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Abstract

Stability properties for a class of reset systems, such as systems containing a Clegg integrator, are investigated. We present
Lyapunov based results for verifying L2 and exponential stability of reset systems. Our results generalize the available results
in the literature and can be easily modified to cover Lp stability for arbitrary p ∈ [1,∞]. Several examples illustrate that
introducing resets in a linear system may reduce the L2 gain if the reset controller parameters are carefully tuned.
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1 Introduction

Reset controllers are motivated by the so called Clegg in-
tegrator introduced in Clegg (1958), whose precise math-
ematical model is given in Zaccarian et al. (2005). Re-
set controllers allow more flexibility in controller design
and they may remove some fundamental limitations in
linear control Beker et al. (2001). First systematic pro-
cedures for controller design exploiting the Clegg inte-
grator were proposed in Krishnan and Horowitz (1974),
Horowitz and Rosenbaum (1975). A nice account of these
results and their relation to more recent developments
in reset control is given in Chait and Hollot (2002). Sta-
bility analysis of general reset systems can be found in
Beker et al. (2004) where Lyapunov based conditions
for asymptotic stability of general reset systems were
presented. Moreover, the authors proposed computable
conditions for quadratic stability based on linear matrix
inequalities (LMIs).
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In this paper we present Lyapunov based conditions for
L2 stability of general reset systems. We emphasize that
the same proof technique can be used to prove Lp sta-
bility for arbitrary p ∈ [1,∞]. Moreover, a similar Lya-
punov condition is presented for exponential stability
that generalizes the stability condition in (Beker et al.,
2004, Theorem 1) in several directions. First, our re-
sults use locally Lipschitz Lyapunov functions, includ-
ing piecewise quadratic Lyapunov functions, as opposed
to differentiable Lyapunov functions that were used in
Beker et al. (2004). Second, we use a more precise model
of reset systems proposed in Zaccarian et al. (2005) that
allows us to relax considerably the Lyapunov conditions.
For instance, in (Beker et al., 2004, Theorem 1) the au-
thors require the existence of a Lyapunov function that
decreases along solutions of the system in the absence of
resets everywhere in the state space. Our condition, on
the other hand, requires such a decrease only in a smaller
subset of state space. This allows us to obtain sharper
stability bounds and input/output gains and as a result
we obtain interesting new insights into design of reset
systems with Clegg integrators and FOREs (see also Za-
ccarian et al. (2005)). The results of this paper provide
a framework for analysis of exponential and input out-
put stability of reset systems and will be useful in the
development of systematic reset controller design proce-
dures. For instance, the results of this paper are used in
Zaccarian et al. (2005) to derive LMI based tools for the
construction of piecewise quadratic Lyapunov functions
for L2 and exponential stability testing of reset systems
with Clegg integrators and FOREs. We believe that fur-
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ther such developments will be made possible using the
results of this paper.

The paper is organized as follows. In Sections 2 and 3 we
present respectively preliminaries and linear reset sys-
tems. Section 4 contains the main results with an exam-
ple and all the proofs are given in Section 5.

2 Preliminaries

The sets of positive integers (including zero) and real
numbers are respectively denoted as N0 and R. Given
vectors x1, x2 we use the notation (x1, x2) := (xT

1 xT
2 )T .

Given an integer p ∈ [1,∞) and a Lebesgue mea-
surable function d : [t1, t2] → R

d, we use the nota-

tion ‖d[t1, t2]‖2 :=
(

∫ t2
t1

|d(τ)|2dτ
)

1
2

. If ‖d[0,∞)‖2 is

bounded, then we write d ∈ L2. We use the approach
from Goebel et al. (2004); Goebel and Teel (2006)
to define the solutions of hybrid systems. The hybrid
time domain is defined as a subset of [0,∞) × N0,
given as a union of finitely or infinitely many intervals
[ti, ti+1] × {i} where the numbers 0 = t0, t1, . . . , form
a finite or infinite nondecreasing sequence. The last in-
terval is allowed to be of the form [ti, T ) with T finite
or T = +∞. Let two closed sets Fξ and Jξ be given
such that Fξ ∪ Jξ = R

nξ and continuous functions
f : Fξ → R

nξ and g : Jξ → R
nξ . A solution ξ(·, ·)

is a function defined on a hybrid time domain such
that ξ(·, j) is continuous on [tj , tj+1] and continuously
differentiable on (tj , tj+1) for each j in the domain and

ξ̇(t, i) = fξ(ξ(t, i)) if ξ(t, i) ∈ Fξ and t ∈ (ti, ti+1)

ξ(ti+1, i + 1) = gξ(ξ(ti+1, i)) if ξ(ti+1, i) ∈ Jξ and i ∈ N0 .

We sometimes omit the time arguments and write:

ξ̇ = fξ(ξ) if ξ ∈ Fξ; and ξ+ = gξ(ξ) if ξ ∈ Jξ .

Given (t, N) such that t ∈ [tN , tN+1] we define:

∫ t

0

ξ(τ)dτ :=

N−1
∑

i=0

∫ ti+1

ti

ξ(τ, i)dτ +

∫ t

tN

ξ(τ, N)dτ . (1)

Let ε ≥ 0, M = MT ∈ R
n×n and define:

Fε := {x ∈ R
n : xT Mx + εxT x ≥ 0}, F := F0 (2)

Jε := {x ∈ R
n : xT Mx + εxT x ≤ 0}, J := J0. (3)

3 Linear reset systems

In the sequel we concentrate on the following class of
reset system models:

ẋ = Ax + Bd; τ̇ = 1 if x ∈ F or τ ≤ ρ (4)

x+ = ARx; τ+ = 0 if x ∈ J and τ ≥ ρ (5)

y = Cx , (6)

where x ∈ R
n, d ∈ R

nd , τ ≥ 0 and ρ > 0. The role
of the variable τ is to achieve “time regularization” in
the sense of Johansson et al. (1999) in order to avoid
Zeno solutions. Indeed, it is obvious that the reset times
satisfy ti+1 − ti ≥ ρ for all i ∈ N0 and, hence, Zeno
solutions cannot occur. It was shown in Zaccarian et al.
(2005) that the class of models (4), (5), (6) can be used to
describe general (linear) reset systems, as the following
example illustrates.

Example 1 The block diagram of the Clegg integrator
controlling an integrator via a unity feedback is given in
Figure 1.

−
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Fig. 1. Clegg integrator controlling an integrator.

The model of the closed loop system is:

ẋr = r − x; ẋ = kxr + d; τ̇ = 1; if (x, xr) ∈ F or τ ≤ ρ

x+
r = 0; τ+ = 0; if (x, xr) ∈ J and τ ≥ ρ .

where ρ > 0; F and J are defined in (2), (3) with M =
[

0 −1
−1 0

]

, and ε = 0; xr and x are respectively the (reset)
controller and plant states; d and r are the disturbance
and reference inputs.

Remark 1 It is important to note the difference between
our model (without disturbances) and the model in Beker
et al. (2004). The model in Beker et al. (2004) has the
following form:

ẋ = Aclx if x 6∈ M; x+ = ARx if x ∈ M , (7)

where M := {x : Cclx = 0, (I − AR)x 6= 0} for some
matrix Ccl ∈ R

p×n. There are three main differences be-
tween our model (4), (5) and the model (7):
1. In the model (7) resets are only possible on the hyper-
plane Cclx = 0 (as long as some flow has occurred since
the last reset), whereas in our model (4), (5) resets are
enforced on a sector J .
2. Our model (4), (5) uses time regularization to avoid
Zeno solutions whereas there is no time regularization
in the model (7). Instead, (Beker et al., 2004, Theorem
1) states a result on existence of solutions for (7). De-
spite this result, it is not clear what they mean by so-
lution for some states. Indeed, for the reset system (7)
without disturbances it is not clear how to define so-
lutions for the initial conditions satisfying Cclx0 = 0,
(I − AR)x0 = 0 and where, following the differential
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equation for arbitrarily small times yields Cx(t) = 0
and (I − AR)x(t) 6= 0. As an example, consider the ini-
tial condition x0 = (0, a, 0), a > 0 for the system with

Acl =
[

−1 0 0
0 −1 −1
0 1 −1

]

, AR =
[

1 0 0
0 1 0
0 0 0

]

, Ccl = [ 1 0 0 ]. Note

that we have Cclx0 = 0, (I−AR)x0 = 0 for the given ini-
tial condition (thus x0 6∈ M and the reset is not possible
at t = 0, which means that the dynamics can only be gov-
erned by the flow equation in (7) for small t ≥ 0). More-
over, integrating the differential equation in (7) from the
same initial condition yields Cclx(t) = 0 for all t and

(I − AR)x(t) = [ 0 0 x3(t) ]
T , which is zero at t = 0 but is

nonzero for all small t > 0 (thus x(t) ∈ M for t > 0 and
thus flowing from the initial condition is not possible).
Note that the conditions of (Beker et al., 2004, Theorem
1) hold for this example (use V (x) = |x|2, which yields

V̇ = −2V and ∆V ≤ 0).
3. The set M and its complement are not closed whereas
the sets F and J are always closed. Moreover, the sets M
and its complement are disjoint, whereas the sets F and
J have a common boundary and, hence, they overlap.

Assumption 1 For the system (4), (5), the reset map
AR is such that x ∈ J =⇒ ARx ∈ F .

The condition in Assumption 1 is quite natural to as-
sume for reset systems. This condition guarantees that
after each reset time the solutions will be mapped to the
set F where the dynamics are governed by the differen-
tial equation (4) so that flowing is possible from there.
Without this condition, due to the time regularization,
defective trajectories may correspond to solutions that
keep flowing and jumping within the set J , so that it
would be impossible to establish that all solutions flow
only in the set Fε. This last property is a key tool for
exploiting the advantages of resets within the Lyapunov
framework, thereby establishing our main results.

Remark 2 Before we state and prove our main results,
we state some properties of the system that are immediate
from (4) and (5) and Assumption 1. Consider arbitrary
t ≥ 0, then the following is true: (i) ti+1 − ti ≥ ρ for
all i ≥ 1; (ii) x(ti, i) ∈ F for all i ≥ 1. We can have
x(t0, 0) ∈ F or x(t0, 0) ∈ J ; (iii) If ti+1 − ti > ρ, then
x(t, i) ∈ F for all t ∈ [ti + ρ, ti+1]; (iv) There exists at
most N := b t

ρc+1 reset times ti on the time interval [0, t]

since ti+1 − ti ≥ ρ for all i ≥ 1. We always let t0 := 0
and tN := t even when t0, tN are not reset times. It may
happen that t1−t0 ∈ [0, ρ), if τ(t0) > 0 and x(t1, 0) ∈ J .
In particular, it is possible that a reset occurs at t0 = 0 if
x(t0, 0) ∈ J and τ(t0) ≥ 1, in which case we let t0 = t1.

4 Main results

In this section we state our main results. Sufficient L2

and exponential stability conditions for the system (4),
(5) are presented respectively in Theorems 1 and 2.

Theorem 1 Consider the system (4), (5), (6) with F0,
J0 as in (2), (3). Suppose that Assumption 1 holds and
that there exists a locally Lipschitz Lyapunov function V :
R

n → R≥0, strictly positive numbers a1, a2, a3, a4, a5γ, ε
such that the following holds for all d ∈ R

nd :

a1|x|2 ≤ V (x) ≤ a2|x|2, ∀x ∈ R
n; (8)

∂V (x)

∂x
(Ax + Bd) ≤ −a3|y|2+γ|d|2, for a.a. x ∈ Fε (9)

V (ARx) − V (x) ≤ 0 ∀x ∈ J ; (10)

∂V (x)

∂x
(Ax+Bd)≤a4V (x)+a5|x||d|, for a.a. x ∈ R

n (11)

Then, for any L > 1 there exists ρ∗ > 0 such that for all
ρ ∈ (0, ρ∗) the solutions of (4), (5), (6) satisfy:

∫ t

0

|y(τ)|2dτ ≤ La2

a3
|x0|2 +

γ

a3

∫ t

0

|d(τ)|2dτ ,

for all t ≥ 0, τ(0, 0) = τ0 ≥ 0, x(0, 0) = x0 ∈ R
n and

d ∈ L2. In particular, we can take: ρ∗ = min{ρ∗1, ρ∗2, ρ∗3},
where (note that ϕ1, ϕ2, κ1, κ2 ∈ K∞):

ρ∗1 = ϕ−1
1 (γ); ρ∗2 = ϕ−1

2

(

ε

a2

)

; ρ∗3 = ϕ−1
1 (L−1) (12)

ϕ1(s) := κ1(s) + κ2(s) +
|C|2a3

a1
s(1+κ1(s)+κ2(s)) (13)

ϕ2(s) := L1
s

a1
(1 + κ1(s) + κ2(s))

+L2

√

s

a1
(1 + κ1(s) + κ2(s)) (14)

κ1(s) := exp(αs)κ(s) +
2α

γ2
1

κ2(s) (15)

κ2(s) := exp(αs)κ(s) + κ2(s) (16)

κ(s) := γ1

√

exp(2αs) − 1

2α
(17)

α :=
a4

2
; γ1 :=

a5

2
√

a1
; (18)

L1 := |2(M + εI)A|; L2 := |2(M + εI)B| , (19)

where the matrix M = MT comes from (2), (3). �

Remark 3 A result similar to Theorem 1 can be stated
for the case of Lp stability for arbitrary p ∈ [1,∞]. The
conditions of Theorem 1 need to be changed slightly and
the proofs modified in a straightforward manner. More-
over, similar results can be stated for nonlinear systems
that are globally Lipschitz. We did not state these gener-
alizations for simplicity.

Remark 4 Sufficient conditions for L∞ (bounded input
bounded state) stability of reset systems were presented
in Beker et al. (2004) for a class of models for reset
systems. Theorem 1 presents for the first time results on
L2 stability of reset systems.
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It is instructive to note that Lp stability from d to x
for some p ∈ [1,∞) implies exponential stability of the
system in the absence of disturbances. Therefore, if we
have an appropriate Lp detectability from y to x, we can
conclude Lp stability from d to x from Theorem 1. Then,
under mild technical conditions this implies exponential
stability in the absence of disturbances. This result can
be proved using results of Teel et al. (2002) and it is very
similar to Nešić and A.R.Teel (2004). A special case of
the required detectability property is when there exists
µ > 0 such that µ2|x|2 ≤ |y|2. We formally state this case
in the next theorem, while additional results relying on
more general detectability conditions will be not covered
here.

Theorem 2 Consider the system (4), (5) without dis-
turbances. Suppose that Assumption 1 holds and that
there exists a locally Lipschitz Lyapunov function V :
R

n → R≥0, strictly positive numbers a1, a2, a3, a4, ε such
that the following holds:

a1|x|2 ≤ V (x) ≤ a2|x|2, ∀x ∈ R
n; (20)

∂V

∂x
Ax ≤ −a3|x|2, for almost all x ∈ Fε; (21)

V (ARx) − V (x) ≤ 0, ∀x ∈ J ; (22)

Then, there exist ρ∗, K > 0 such that for all ρ ∈ (0, ρ∗)
the solutions of the system (4), (5) satisfy:

|x(t, i)| ≤ K exp

(

− a3

2a2
t

)

|x0| ,

for all t ∈ [ti, ti+1], i ≥ 0, τ(0, 0) = τ0 ≥ 0 and
x(0, 0) = x0 ∈ R

n. In particular, we can take:

ρ∗ = ϕ−1
(

εa1

a2·|2(M+εI)A|

)

, K = a2

a1
exp

((

|A| + a3

a2

)

ρ
2

)

,

where ϕ(s) := s exp (|A|s) and the matrix M = MT

comes from (2), (3). �

Remark 5 Note that conditions (9) and (21) need to
hold only on the set Fε, which is a subset of R

n. More-
over, the closure of Fε is typically a proper subset of R

n;
hence conditions (9) and (21) are much weaker than re-
quiring stability of ẋ = Ax + Bd that was required in
(Beker et al., 2004, Theorem 1) to guarantee stability of
the reset system. Hence, Theorems 1 and 2 relax the sta-
bility conditions used in Beker et al. (2004). Finally, we
note that in general we cannot replace Fε by F in (9).

Remark 6 Ourmain results allow for non-differentiable
Lyapunov functions V (·), which is another relaxation of
the conditions in (Beker et al., 2004, Theorem 1), where
continuous differentiability of V (·) was required. This
generalization allows us, among other things, to consider
piecewise quadratic Lyapunov functions which were not
possible to handle using the results of (Beker et al.,
2004, Theorem 1). It turns out that piecewise quadratic
Lyapunov functions are a key tool for exploiting convex

optimization tools such as LMIs when trying to obtain
tight estimates of L2 gains for this class of systems, as
illustrated in Zaccarian et al. (2005).

Theorems 1 and 2 provide a theoretical framework for
analysis and design of reset systems. A typical analy-
sis problem consists in finding an appropriate Lyapunov
function satisfying the conditions of the theorems for
a given system (4), (5). Computational approaches via
LMIs that use piecewise quadratic Lyapunov functions
are given in Zaccarian et al. (2005). For instance, Theo-
rem 1 can be used to prove the following result on L2 sta-
bility via quadratic Lyapunov functions V (x) = xT Px.

Proposition 1 (Zaccarian et al. (2005)) Consider the
reset control system (4), (5), (6), where the sets F and J
are defined by the matrix M via (2), (3). If the following
linear matrix inequalities in the variables P = P T > 0,
τF , τR ≥ 0, γ > 0 are feasible:









AT P + PA + τF M PB CT

? −γI 0

? ? −γI









< 0,

AT
RPAR − P − τRM ≤ 0,

(23)

then, there exists a small enough ρ > 0 such that the
reset system (4), (5), (6) has a finite L2 gain from d to
y which is smaller than γ. �

We note that using quadratic Lyapunov functions is
often too restrictive for reset systems and more general
theorems based on piecewise quadratic Lyapunov func-
tions from Zaccarian et al. (2005) are often needed. In
Zaccarian et al. (2005) we presented a method based
on Linear Matrix Inequalities to construct piecewise
quadratic Lyapunov functions to check L2 stability for
a class of reset systems containing FOREs. We present
next an example where we use results from Zaccarian
et al. (2005) to analyze the L2 stability of systems with
reset controllers. In particular, we show how changing
parameters in the FORE affects the gain of the reset
closed-loop system.

Example 2 Consider an integrator (plant) controlled by
a FORE whose continuous equations:

ẋ1 = x2 + d; ẋ2 = −x1 + βx2; τ̇ = 1 (24)

are valid on the set x1x2 ≤ 0 or τ ≤ ρ and:

x+
2 = 0; τ+ = 0 (25)

are valid on the set x1x2 ≥ 0 and τ ≥ ρ. Assume that the
output is y = x1. Here, x1 and x2 respectively denote the
state of the scalar plant and of the FORE. We computed
the L2 gain from d to y for the system (24), (25) using
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the LMI method from Zaccarian et al. (2005). The gain
has been computed for the limit case as ρ → 0. (Larger
values of ρ correspond, in general, to larger gains due to
the fact that Fε would be larger.) The gain is plotted as
a function of the parameter β that determines the pole
of the FORE. This plot is represented by the dashed line
in Figure 2. Moreover, we considered the linear system
without resets: ẋ1 = x2 + d; ẋ2 = −x1 + βx2; y = x1.
The full line in Figure 2 shows the L2 gain of the system
without resets as a function of the parameter β. Note that
adjusting the parameter β in the linear controller cannot
produce a gain smaller than ≈ 1.5. Moreover, as β tends
to zero the L2 gain of the linear system tends to infinity.
For positive values of β the system without resets is un-
stable and does not have a well defined L2 gain. On the
other hand, the L2 gain of (24), (25) is well defined for all
values of β. Moreover, as β → ∞ the L2 gain of the re-
set system approaches zero. This example illustrates that
reset controllers may have advantages over linear con-
trollers. Figure 3 illustrates the improved performance for
increasing values of β by way of the time histories of the
plant output when the system is hit with the disturbance
d(t) =

√
10, if t ∈ [0, 0.1], d(t) = 0 otherwise (whose

L2 norm is 1). The L2 norm of the responses decreases
as β increases and corresponds to the following values,
respectively: 0.41, 0.31, 0.26, 0.23, 0.21, 0.1, which are
reported in Figure 2 as asterisks. These show that the
LMI-based numerical results from Zaccarian et al. (2005)
are not extremely conservative (note that this disturbance
selection is not necessarily the worst case).
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Fig. 2. L2 gains of linear and reset closed loops for Example 2,
as a function of the pole of the FORE.
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Fig. 3. Time histories for Example 2.

5 Proofs of technical results

This section contains proofs of Theorems 1 and 2. Before
stating these proofs, we present three auxiliary lemmas

required for the proof of Theorem 1.

Lemma 1 Suppose that the conditions of Theorem 1
hold. Then, there exists ρ∗ > 0 such that for all ρ ∈ (0, ρ∗)
we have that if x(ti, i) ∈ F and d ∈ L2 then for all
t ∈ [ti, ti+1]:

a3

∫ t

ti

|y(τ, i)|2dτ ≤ V (x(ti, i))−V (x(t, i))+γ

∫ t

ti

|d(τ )|2 dτ .(26)

In particular, we can take ρ∗ := min{ρ∗1, ρ∗2}, where ρ∗
1

and ρ∗2 are defined in (12).

Proof of Lemma 1: Let conditions of Lemma 1 hold.
Let ρ∗ = min{ρ∗1, ρ∗2} and ρ ∈ (0, ρ∗). We consider two
cases: t ∈ [ti, ti + ρ] and t ∈ (ti + ρ, ti+1].

Case 1: Suppose that t ∈ [ti, ti + ρ]. Using (8), (11) and
the definitions in (18), we get for almost all x ∈ R

n and
all d ∈ R

nd :

∂V

∂x
(Ax + Bd)≤ 2αV + 2γ1

√
V |d| , (27)

Defining W (x) :=
√

V (x) and using the calculations as
in (Khalil, 1996, p. 271) for all t ∈ [ti, t] we have:

W (x(t, i)) ≤ eα(t−ti)W (x(ti, i))+γ1

∫ t

ti

eα(t−τ)|d(τ)|dτ.(28)

Then, using the Hölder inequality we can write:

W (x(t, i)) ≤ eα(t−ti)W (x(ti, i))+

γ1

(

∫ t

ti
e2α(t−τ)dτ

)1/2 (

∫ t

ti
|d(τ)|2dτ

)1/2

= eα(t−ti)W (x(ti, i)) + γ1

(

e2α(t−ti)−1
2α

)1/2

‖d[ti, t]‖2

=: eα(t−ti)W (x(ti, i)) + κ(t − ti) ‖d[ti, t]‖2 .

Squaring this expression and using 2ab ≤ a2 +b2 we get:

V (x(t, i)) = W 2(x(t, i))

≤ e2α(t−ti)W 2(x(ti, i)) + κ2(t − ti) ‖d[ti, t]‖2
2 +

2W (x(ti, i))e
α(t−ti)κ(t − ti) ‖d[ti, t]‖2

≤
(

e2α(t−ti) + eα(t−ti)κ(t − ti)
)

V (x(ti, i)) (29)

+
(

κ2(t − ti) + eα(t−ti)κ(t − ti)
)

‖d[ti, t]‖2
2

= (1 + κ1(t − ti))V (x(ti, i)) + κ2(t − ti) ‖d[ti, t]‖2
2 ,

where in the last line we used definitions (15) and (16).
Integrating this expression and using (8), we can write:

a3

∫ t

ti

|y(τ, i)|2dτ ≤ |C|2a3(t − ti)

a1

(

κ2(t − ti) ‖d[ti, t]‖2
2 +

(1 + κ1(t − ti))V (x(ti, i))
)

. (30)
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As a direct consequence of (29), (30) and the fact that
t− ti ≤ ρ and κ1, κ2 are strictly increasing functions, we
can write that:

V (x(t, i)) ≤ (1 + κ1(ρ))V (x(ti, i)) + κ2(ρ) ‖d[ti, t]‖2
2

a3

∫ t

ti

|y(τ, i)|2dτ ≤ (31)

|C|2a3ρ

a1

(

(1 + κ1(ρ))V (x(ti, i)) + κ2(ρ) ‖d[ti, t]‖2
2

)

.

Adding and subtracting
(

1 − a3|C|2ρ(1+κ1(ρ))
a1

)

V (x(ti, i))

to the first equation in (31) we obtain:

V (x(t, i))≤
(

1 − a3|C|2ρ(1 + κ1(ρ))

a1

)

V (x(ti, i))

+

(

κ1(ρ) +
a3|C|2ρ(1 + κ1(ρ))

a1

)

V (x(ti, i))

+
a3|C|2ρ

a1
κ2(ρ) ‖d[ti, t]‖2

2 . (32)

We consider two subcases: A. ‖d[ti, t]‖2
2 ≥ V (x(ti, i));

B. ‖d[ti, t]‖2
2 ≤ V (x(ti, i)).

Subcase A. Using (32) and the condition in Subcase A:

a3|C|2ρ(1 + κ1(ρ))

a1
V (x(ti, i)) ≤ V (x(ti, i)) − V (x(t, i))

+

(

κ1(ρ)+κ2(ρ) +
a3|C|2ρ(1+κ1(ρ))

a1

)

‖d[ti, t]‖2
2 (33)

Using the second equation in (31), (33) and (13) we have:

a3

∫ t

ti

|y(τ, i)|2dτ ≤ a3|C|2ρ(1 + κ1(ρ))

a1
V (x(ti, i)) +

a3|C|2ρκ2(ρ)

a1
‖d[ti, t]‖2

2

≤ V (x(ti, i)) − V (x(t, i)) + (34)
(

κ1(ρ)+κ2(ρ) +
a3|C|2ρ(1+κ1(ρ)+κ2(ρ))

a1

)

‖d[ti, t]‖2
2

= V (x(ti, i)) − V (x(t, i)) + ϕ1(ρ) ‖d[ti, t]‖2
2

≤ V (x(ti, i)) − V (x(t, i)) + γ ‖d[ti, t]‖2
2 ,

where the last step follows from the definition of ρ∗
1 and

the fact that ρ ≤ ρ∗
1.

Subcase B. We show now that x(t, i) ∈ Fε for all t ∈
[ti, t] and then we obtain directly from the equations
(8) and (9) that (26) holds. To this end we introduce
χ(x) := −xT Mx− εxT x. Note that χ(x) ≤ 0 if and only
if x ∈ Fε. Then, we can write for all x ∈ R

n, d ∈ R
nd :

∂χ

∂x
(Ax + Bd) =−2(xT M + εxT )(Ax + Bd)

≤ |2(M + εI)A||x|2 + |2(M + εI)B||x||d|
= L1|x|2 + L2|x||d| , (35)

where we used the definitions (18). Hence, by integrating
(35), we can write for all t ∈ [ti, t]:

χ(x(t, i)) − χ(x(ti, i))≤L1 ‖x[ti, t]‖2
2

+L2 ‖x[ti, t]‖2 ‖d[ti, t]‖2 . (36)

Moreover, since by Assumption 1 x(ti, i) ∈ F , we have
that −xT (ti, i)Mx(ti, i) ≤ 0 and using (8) this im-
plies χ(x(ti, i)) = −ε|x(ti, i)|2 − xT (ti, i)Mx(ti, i) ≤
−ε|x(ti, i)|2 ≤ − ε

a2
V (x(ti, i)). Hence,

χ(x(t, i)) ≤ − ε

a2
V (x(ti, i)) + L1 ‖x[ti, t]‖2

2

+L2 ‖x[ti, t]‖2 ‖d[ti, t]‖2 .
(37)

Using (8) and the condition in Case B we can integrate
(29) from ti to t to write:

‖x[ti, t]‖2
2 ≤

ρ

a1

(

(1+κ1(ρ))V (x(ti, i))+κ2(ρ) ‖d[ti, t]‖2
2

)

≤ ρ

a1
(1 + κ1(ρ) + κ2(ρ)) V (x(ti, i)) . (38)

Using (38), (37), (14) and (12) we obtain:

χ(x(t, i)) ≤ L1
ρ

a1
(1 + κ1(ρ) + κ2(ρ)) V (x(ti, i))

− ε

a2
V (x(ti, i)) + L2

√

ρ

a1
(1+κ1(ρ)+κ2(ρ))V (x(ti, i))

=

(

− ε

a2
+ ϕ2(ρ)

)

V (x(ti, i)) (39)

≤
(

− ε

a2
+ ϕ2(ρ

∗
2)

)

V (x(ti, i)) ≤ 0 .

We have from (39) that χ(x(t, i)) ≤ 0 for all t ∈ [ti, t]
which implies that x(t, i) ∈ Fε, ∀t ∈ [ti, t]. This com-
pletes the proof of Subcase B and, hence, of Case 1.

Case 2: Suppose that t ∈ (ti + ρ, ti+1]. Then:

a3

∫ t

ti

|y(τ, i)|2dτ = a3

∫ ti+ρ

ti

|y(τ, i)|2dτ + a3

∫ t

ti+ρ

|y(τ, i)|2dτ .

The bound on the first integral in the right hand side
was already obtained in Case 1 above with t = ti + ρ.
Moreover, note that x(t, i) ∈ F for all t ∈ [ti + ρ, t] (see
item (iii) of Remark 2). Using (8) and integrating (9):

a3

∫ t

ti+ρ

|y(τ, i)|2dτ ≤ V (x(ti + ρ, i)) − V (x(t, i))

+γ

∫ t

ti+ρ

|d(τ)|2dτ .

(40)

This completes the proof of Case 2. Since t ∈ [ti, ti+1]
was arbitrary, it also completes the proof of Lemma 1. �
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Lemma 2 Suppose that all the conditions of Theorem 1
hold. Then, for any L > 1 there exists ρ∗ > 0 such that
for any t0 ≥ 0, ρ ∈ (0, ρ∗), x(t0, 0) = x0, τ(t0, 0) ≥ 0
and d ∈ L2 we have that:

a3

∫ t

t0

|y(τ, 0)|2dτ ≤ LV (x(t0, 0)) − V (x(t, 0))

+γ

∫ t

t0

|d(τ)|2 dτ ∀t ∈ [t0, t1] .

(41)

In particular, we can take ρ∗ := min{ρ∗1, ρ∗3} where ρ∗
1

and ρ∗3 are defined respectively in (12) and (12).

Proof of Lemma 2: Let the conditions of Lemma 2
hold. Let L > 1 be arbitrary. Let ρ∗ = min{ρ∗1, ρ∗3} and
ρ ∈ (0, ρ∗). We consider two cases: t ∈ [t0, t0 + ρ] and
t ∈ (t0 + ρ, t1].

Case 1: Since possibly x(t0, 0) ∈ J , we cannot use the
steps in the proof of Lemma 1. Instead, we proceed as
follows. Combining (31) with (13) we obtain:

a3

∫ t

t0

|y(τ, 0)|2dτ ≤ (42)

a3|C|2ρ(1+κ1(ρ))

a1
V (x(t0, 0)) +

a3|C|2ρκ2(ρ)

a1
‖d[t0, t]‖2

2

=
a3|C|2ρκ2(ρ)

a1
‖d[t0, t]‖2

2 − κ1(ρ)V (x(t0, 0))

+

(

κ1(ρ) +
a3|C|2ρ(1 + κ1(ρ))

a1

)

V (x(t0, 0))

≤
(

κ2(ρ) +
a3|C|2ρκ2(ρ)

a1

)

‖d[t0, t]‖2
2 − V (x(t, 0))

+

(

κ1(ρ) +
a3|C|2ρ(1 + κ1(ρ))

a1

)

V (x(t0, 0))

≤ (ϕ1(ρ) + 1)V (x(t0, 0)) − V (x(t, 0)) + ϕ1(ρ) ‖d[t0, t]‖2
2

≤ LV (x(t0, 0)) − V (x(t, 0)) + γ ‖d[t0, t]‖2
2 .

This completes the proof of Case 1. Case 2: Consider
(40) with i = 0. The bound on the first integral on the
right hand side is obtained directly from Case 1 with
t = t0 + ρ. The bound on the second integral follows
directly from (8), (9) and item (iii) of Remark 2. Hence,
(41) holds, which completes the proof. �

The proof of the following lemma follows in a straight-
forward manner from (10), (5) and it is omitted.

Lemma 3 Under the conditions of Theorem 1 for any
i ≥ 0 we have that V (x(ti+1, i + 1)) ≤ V (x(ti+1, i)).

Proof of Theorem 1: Consider arbitrary x(0, 0) =
x0 ∈ R

n, τ(0, 0) = τ0 ≥ 0, d ∈ L2 and t ≥ 0. De-
note the sequence of the corresponding reset times as
ti where we also denote for convenience t0 := 0 and

tN := t (reset may or may not occur at t0 and tN - see
item (iv) of Remark 2). Let L > 1 be arbitrary and let
ρ∗ := min{ρ∗1, ρ∗2, ρ∗3} where ρ∗

i are defined in (12) and
consider an arbitrary ρ ∈ (0, ρ∗). Then, using Lemmas
1, 2 and 3 we can write:

a3

∫ t

0

y2(τ)dτ =

N−1
∑

i=0

∫ ti+1

ti

y2(τ)dτ

≤ LV (x(t0, 0)) − V (t1, 0) + γ ‖d[t0, t1]‖2
2

+

N−1
∑

i=1

(V (x(ti, i)) − V (ti+1, i) + γ ‖d[ti, ti+1]‖2
2)

≤ LV (x(t0, 0)) + γ
(

‖d[t0, t1]‖2
2 + ‖d[tN−1, tN ]‖2

2

)

+ V (x(tN−1, N−1))− V (x(tN , N−1))− V (t1, 1)

+

N−2
∑

i=1

(V (x(ti, i)) − V (ti+1, i + 1) + γ ‖d[ti, ti+1]‖2
2)

= LV (x(t0, 0)) − V (x(tN , N − 1)) + γ ‖d[t0, tN ]‖2
2

≤ LV (x(t0, 0)) + γ ‖d[t0, tN ]‖2
2

= LV (x(0, 0)) + γ ‖d[0, t]‖2
2

≤ a2L |x(0, 0)|2 + γ ‖d[0, t]‖2
2 ,

which completes the proof. �

Proof of Theorem 2: Let all the conditions of Theorem
2 hold and let ρ ∈ (0, ρ∗), where ρ∗, K come from the
theorem. We show that

x(ti, i) ∈ F =⇒ x(t, i) ∈ Fε t ∈ [ti, ti+1] . (43)

From (20) and the fact that |ẋ| ≤ |A||x| we have for all
t ∈ [ti, ti + ρ], i ≥ 0

V (x(t, i)) ≤ a2

a1
exp (|A|(t − ti)) V (x(ti, i)) (44)

‖x[ti, t]‖2
2 ≤

(t − ti)

a1
exp (|A|(t − ti)) V (x(ti, i)) . (45)

Introduce χ(x) := −xT Mx − ε|x|2. Then, we have that

for almost all x the following holds ∂χ
∂xAx ≤ |2(M +

εI)A||x|2. Integrating this expression along solutions of
the system, noting that χ(x(ti, i)) ≤ −ε|x(ti, i)|2 ≤
− ε

a2
V (x(ti, i)) and using (45), the definition of ϕ and the

fact that t−ti ≤ ρ ≤ ρ∗, we can write for all t ∈ [ti, ti+ρ]:

χ(x(t, i)) ≤ χ(x(ti, i)) + |2(M + εI)A| ‖x[ti, t]‖2
2

≤ − ε
a2

V (x(ti, i)) + |2(M+εI)A|
a1

ϕ(ρ)V (x(ti, i)) ≤ 0 .

If x(ti, i) ∈ F then x(t, i) ∈ Fε for all t ∈ [ti, ti + ρ],
which together with item (iii) of Remark 2 implies that
(43) holds. Note that (43) and (21) imply that for all
t ≥ t1, i ∈ N:

V (x(t, i)) ≤ exp

(

−a3

a2
(t − t1)

)

V (x(t1, 1)) . (46)
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We now show that a similar bound holds for t ∈ [t0, t1].
Using items (i) and (ii) of Remark 2 and Lemma 3 we
have for all t ∈ [t0 + ρ, t1]:

V (x(t, i)) ≤ e
−

a3
a2

(t−t0−ρ)
V (x(t0 + ρ, 0))

≤ e
a3
a2

ρ
e
−

a3
a2

(t−t0)
V (x(t0 + ρ, 0))

≤ e

(

a3
a2

+|A|
)

ρ
e
−

a3
a2

(t−t0)V (x(t0, 0))

≤ a1

a2
K2e

−
a3
a2

(t−t0)
V (x(t0, 0)) . (47)

Moreover, from (44) we can write for all t ∈ [t0, t0 + ρ]:

V (x(t, 0)) ≤ a2

a1
exp (|A|ρ) V (x(t0, 0)) (48)

≤ a2

a1
e

(

a3
a2

+|A|
)

ρ
e
−

a3
a2

(t−t0)V (x(t0, 0))

=
a1

a2
K2e−a3(t−t0)V (x(t0, 0)) .

Combining (46), (47), (48), (20) and (22) completes the
proof of Theorem 2. �

6 Conclusions

We provided Lyapunov like conditions that guarantee
L2 stability and exponential stability of a class of reset
systems, such as systems containing Clegg integrators.
Our results provide a theoretical framework for system-
atic analysis and controller design of reset systems and
they generalize the corresponding results in Beker et al.
(2004). An example illustrates that it is possible to im-
prove the L2 gain of a linear controller by a simple in-
troduction of resets.
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