(k), w(k)) , (4)

which is obtained by integrating (3) over one sampling interval [kτ, (k +1)τ ]
from the initial time kτ and the initial state x(k) := x(kτ) with a constant



control input u(k) := u(kτ) and disturbance input w(k) := w(kτ). However,
since (3) is nonlinear, it is typically not possible to analytically compute the
exact discrete-time model (4) for controller design. Instead, an approximate
discrete-time model of the plant may still be obtained and used for controller
design:

x(k + 1) = F a
τ (kτ, x(k), u(k), w(k)) . (5)

In this case, it is assumed that the sampling period τ is a design parameter
which can be arbitrarily assigned. A natural question is if we design a family
of controllers

u(k) = uτ (kτ, x(k)) , (6)

to stabilize in an appropriate sense the family of approximate discrete-time
models (5), would the same family of controller stabilize (maybe in some
weaker sense) the family of exact discrete-time models (4). It was shown
in [8] this is not always true and in particular, it is required that1:

1. The family F a
τ is consistent in an appropriate sense with F e

τ ;

2. The family of control laws uτ is bounded on compact sets uniformly in
small τ .

3. The family (5), (6) of the approximate closed-loop models is ISS;

The first condition is adapted from the numerical analysis literature and it
holds for most commonly used approximations, such as Runge-Kutta meth-
ods. The second condition is easily checked once the control law (6) is ob-
tained. The last condition is typically the hardest to check and it needs to be
done on a case-by-case basis. This necessitates the development of various
stability analysis tools for parameterized families of discrete-time systems
(5), (6) that are useful in different situations. The main purpose of this
paper is to develop several such stability analysis tools that are based on
the averaging theory. In particular, our results are useful in this context
whenever the parameterized family of discrete-time systems (5), (6) can be
represented in the form (2) that is amenable to averaging analysis. ¤

Remark 2 Define the function kτ = εζτ , using which we map the countable
set {k0τ, k1τ, k2τ, · · · } into a set {ζ0τ, ζ1τ, ζ2τ, · · · } with k0τ = εζ0τ , kiτ =
k0τ + i∆k and ζiτ = ζ0τ + i∆ζ, for i = 1, 2, · · · . Under the mapping, the
corresponding family of systems (2) could be written as

∆x

∆ζ
= εFτ (ζτ, x, w) ∆ζ =

τ

ε
, (7)

with the fixed initial time k0τ = εζ0τ . Then, if (2) satisfies
1Results in [8] are given for time invariant systems but these results can easily be

extended to cover time-varying systems, see [6].



|x(kτ)| ≤ β(|x0|, (k − k0)τ), (8)

where x0 = x(k0τ), then the family of systems (7) satisfies

|x(ζτ)| ≤ β(|x0|, ε(ζ − ζ0)τ) (9)

with x0 = x(εζ0τ).

¤
Next we adapt the notions of strong and weak averages in [11] to families

of discrete-time systems (2) so that we can obtain stability results that are
fully consistent with [8, 9].

Definition 1 (weak average) A locally Lipschitz function Fwa
τ is said to be

the weak average of Fτ if there exists βwa ∈ KL and T ∗ > 0 such that for
all T > T ∗, there exists τ∗ = τ∗(T ), such that ∀τ ∈ (0, τ∗) and Nτ ≥ T , the
following holds for all x ∈ Rn, w ∈ Rm

∣∣∣∣∣F
wa
τ (x,w)− 1

Nτ

k+N∑

s=k

Fτ (sτ, x, w)∆s

∣∣∣∣∣
≤ βwa(max{|x|, |w|, 1}, Nτ). (10)

The weak average of the parameterized family of discrete-time systems (2)
is then defined as

∆y

∆k
= Fwa

τ (y, w) ∆k = τ. (11)

¤
Remark 3 Note the above definition of weak average depends on sampling
intervals τ , the reason is as the approximation of continuous systems, the
average functions of parameterized family of discrete-time systems could be
rewritten as

∣∣∣∣∣F
wa
τ (x, w)− 1

Nτ

k+N∑

s=k

Fτ (sτ, x, w)∆s

∣∣∣∣∣ (12)

≤
∣∣∣∣Fwa

τ (x,w)− 1
T

∫ t+T

t
Fτ (h, x, w)dh

∣∣∣∣

+

∣∣∣∣∣
1
T

∫ t+T

t
Fτ (h, x, w)dh− 1

Nτ

k+N∑

s=k

Fτ (sτ, x, w)∆s

∣∣∣∣∣
≤ β̃wa(max{|x|, |w|, 1}, T )

+
1
T

∣∣∣∣∣
∫ t+T

t
Fτ (h, x, w)dh−

k+N∑

s=k

Fτ (sτ, x, w)τ

∣∣∣∣∣ ,



where β̃(·) is the definition of weak average for continuous systems (see [11]).
When τ is sufficiently small such that we can bound the error between sum
with integral with a function γ(|x|, |w|) of class-GG, and T is sufficiently
large such that 1

T could be bounded by 2
T+1 , then the above inequality can be

rewritten as

∣∣∣∣∣Fav(x,w)− 1
Nτ

k+N∑

s=k

Fτ (sτ, x, w)∆s

∣∣∣∣∣

≤ β̃wa(max{|x|, |w|, 1}, T ) +
2

T + 1
γ(|x|, |w|)

:= βwa(max{|x|, |w|, 1}, Nτ). (13)

For general periodic systems, sampling intervals τ is independent of T , but
for the aim of generalization, τ∗ = τ∗(T ) is used.

¤

Definition 2 (strong average) A locally Lipschitz function F sa
τ is said to be

the strong average of Fτ if there exists βsa ∈ KL and and T ∗ > 0 such that
for all T > T ∗, there exists τ∗ = τ∗(T ), such that ∀τ ∈ (0, τ∗) and Nτ ≥ T ,
the following holds for all x ∈ Rn, w ∈ L∞

∣∣∣∣∣
1

Nτ

k+N∑

s=k

{F sa
τ (x,w(sτ))− Fτ (sτ, x, w(sτ))}∆s

∣∣∣∣∣
≤ βsa(max{|x|, ‖w‖∞, 1}, Nτ). (14)

The strong average of the parameterized family of discrete-time systems (2)
is then defined as

∆y

∆k
= F sa

τ (y, w) ∆k = τ. (15)

¤
Note that the main difference between the weak and strong averages is

that in the definition of weak average the disturbance is kept constant in
(10) whereas in the definition of strong average the inequality (14) needs to
hold for all disturbances w ∈ L∞. In case when w ≡ 0 both definitions of
average coincide.

It was shown in [11] for continuous-time systems that strong averages
exist for a smaller class of systems but using them we can state stronger
stability results. On the other hand, weak averages exist for a larger class of
systems but using them we can state weaker stability results. Nevertheless,
weak averages are found useful in cases when disturbances are bounded



and have bounded derivatives and one such situation arises when one deals
with ISS of cascaded systems. Hence, both notions of the weak and strong
averages are useful in different situations and we investigate both.

A complete characterization of strong averages for continuous-time peri-
odic systems was given in [11]. It can be shown in a similar manner to [11]
that any Fτ (s, x, w) that is periodic in s has a strong average if and only if
the function Fτ has the structure as follows

Fτ (kτ, x, w) = F 1
τ (kτ, x) + F 2

τ (x,w) (16)

and there exists the average for F 1
τ (kτ, x) according to either of our defini-

tions (they coincide since F 1
τ does not depend on the disturbance). Then,

F sa
τ (x, w) := Fav(x) + F 2

τ (x,w) satisfies our definition of the strong average
for Fτ .

The following example shows that for some systems, the weak average
may exist whereas the strong average does not. The example is adapted
from [11]. Consider the system

∆x

∆k
= −0.5x3 + cos

(
kτ

ε

)
x3w (17)

where x,w ∈ R. The weak average of −0.5x3 + cos(kτ)x3w is

∆y

∆k
= −0.5y3 . (18)

Indeed, setting s̃ = sτ and T := τN we can write for sufficiently small τ
that

∣∣∣∣∣
1

Nτ

k+N∑

s=k

cos(sτ)x3w · τ
∣∣∣∣∣ =

∣∣∣∣∣
1

Nτ

kτ+Nτ∑

s̃=kτ

cos(s̃)x3w ·∆s̃

∣∣∣∣∣

≤
∣∣∣∣
x3w

T

∫ kτ+T

kτ
cos(s̃)ds̃

∣∣∣∣

≤ |x3w|π
T

≤ 2(max{|x|, |w|, 1})4π
T + 1

(19)

where the last inequality holds when T ≥ 1 and we can let βwa(s, t) :=
(2max{|x|,|w|,1})4

T+1 .
Now, we will show that there does not exist strong average for systems

(17). Pick an arbitrary x̄ 6= 0 and note that, for any given function F sa
τ (x,w),

we have two possibilities

a. either F sa
τ (x̄, w) + 0.5x̄3 = 0, ∀w, or

b. ∃w̄ such that F sa
τ (x̄, w̄) + 0.5x̄3 6= 0.



Suppose that F sa
τ (x,w) is the strong average for −0.5x3 + cos(kτ)x3w and

case a holds. Let w(kτ) = cos(kτ), s̃ = sτ , and NCτ := Cπ, C ∈ N,
similarly like (19), we have

∣∣∣∣∣
1

NCτ

k+N∑

s=k

x̄3cos2(sτ)∆s

∣∣∣∣∣ =

∣∣∣∣∣
1

NCτ

kτ+NCτ∑

s̃=kτ

x̄3cos2(s̃)∆s̃

∣∣∣∣∣

≤
∣∣∣∣

1
Cπ

∫ kτ+Cπ

kτ
x̄3cos2(s̃)ds̃

∣∣∣∣

=
1
2
|x̄3| > 0 ∀C > 0, (20)

which does not converge to zero as C approaches infinity (Ncτ →∞). Sup-
pose now that F sa

τ (x,w) is the strong average for −0.5x3 + cos(kτ)x3w and
case b holds. Pick w(kτ) = w̄, set NCτ := 2Cπ, one gets

∣∣∣∣∣
1

NCτ

k+N∑

s=k

(F sa
τ (x̄, w̄) + 0.5x̄3 − x̄3w̄ cos(sτ))∆s

∣∣∣∣∣

=

∣∣∣∣∣
1

NCτ

kτ+NCτ∑

s̃=kτ

(F sa
τ (x̄, w̄) + 0.5x̄3 − x̄3w̄ cos(s̃))∆s̃

∣∣∣∣∣

≤
∣∣∣∣

1
2Cπ

∫ kτ+2Cπ

kτ
(F sa

τ (x̄, w̄) + 0.5x̄3 − x̄3w̄ cos(s̃))ds̃

∣∣∣∣
= |0.5x̄3 + F sa

τ (x̄, w̄)| > 0 ∀C > 0. (21)

The left hand side in the above expression is larger than zero for all C ∈ N
and it does not converge to zero as C approaches infinity (NCτ → ∞).
Hence, there does not exist a strong average for systems (17). ¤

3 Closeness of solutions

Results in this section are needed for the proofs of our main results that
are given in the next section. Moreover, results on closeness of solutions on
compact time intervals between the weak or strong average and the original
system are of interest in their own right since they characterize precisely
the approximating properties of the averages. Note also that results in
this section are derived under weaker conditions than results in the next
section and, in particular, we do not require the strong/weak average to
be ISS. Instead, we use an appropriate notion of forward completeness that
is much weaker than the ISS property. We need the following definitions
of equi-boundedness, equi-uniformly Lipschitz and forward completeness for
disturbance w.



Definition 3 Let W be a set of locally bounded functions, the set W is
equi-bounded if there exists a strictly positive real number r such that, for
all w ∈ W, ‖w‖∞ ≤ r. ¤

Note that sampling a bounded continuous-time function w(·) at any
sampling period yields its sampled version wτ = w(kτ) that is still bounded.

Definition 4 Let W be a set of locally bounded functions, the set W is
equi-uniformly Lipschitz if there exists a strictly positive real number ν and
τ∗ > 0 such that, for all τ ∈ (0, τ∗), w ∈ W,

∥∥∆w
∆k

∥∥
∞ ≤ ν < ∞. ¤

Note that if we sample a continuous-time function w(·) then its sampled ver-
sion wτ = w(kτ) will be equi-uniformly Lipschitz according to our definition
if ẇ(·) is bounded.

Definition 5 Let W be a set of locally bounded functions, the system

∆y

∆k
= Fτ (y, w) y(k0τ) = y0,∆k = τ (22)

is said to be W-forward complete if for each r > 0 and T > 0 there exists
R ≥ r and τ∗ > 0 such that, for all τ ∈ (0, τ∗), |y0| ≤ r and w ∈ W, the
solutions of (22) are contained in a closed ball of radius R for all (k−k0)τ ∈
[0, T ].

¤
The following Lemma 1 and Lemma 2 give conditions under which the

solution of the family of systems (2) are close to the solutions of its weak or
strong average on compact time intervals.

Lemma 1 (Closeness to weak average) Suppose the family of parameter-
ized functions Fτ (kτ, x, w) is locally Lipschitz in (x,w) uniformly in kτ ,
Fτ (kτ, 0, 0) is bounded, and the set W is equi-bounded and equi-uniformly
Lipschitz, the weak average of the family of discrete-time systems (2) ex-
ists and is W-forward complete. Then, for each triple (r, δ, T ) of strictly
positive real numbers there exists a triple of (τ∗, ε∗, µ) of strictly positive
numbers such that, for each τ ∈ (0, τ∗) and for all ε ∈ (0, ε∗) so that, for
all k0τ ≥ 0, |y0| ≤ r, w ∈ W, and for each x0 such that |x0 − y0| ≤ µ,
each solution x(kτ, k0, x0, w) of the family of systems (2) and the solution
y((k − k0)τ, y0, w) of the weak average satisfy

|x(kτ, k0τ, x0, w)− y((k − k0)τ, y0, w)| ≤ δ ∀k : (k − k0)τ ∈ [0, T ]. (23)

Proof. See Appendix. ¤



Lemma 2 (Closeness to strong average) Suppose the family of parame-
terized functions Fτ (kτ, x, w) is locally lipschitz in (x,w) uniformly in kτ ,
Fτ (kτ, 0, 0) is bounded, and the set W is equi-bounded, the strong average
of the family of discrete-time systems (2) exists and is W-forward complete.
Then, for each triple (r, δ, T ) of the strictly positive real numbers there ex-
ists a triple (τ∗, ε∗, µ) of the strictly positive numbers such that for each
τ ∈ (0, τ∗) and for all ε ∈ (0, ε∗) so that, for all k0τ ≥ 0, |y0| ≤ r, w ∈ W
and for each x0 such that |x0 − y0| ≤ µ, each solution x(kτ, k0, x0, w) of
the family of systems (2) and the solution y((k − k0)τ, y0, w) of the strong
average satisfies

|x(kτ, k0τ, x0, w)− y((k − k0)τ, y0, w)| ≤ δ ∀k : (k − k0)τ ∈ [0, T ]. (24)

Proof. See Appendix. ¤

4 Input-to-State stability analysis

In this section, we present the main results of our paper (Theorems 2 and
3) where we present conditions under which ISS of weak or strong average
implies an appropriate SGP-ISS property for the actual system. We also
prove a preliminary result that shows for a given disturbance set W, that
the family of discrete-time systems are semi-globally practically ISS on the
setW on finite time intervals, if and only if they are semi-globally practically
ISS on the set W. Precise definitions are given below:

Definition 6 The parameterized family of discrete-time systems (2) is said
to be semiglobally practically ISS on the set W, if for each pair of (δ, r) with
r > δ ≥ 0, there exist positive real numbers τ∗ and ε∗ such that for each
τ ∈ (0, τ∗) and for all ε ∈ (0, ε∗), k0τ ≥ 0, w ∈ W with ||w||∞ ≤ r, and
x(k0τ) ∈ Rn with |x(k0τ)| ≤ r, we have

|x(kτ)| ≤ max{β(|x(k0τ)|, (k − k0)τ), γ(‖w‖∞)}+ δ ∀(k − k0)τ ≥ 0. (25)

¤

Definition 7 The parameterized family of discrete-time systems (2) is said
to be semiglobally practically ISS on the set W on finite time intervals, if
for each triple of (r, δ, T ), with r > δ ≥ 0 and T > 0, there exist positive
real numbers τ∗ and ε∗ such that for each τ ∈ (0, τ∗) and for all ε ∈ (0, ε∗),
k0τ ≥ 0, w ∈ W with ||w||∞ ≤ r, and x(k0τ) ∈ Rn with |x(k0τ)| ≤ r, we
have

|x(kτ)| ≤ max{β(|x(k0τ)|, (k−k0)τ), γ(‖w‖∞)}+δ ∀(k−k0)τ ∈ [0, T ]. (26)



¤

A trajectory approach (also taken in [15]) is utilized to prove the follow-
ing preliminary result.

Theorem 1 The parameterized family of discrete-time systems (2) is semi-
globally practically ISS on the set W on finite time intervals if and only if
it is semi-globally practically ISS on the set W.

¤
Proof. The sufficiency is straightforward. For considering the necessity,

note (k − k0)τ ∈ [0, T ], take arbitrary ( δ
2 , r), and let T > 0 be large enough

such that for all β(max{r, γ(r) + δ}, sτ) ≤ δ
2 , ∀sτ ∈ [T,∞). From this,

estimate the trajectory of the x(kτ) step by step and finish the proof.
A For all x(k0τ) ∈ Rn with |x(k0τ)| ≤ max{r, γ(r) + δ}, w ∈ W with

‖w‖∞ ≤ r and sτ ∈ [T,∞)

max{β(|x(k0τ)|, sτ), γ(‖w‖∞)}+
δ

2

≤ max{β(max{r, γ(r) + δ}, sτ), γ(‖w‖∞)}+
δ

2

≤ max
{

δ

2
, γ(‖w‖∞)

}
+

δ

2
≤ γ(‖w‖∞) + δ (27)

B From the assumption that the family of systems (2) is semi-globally
ISS on finite time intervals, for the particular values 2T , δ

2 , max{r, γ(r) +
δ} > 0, we get a τ∗ > 0 and a ε∗ > 0 such that for each τ ∈ (0, τ∗) and for
all ε ∈ (0, ε∗) and x(k0τ) ∈ Rn with |x(k0τ)| ≤ max{r, γ(r) + δ}, |x(kτ)| ≤
max{β(|x(k0τ)|, (k − k0)τ), γ(‖w‖∞)} + δ

2 , ∀(k − k0)τ ∈ [0, 2T ]. Together
with (27) it follows that |x(kτ)| ≤ γ(‖w‖∞) + δ, ∀(k − k0)τ ∈ [T, 2T ], and
in particular one gets that |x(T )| ≤ γ(r) + δ.

C With initial value x̄(k̄0τ) = x(T ), repeated application of A and B,
for |x̄(k̄0τ)| ≤ max{r, γ(r)+δ} and sτ ∈ [k̄0τ, k̄τ0+T ], we have max{β(‖x̄(k̄0τ)|, sτ),
γ(‖w‖∞)}+ δ

2 ≤ γ(‖w‖∞)+δ, and |x̄(kτ)| ≤ max{β(|x̄(k̄0τ)|, sτ), γ(‖w‖∞)}+
δ
2 , ∀(k − k̄0)τ ∈ [0, 2T ]. It follows that |x(kτ)| ≤ γ(‖w‖∞) + δ, ∀(k −
k0)τ ∈ [T, 3T ] and repeating the process yields that, for all k0τ ≥ 0 and
x(k0τ) ∈ Rn with |x(k0τ)| ≤ max{r, γ(r) + δ}, |x(kτ)| ≤ γ(‖w‖∞) + δ hold
∀(k − k0)τ ∈ [T,∞). ¤

Now, with the closeness of solutions on compact time interval we assume
that the family of strong or weak averages is ISS, and we show the ISS
properties for the actual parameterized discrete-time systems.



Theorem 2 Suppose the parameterized family of discrete-time systems (2)
has a family of weak average systems (11), if the family of weak average
systems is globally ISS on the set W, W ⊂ L∞ is equi-bounded and equi-
uniformly Lipschitz, then the family of discrete-time systems (2) is semi-
globally practically ISS on the set W.

¤
Proof. From Theorem 1, it is just necessary to show that the family of

systems (2) is semiglobally practically ISS on finite time interval on the set
W. Taking arbitrary triple (r, δ, T ), let δ̃ > 0 and T > 0 satisfy

max
d∈[0,r],(k−k0)τ∈[0,T ]

[
β(d + δ̃, (k − k0)τ)− β(d, (k − k0)τ)

]
+ δ̃ ≤ δ. (28)

Using the result of Lemma 1, for some sufficiently small numbers τ∗ > 0
and ε∗ > 0, for each τ ∈ (0, τ∗) and for all ε ∈ (0, ε∗), there exits δ̃ ≥ 0 and
(k − k0)τ ∈ [0, T ], such that the solution x(kτ, k0τ, x0, w) of the family of
systems (2) and the solution of the family of weak average systems satisfy

|x(kτ, k0τ, x0, w)− y((k − k0)τ, y0, w)| ≤ δ̃. (29)

Using the simplified notation x(kτ) and y(kτ) to replace x(kτ, k0τ, x0, w)
and y((k−k0)τ, y0, w), the global ISS of the family of weak average systems
on the set W guarantee that for any y(k0τ) ∈ Rn and w ∈ W, we have

|y(kτ)| ≤ max{β(|y(k0τ)|, (k − k0)τ), γ(‖w‖∞)} ∀(k − k0)τ ≥ 0 (30)

Note that for any y(kτ) and x(kτ) satisfy the inequality (29), |x(k0τ) −
y(k0τ)| ≤ δ̃ holds. Using (28), (29) and (30), one gets for all (k − k0)τ ∈
[0, T ],

|x(kτ)| ≤ |y(kτ)|+ |x(kτ)− y(kτ)| (31)
≤ max{β(|y(k0τ)|, (k − k0)τ), γ(‖w‖∞)}+ δ̃

≤ max{β(|x(k0τ)|+ δ̃, (k − k0)τ), γ(‖w‖∞)}+ δ̃

≤ max{β(|x(k0τ)|, (k − k0)τ), γ(‖w‖∞)}+ δ.

The result then follows by applying Theorem 1. ¤
The corresponding results for strong average are:

Theorem 3 Suppose the parameterized family of discrete-time systems (2)
has a family of strong average systems (15), if the family of strong average
systems is globally ISS on the set W, W ⊂ L∞ is equi-bounded, then the
family of discrete-time systems (2) is semi-globally practically ISS on the
set W. ¤



Proof. Same as the Theorem 2.
We emphasize that the conclusion of Theorem 2 that exploits weak av-

erages holds only for sets of disturbances W that are equi-bounded and
equi-uniformly Lipschitz. On the other hand, the conclusion of Theorem 3
that involves strong averages holds on larger sets of disturbances that are
equi-bounded.

Our results can be directly applied to a disturbance free case:

∆x

∆k
= Fτ

(
kτ

ε
, x

)
∆k = τ. (32)

The following corollary is the special cases of Theorem 2 and 3 and the result
is obvious. Note there exists the average for Fτ according to either of our
definition of strong and weak average, as they coincide in the disturbance
free case.

Corollary 1 Suppose the parameterized family of discrete-time systems (32)
has a family of average systems ∆y

∆k = F av
τ (y) where ∆k = τ , if the family of

average systems is globally stable, then the family of discrete-time systems
(32) is semi-globally practically stable.

¤

5 Application in an oscillator system with a peri-
odically time-varying mass

To illustrate the applicability of our results, we address stabilization for
the single-degree-freedom oscillator system with a periodically time-varying
mass, which is an important model that arise in the application of biome-
chanics, robotics, conveyor systems, fluid structure interaction problems and
many other situations [13]. We use the nonlinear model for Duffing oscillator
with a periodically time-varying mass [12]:

y′′ + kM(t)y + γM(t)y3 = u(t), (33)

where y(t) is the displacement of the center mass measured from its rest,
u(t) is the input, k > 0 and γ 6= 0 are stiffness coefficients of linear and cubic
elastic restoring forces respectively. M(t) is the total mass of the oscillator
that is periodic in T̃ and satisfies

M(t) =
{

m t ∈ [nT̃ , nT̃ + c)
0 t ∈ [nT̃ + c, (n + 1)T̃ )

(34)

where n = 0, 1, · · · , m and c are positive constants. To illustrate our results,
we assume that M(t) is fast switching and its dynamics depends on a small



parameter ε, u is implemented via a digital controller. Then, with x1 = y
and x2 = y′, we have

ẋ1 = x2

ẋ2 = −kM

(
t

ε

)
x1 − γM

(
t

ε

)
x3

1 + u(t), (35)

where u(t) = u(kτ) := u(k), ∀t ∈ [kτ, (k+1)τ), k ∈ N, τ > 0 is the sampling
interval. Note that we can not compute the exact discrete time model of
this sampled data system, we use the Euler approximation instead and get
the family of approximate models parameterized by ∆k = τ :

∆x1(k)
∆k

= x2(k)

∆x2(k)
∆k

= −kM

(
kτ

ε

)
x1(k)− γM

(
kτ

ε

)
x1(k)3 + u(k). (36)

Let M0 := cm
T̃

, and note that the definitions of the strong and the weak
average coincide without disturbances, the average of the family of discrete
time systems (36) is

∆x1(k)
∆k

= x2(k) (37)

∆x2(k)
∆k

= −kM0x1(k)− γM0x
3
1(k) + u(k).

Indeed, setting s̃ = sτ and T := τN we have for sufficiently small τ that

∣∣∣∣∣
1

Nτ

k+N∑

s=k

(kM(sτ)x1 + γM(sτ)x3
1 − kM0x1 − γM0x

3
1)τ

∣∣∣∣∣

=

∣∣∣∣∣
1

Nτ

kτ+Nτ∑

s̃=kτ

(kM(s̃)x1 + γM(s̃)x3
1 − kM0x1 − γM0x

3
1)∆s̃

∣∣∣∣∣

≤
∣∣∣∣
kx1 + γx3

1

T

∫ kτ+T

kτ
(M(s̃)−M0)ds̃

∣∣∣∣

≤ 2cm(k + γ)(max{|x|, 1})3
T + 1

, (38)

where the last inequality holds when T ≥ 1 and we can let βsa(s, t) =
βwa(s, t) := 2M0(k+γ)(max{|x|,1})3

T+1 in this case. It is straight forward that
under the control u(k) = γM0x

3
1− 2

√
kM0x2, the closed loop of the average

system is a linear system whose real part of eigenvalues are all negative



and then it is globally exponentially stable. With the result in Corollary 1,
we conclude that the family of discrete time systems (36) is semi-globally
practically stable. Moreover, with the condition that control law is bounded
on compact sets uniformly in small τ , we recall the Remark 1 and conclude
the semi-global practical stability of the sampled data system (35).
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Figure 1: (a)τ = 0.005 ε = 0.005 (b)τ = 0.1 ε = 0.005
(c)τ = 0.01 ε = 0.09 (d)τ = 0.01 ε = 0.097

To check the semi-global practical stabilities of the sampled data system
(35), we assume that T̃ = 1s, and then simulate the trajectory of the so-
lutions x1 and x2 under different values of parameter ε and sampling time
interval τ . The simulation results, in Figure (a) and (c), show that when
ε and τ are sufficiently small, the sampled data system (35) is asymptoti-
cally stable. While, when sampling time interval τ or parameter ε is chosen
rather large, as τ = 0.1s in Figure (b) and ε = 0.097 in Figure (d), the
asymptotical stability can not be guaranteed.

6 Conclusions

ISS of parameterized families of discrete-time systems was investigated via
the averaging method. These results are useful when an approximate discrete-
time model of a sampled-data system is used for stability analysis. We
showed that under appropriate conditions, ISS of strong (or weak) aver-
age of the family of discrete-time systems implies SGP-ISS (or SGP-ISS



like) properties for the actual family of systems. Via an example, we show
that the results can be used with [8] to design controllers via approximate
discrete-time models that achieve ISS of sampled-data nonlinear systems.
Moreover, we presented general results on closeness of solutions between the
weak or strong average and the actual system that only require the average
system to be forward complete.
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Appendix

We now prove the technical lemma that were stated in Section 3. We
first present a lemma that consider the closeness of points of some functions
on finite time intervals which will be used in the following proof.

Lemma 3 Let the set of functions w̃i(kτ)(i = 1, · · · , n), W̃, be a equi-
bounded and equi-uniformly Lipschitz in compact sets, then for any δ̃ > 0
there exists ρ∗ > 0, for all ρ ∈ (0, ρ∗), w̃ ∈ W̃ with ||w̃||∞ ≤ r and ||∆w̃

∆k ||∞ ≤
ν, and for each τ < ρ such that

|w̃i(kτ)− w̃i(k0τ)| ≤ δ̃ ∀(k − k0)τ ∈ [0, ρ] (39)

¤
Proof. Let r and ν come from the equi-bounded and equi-uniformly Lip-

schitz definition, then define

δ̃ : = (exp(νρ)− 1)r

ρ∗ =
1
ν

ln

(
1 +

δ̃

r

)
, (40)



and

ek := |w̃i(kτ)− w̃i(k0τ)| ∀(k − k0)τ ∈ [0, ρ]. (41)

As W̃ is a equi-bounded and equi-uniformly Lipschitz compact set, then
for each w̃i ∈ W̃, we have

|w̃i((k + 1)τ)− w̃i(kτ)| ≤ ντ |w̃(kτ)|, (42)

Assume for the purpose of induction that

em ≤ (exp(νmτ)− 1) |w̃i(k0τ)|, mτ ∈ [0, ρ]. (43)

Note that this is trivially true for m = 0, and

em+1 = |w̃i((m + 1)τ)− w̃i(k0τ)|
≤ |w̃i(mτ)− w̃i(k0τ)|+ |w̃i((m + 1)τ)− w̃i(mτ)|
≤ |w̃i(mτ)− w̃i(k0τ)|+ ντ |w̃i(mτ)|
≤ |w̃i(mτ)− w̃i(k0τ)|+ ντ(|w̃i(mτ)− w̃i(k0τ)|+ |w̃i(k0τ)|)
= (1 + ντ)em + ντ |w̃i(k0τ)|
≤ (1 + ντ)(exp(νmτ)− 1)|w̃i(k0τ)|+ ντ |w̃i(k0τ)|
= {(1 + ντ) exp(νmτ)− 1}|w̃i(k0τ)|
≤ (exp(ν(m + 1)τ)− 1)|w̃i(k0τ)|, mτ ∈ [0, ρ] (44)

we get that the inductive hypothesis (43) holds. Note that w̃(k0τ) ∈ W̃
satisfying |w̃(k0τ)| ≤ r, mτ ≤ ρ, and the definition of the δ̃, and ρ∗, then
for each τ < ρ and ρ ∈ (0, ρ∗), it follows that (43) satisfies

|em| ≤ δ̃, ∀mτ ∈ [0, ρ]. (45)

this complete the proof of lemma. ¤

A Proof of Lemma 1

Part 1. Definition of τ∗, ε∗ and µ:

Given the triple (r, δ, T ), without loss generality, assume δ < 1. Suppose
R ≥ r and τ∗1 comes from W-forward completeness of the weak average,
and let r and ν come from equi-boundedness and equi-uniformly Lipschitz
of W. Then, from the definition of weak average and Lipschitz condition of
Fτ (kτ, x, w), it follows that for all w satisfying |w| ≤ r, there exist L > 0
such that, for all τ ∈ (0, τ∗1 ), |y| ≤ R + 1 and |x| ≤ R + 1

|Fwa
τ (x,w)− Fwa

τ (y, w)| ≤ L|x− y|, (46)



and a finite positive number B such that

B := max
kτ≥0,|x|≤R+1,|y|≤R+1,|w|≤r

{|Fτ (kτ, x, w)|, |Fwa
τ (y, w)|}. (47)

Then, define

µ :=
δ

2 exp 2LT+L2T
2

, (48)

and in preparation for defining ε∗, define

G

(
kτ

ε
, w̃

)
= w̃T

1

{
Fτ

(
kτ

ε
, w̃2, w̃3

)
− Fwa

τ (w̃2, w̃3)
}

, (49)

where the w̃i being components of appropriate dimension, of a vector w̃. Let
W̃ be the set of functions

w̃(kτ) :=




w̃1(kτ)
w̃2(kτ)
w̃3(kτ)


 , (50)

that are equi-bounded and equi-uniformly Lipschitz. Let τ∗2 comes from
equi-uniformly Lipschitz of W, and ρ > 0 be such that, for all w̃ ∈ W̃,
kiτ ≥ 0, (k − ki)τ ∈ [0, ρ] and τ ∈ (0, τ∗2 ), we have

∣∣∣∣G
(

kτ

ε
, w̃(kτ)

)
−G

(
kτ

ε
, w̃(kiτ)

)∣∣∣∣ ≤
δ2

8T exp(2LT + L2T )
, (51)

where such ρ exists since G is Lipschitz uniformly in w̃, and from Lemma
3, w̃(kτ) and w̃(kiτ) can be arbitrarily close for each τ ∈ (0, τ∗2 ) and all
(k − ki)τ ∈ [0, ρ], if ρ is sufficiently small. Moreover, the quantity being
bounded in (51) is zero when kτ = kiτ . Then, the left hand of (51) can be
made arbitrarily small when ρ is small enough.

Let βwa ∈ KL and T ∗ > 0 and τ∗3 come from the definition of weak
average, and let T̃ > T ∗, τ∗3 = τ∗3 (T̃ ) and for all τ ∈ (0, τ∗3 ) and Ñτ ≥ T̃
satisfy

βwa(max{(R + 1), r}, Ñτ) ≤ δ2

8T (1 + 3B) exp(2LT + L2T )
, (52)

then, for τ ∈ (0, τ∗), where

τ∗ := min{τ∗1 , τ∗2 , τ∗3 }. (53)

Without lose generality for the fast sampling system, we assume τ∗ < 1.
Then, define



ε∗ := min
{

ρ

Ñτ
,

δ2

16BÑτ(1 + 3B) exp(2LT + L2T )

}
. (54)

Part 2. Error of solutions:

For any fixed τ ∈ (0, τ∗), let |y0| ≤ r, k0 > 0, (k − k0)τ ∈ [0, T ],
ε ∈ (0, ε∗), and w ∈ W, consider any x0 such that |x0 − y0| ≤ µ. Let

E(kτ) := x(kτ, k0, x0, w)− y((k − k0)τ, y0, w), (55)

and note that |E(k0τ)| ≤ µ ≤ δ
2 < 1. If |E(kτ)| < 1 for all (k−k0)τ ∈ [0, T ],

then define k̄τ = k0τ + T . Otherwise, define

k̄τ := max
s∈[0,T ]

{s : |E(kτ)| < 1 ∀kτ ∈ [0, s]}. (56)

Note that k̄τ > k0τ , E(·) and x(·, k0τ, x0, w) are defined on [k0τ, k̄τ ].
Let w̃(kτ) ∈ W̃ be such that, for all kτ ∈ [k0τ, k̄τ ],




w̃1(kτ)
w̃2(kτ)
w̃3(kτ)


 =




ET (kτ) + τφT (kτ) + τ
2ψT (kτ)

x(kτ, k0, x0, w)
w(kτ)


 , (57)

and in (57)

ψ(kτ) := Fτ

(
kτ

ε
, x, w

)
− Fwa

τ (x,w),

φ(kτ) := Fwa
τ (x, w)− Fwa

τ (y, w). (58)

Such a w̃(kτ) ∈ W̃ exist since w̃3 ∈ W, and for all kτ ∈ [k0τ, k̄τ ],
|E(kτ)| < 1, and from (47), we know |φ| ≤ 2B and |ψ| ≤ 2B. Then, for
each τ ∈ (0, τ∗) and all kτ ∈ [k0τ, k̄τ ], it follows that ||w̃1||∞ ≤ (1 + 3B),
and ||∆w̃1

∆k ||∞ ≤ 2B+3L(B+ν). Moreover, since |y((k−k0)τ, y0, w)| ≤ R for
all kτ ∈ [0, T ], it follows that |x(kτ, k0, x0, w)| ≤ R + 1 for all kτ ∈ [k0τ, k̄τ ]
and ||∆w̃2

∆k ||∞ ≤ B from (47).
Using the simplified notation x and y to replace x(kτ, k0τ, x0, w) and

y((k − k0)τ, y0, w), and define the difference of E(kτ) as

H(kτ) :=
∆E(kτ)

∆k

=
E(kτ + ∆k)− E(kτ)

∆k

=
x(kτ + ∆k)− x(kτ)

∆k
− y(kτ + ∆k)− y(kτ)

∆k

= Fτ

(
kτ

ε
, x, w

)
− Fwa

τ (y, w), (59)



where the last equality comes from (2) and (11). Noting (59),(58), one
gets H(kτ) = ψ(kτ) + φ(kτ). Moreover, for all (k − k0)τ ∈ [0, k̄τ ], for the
scalar-valued function V (kτ) := 1

2ET (kτ)E(kτ), we have

∆V (kτ)
∆k

=
1
2

ET (kτ + ∆k)E(kτ + ∆k)−ET (kτ)E(kτ)
∆k

=
1
2

(E(kτ + ∆k) + E(kτ))T (E(kτ + ∆k)−E(kτ))
∆k

=
1
2

(
2E(kτ) + ∆k

∆E(kτ)
∆k

)T ∆E(kτ)
∆k

= ET (kτ)H(kτ) +
1
2
∆kHT (kτ)H(kτ), (60)

Substituting H(kτ) with the expression of φ(kτ) and ψ(kτ) in (60), noting
(57) and the definition of G(·) in (49), and using the following inequality
from the Lipschitz condition of weak average

|φ(kτ)| ≤ L|E(kτ)|, (61)

then for (k − k0)τ ∈ [0, k̄τ ], it follows that

∆V (kτ)
∆k

= ET (kτ)(ψ + φ) +
1
2
(ψ + φ)T (ψ + φ)τ

= ET (kτ)φ +
τ

2
φT φ + ET (kτ)ψ + τφT ψ +

τ

2
ψT ψ

≤ V (kτ)(2L + L2τ) + ET (kτ)ψ + τφT ψ +
τ

2
ψT ψ

= V (kτ)(2L + L2τ) + (ET (kτ) + τφT +
τ

2
ψT )ψ

= V (kτ)(2L + L2τ) + G

(
kτ

ε
, w̃

)
. (62)

By standard comparison theorems in [5], there exists W (kτ) with W (k0τ) =
1
2µ2 such that V (kτ) ≤ W (kτ) and satisfy the equation

W ((k + 1)τ) = (2Lτ + L2τ2 + 1)W (kτ) + G

(
kτ

ε
, w̃

)
∆k. (63)

Noting Nτ ≤ T and the definition of µ in (48), one knows V (k0τ) ≤ 1
2µ2 =

δ2

8 exp(2LT+L2T )
. Then, with the inequality

{1 + (2Lτ + L2τ2)}N ≤ exp(2LNτ + L2Nτ2), (64)

we have for any τ ∈ (0, τ∗),



V (kτ) ≤ (2Lτ + L2τ2 + 1)k−k0V (k0τ)

+
k−1∑

s=k0

(2Lτ + L2τ2 + 1)k−1−sG
(sτ

ε
, w̃(sτ)

)
∆s

≤ exp(2LNτ + L2Nτ2)V (k0τ)

+ exp(2LNτ + L2Nτ2)
k−1∑

s=k0

G
(sτ

ε
, w̃(sτ)

)
∆s

≤ exp(2LT + L2Tτ)V (k0τ)

+ exp(2LT + L2Tτ)
k−1∑

s=k0

G
(sτ

ε
, w̃(sτ)

)
∆s

≤ δ2

8
+ exp(2LT + L2T )

k−1∑

s=k0

G
(sτ

ε
, w̃(sτ)

)
∆s. (65)

Fix kτ ∈ [k0τ, k̄τ ] and set m to be the largest nonnegative integer such that
m ≤ (k−k0−1)τ

εÑτ
with εÑτ ≤ ρ, where ρ is a positive real number that makes

inequality (51) hold, for i = 0, 1, · · · ,m, define (ki − k0)τ = iεÑτ . Then,
we have

V (kτ) ≤ δ2

8
+ exp(2LT + L2T )

k−1∑

s=km

G
(sτ

ε
, w̃(sτ)

)
∆s

+exp(2LT + L2T )
m−1∑

i=0

ki+1∑

s=ki

G
(sτ

ε
, w̃(sτ)

)
∆s. (66)

From the definition of m, we know for kτ ∈ [k0τ, k̄τ ], (k−km−1)τ ≤ εÑτ ,
(ki+1−ki)τ = εÑτ . Noting (47) and |E(kτ)| < 1 for all kτ ∈ [k0τ, k̄τ ], then
for τ ∈ (0, τ∗), we have

∣∣∣G
(sτ

ε
, w̃(sτ)

)∣∣∣ ≤ 2B|w̃1(kτ)| ≤ 2B(1 + 3B), (67)

then when ε ∈ (0, ε∗), it follows that

exp(2LT + L2T )
k−1∑

s=km

G
(sτ

ε
, w̃(sτ)

)
∆s

≤ εÑτ2B(1 + 3B) exp(2LT + L2T ) ≤ δ2

8
. (68)

Noting Remark 2, the function kτ = εζτ maps the countable set {k0τ, k1τ, k2τ, · · · }
into a set {ζ0τ, ζ1τ, ζ2τ, · · · }, with k0τ = εζ0τ , kiτ = k0τ + iεÑτ and



ζiτ = ζ0τ + iÑτ , for i = 1, 2, · · · . Then, with the definition (52), it fol-
lows that

∣∣∣∣∣∣

ki+1∑

s=ki

G(
sτ

ε
, w̃(kiτ))∆s

∣∣∣∣∣∣

≤ |w̃T
1 (kiτ)| ·

∣∣∣∣∣∣
εÑτFwa

τ (w̃2, w̃3)−
ki+1∑

k=ki

Fτ (
sτ

ε
, w̃2, w̃3)∆s

∣∣∣∣∣∣

= (1 + 3B) ·
∣∣∣∣∣∣
εÑτFwa

τ (w̃2, w̃3)− ε

ζi+1∑

ζ=ζi

Fτ (ζτ, w̃2, w̃3)∆ζ

∣∣∣∣∣∣

≤ εÑτ(1 + 3B) ·
∣∣∣∣∣∣
Fwa

τ (x, w)− 1
Ñτ

ζi+Ñ∑

ζ=ζi

Fτ (ζτ, x, w)∆ζ

∣∣∣∣∣∣
≤ εÑτ(1 + 3B)βwa(max{(R + 1), r}, Ñτ)

≤ εÑτ
δ2

8T exp(2LT + L2T )
. (69)

For the scalar function V (kτ), substituting (68) in (66), noting the fact
mεÑτ ≤ T and combining with the inequalities (69), (51), then we have

V (kτ) ≤ δ2

4
+ exp(2LT + L2T ) ·

m−1∑

i=0

ki+1∑

s=ki

{
G

(sτ

ε
, x(kiτ), w(kiτ)

)

+
∣∣∣G

(sτ

ε
, x(sτ), w(sτ)

)
−G

(sτ

ε
, x(kiτ), w(kiτ)

)∣∣∣
}

∆s

≤ δ2

4
+ exp(2LT + L2T )mεÑτ

·
{

δ2

8T exp(2LT + L2T )
+

δ2

8T exp(2LT + L2T )

}

≤ δ2

2
(70)

As V (kτ) ≤ δ2

2 for all kτ ∈ [k0τ, k̄τ ] and V (kτ) = 1
2ET (kτ)E(kτ), it

follows that |E(kτ)| ≤ δ < 1 for all kτ ∈ [k0τ, k̄τ ]. From the definition of k̄,
it follows that (k̄ − k0)τ ≤ T so that |E(kτ)| ≤ δ for all (k − k0)τ ∈ [0, T ].
This establishes the result. ¤

B Proof of Lemma 2

The proof of Lemma 2 follows exactly the same steps as the proof of Lemma
1 with following changes. With strong average definition, instead of (69) we



use

∣∣∣∣∣∣

ki+1∑

s=ki

G(
sτ

ε
, w̃1, w̃2, w̃(sτ))∆s

∣∣∣∣∣∣

≤ εÑτ |w̃T
1 |

1
Ñτ

·
∣∣∣∣∣∣

ζi+1∑

ζ=ζi

{F (ζτ, w̃2, w̃3(εζτ))− Fsa(w̃2, w̃3(εζτ))}∆ζ

∣∣∣∣∣∣
≤ εÑτ(1 + 3B)βsa(max{(R + 1), r}, Ñτ)

≤ εÑτ
δ2

8T exp(2LT + L2T )
(71)

And in same way like (51), for each τ ∈ (0, τ∗) there exists sufficiently small
ρ > 0 such that, for all w ∈ W and ki ≥ k0, (k − ki)τ ∈ [0, ρ], such that

∣∣∣∣G
(

kτ

ε
, w̃(kτ)

)
−G

(
kτ

ε
, w̃1(kiτ), w̃2(kiτ), w̃3(kτ)

)∣∣∣∣ ≤
δ2

8T exp(2LT + L2T )
(72)

This ρ exists since G is Lipschitz uniformly in w̃, note that we only need the
closeness of functions w̃1(kτ) and w̃2(kτ), which have been proved in the
proof of Theorem 2 to be included in function set W̃ that is equi-bounded
and equi-uniformly Lipschitz. Note here w̃3 ∈ W only need satisfies the
equi-bounded condition. From Lemma 1, w̃1 and w̃2 can be arbitrarily
close for each τ ∈ (0, τ∗) if ρ is small enough. Moreover, for kτ = kiτ the
quantity being bounded in (72) is zero, then the left hand of (72) can be
made arbitrarily small if ρ is small enough.

Using the inequality (68), (71), (72), and the fact mεÑτ ≤ T , then for
kτ ∈ [k0τ, k̄τ ], it follows that the scalar function V (kτ) satisfies

V (kτ) ≤ δ2

4
+ exp(2LT + L2T ) ·

m−1∑

i=0

ki+1∑

s=ki

{
G

(sτ

ε
, w̃1(kiτ), w̃2(kiτ), w̃3(sτ)

)

+
∣∣∣G

(sτ

ε
, w̃(sτ)

)
−G

(sτ

ε
, w̃1(kiτ), w̃2(kiτ), w̃3(sτ)

)∣∣∣
}

∆s

≤ δ2

4
+ exp(2LT + L2T )mεÑτ

·
{

δ2

8T exp(2LT + L2T )
+

δ2

8T exp(2LT + L2T )

}

≤ δ2

2
(73)

This establishes the result in the same way as Lemma 2. ¤


