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Abstract

Two integral versions of input to state stability are considered: integral input to state stabil-
ity (iISS) and integral input to integral state stabilty (iliSS). We present sufficient conditions that
guarantee that if a controller achieves semiglobal practical iISS (respectively iliSS) of an approx-
imate discrete-time model of a nonlinear sampled-data system, then the same controller achieves
semiglobal practical iISS (respectively iliSS) of the exact discrete-time model by reducing the sam-
pling period. Recent results on numerical methods for systems with measurable disturbances can be
used to generate approximate models that we consider. Results are presented for arbitrary dynamic
controllers that can be discontinuous in general.

1 Introduction

The main stumbling block in the controller design for nonlinear sampled-data systems appears to be the
absence of a good model for controller design even in the cases when the continuous-time plant model is
known. An approach for stabilization of sampled-data nonlinear system via their approximate discrete-
time models has been proposed in [10]. These results were further extended in [8] to cover plants modeled
as differential inclusions, dynamic controllers and stability with respect to arbitrary non-compact sets.
These papers provide a framework for controller analysis but they do not present recipes for controller
design. An example of control design within this framework can be found in [9] where backstepping
controllers were developed based on the Euler approximate model of strict feedback systems. Simulation
studies presented in [9] indicate that this approach may yield much better behaviour than the controller

design based on the continuous-time model followed by a discretization of the controller.

Since plants with disturbances are prevalent in control theory, there is a strong motivation to extend
the approach of [10, 8] to this class of plants. The first step in this direction was [7] where a framework for
input to state stabilization (ISS) of sampled-data nonlinear systems via their approximate discrete-time
models was presented. Input to state stability (see [12]) has found a widespread use in control theory

but it is just one of the possible types of stability for systems with disturbances that may be of interest.
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For instance, the less restrictive notion of integral input to state stability (iISS) (see [3, 2, 1, 13]) is

proving to be as useful as ISS.

It is the main purpose of this paper to present a framework for design of controllers based on ap-
proximate discrete-time models that achieve two integral versions of ISS: integral input to state stability
(iISS) and integral input to integral state stability (iliSS). Note that iISS was investigated in [1] in the
case when the exact discrete-time model of the plant is known. Our results are different since we do
not assume existence of the exact discrete-time model, which was a standing assumption in [1]. We
consider dynamic control laws that can be discontinuous in general and present sufficient conditions that
guarantee that if a controller achieves semiglobal practical iISS (respectively iliSS) for an approximate
discrete-time plant model, then the same controller achieves semiglobal-practical iISS (respectively iliSS)
of the exact discrete-time plant model. We emphasize that the semiglobal part of our iISS definition
is different from the one used in [2], whereas the “practical” iISS that we consider appears to be new
and we are not aware of related results. Our approach benefits from the results in numerical analysis

literature [14] and in particular from the recent results in [4, 5].

The paper is organized as follows. In Section 2 we present preliminaries and definitions needed in

the sequel. Section 3 contains main results and proofs are presented in Section 4.

2 Preliminaries

Sets of real and natural numbers are denoted respectively as R and N. A function v : Ryg = Ry is
of class-K if it is continuous, zero at zero and strictly increasing. It is of class-K if it is of class-KC
and unbounded. A function M is of class £ if it is continuous and A(s) decreases to zero as s — +00.
A continuous function 8 : R>o X R>g — R>q is of class-KL if §(-,7) is of class-K for each 7 > 0
and f(s,-) is of class £ for each s > 0. For a given function w : R>o — R", we use the following
notation: wrl[k] is the restriction of the function w(-) to the interval ¢ € [kT, (k + 1)T] where k € N
and T > 0; and w(k) is the value of the function w(-) at ¢t = kT,k € N. We denote the norms
llwr(k]|l ., = suP,eprr,(kt1yr) 1w(T)| and [|wl|, == sup, 5o |w(7)| and in the case when w(-) is a measurable
function (in the Lebesgue sense) we use the essential supremum in the definitions. If there exists r > 0
such that |lw|| , < 7 or f0°°7(|w(s)|)ds < r, with v € K, then we write respectively w € L (r) and
w € Ly(r).

Consider a continuous-time nonlinear plant with disturbances:



where x € R?, 4 € R™ and w € R? are respectively the state, control input and exogenous disturbance.
It is assumed that f is locally Lipschitz and f(0,0,0) = 0. The control is taken to be a piecewise constant
signal u(t) = u(kT) =: u(k), Vt € [kT,(k+ 1)T), k € N, where T > 0 is the sampling period. Also, we
assume that some combination (output) or all of the states (z(k) := x(kT)) are available at sampling
instant kT, k € N. The exact discrete-time model for the plant (1), which describes the plant behavior

at sampling instants kT, is obtained by integrating the initial value problem

&(t) = f(z(t), u(k), w(t)) , (2)

with given wr[k], u(k) and zo = z(k), over the sampling interval [kT, (k+ 1)T]. If we denote by x(t) the
solution of the initial value problem (2) at time ¢t with given zq = z(k), u(k) and wr[k] and t; := kT,
then the exact discrete-time model of (1) can be written as:

te+1
sk+1) = z(k)+ / F (@), u(k), w(r))dr

tr

=: Fr(z(k), u(k), wr[k]) . 3)

We refer to (3) as a functional difference equation since it depends on wr[k]. We emphasize that F¢ is
not known in most cases. Indeed, in order to compute F% we have to solve the initial value problem (2)
analytically and this is usually impossible since f in (1) is nonlinear. Hence, we will use an approximate

discrete-time model of the plant to design a controller.

Different approximate discrete-time models can be obtained using different methods. Recently, nu-
merical integration schemes for systems with measurable disturbances were considered in [4, 5]. Using

these numerical integration techniques we can obtain an approximate discrete-time model
z(k + 1) = Fp(x(k), u(k), wr[k]) , (4)

which is in general a functional difference equation. For instance, the simplest such approximate

discrete-time model, which is analogous to Euler model, has the following form z(k + 1) = =z(k) +

(k+1)T

T f(z(k),u(k),w(s))ds (see [5]). Since we will consider semiglobal stability properties (see Defi-

nition 4), we will think of F% and F% as being defined globally for all small T, even though the initial
value problem (2) may exhibit finite escape times (see discussion on pg. 261 in [10]).

The sampling period T is assumed to be a design parameter which can be arbitrarily assigned. Since
we are dealing with a family of approximate discrete-time models Ff, parameterized by T, in order to

achieve a certain objective we need in general to obtain a family of controllers, parameterized by T'. We



consider a family of dynamic feedback controllers

z(k+1) Gr(z(k), z(k)) (5)
u(k) = ur(z(k),2(k) ,

where z € R?=. To shorten notation, we introduce % := (27 27)7, # € R*#, where nz := n, + n, and

Fi(z,ur(z,2), wT)) _ (6)

Fi(&,wr) == ( Gr(o.2)

The superscript ¢ may be either e or a, where e stands for exact model, a for approrimate model. We

omit the superscript if we refer to a general model. We use the following:

Definition 1 wur is said to be locally uniformly bounded if for any Az > 0 there exist strictly positive

numbers T* and A, such that for oll T € (0,T*), |Z| < Az we have |ur(E)] < A,.

In order to prove our main results, we need to guarantee that the mismatch between Fj and Ff is small
in some sense. We define a consistency property, which will be used to limit the mismatch. Similar
definitions can be found in numerical analysis literature (see Definition 3.4.2 in [14]) and recently in
the context of sampled-data systems with disturbances (for instance, see [7]). In the sequel we use the

notation z = z(k), u = u(k), wr = wrlk].

Definition 2 The family F{ is said to be one-step consistent with Ff. if given any strictly positive real
numbers (Ag, Ay, Ay), there exist a function p € Ko and T* > 0 such that, for all T € (0,T*), all

z€R™, ueR™ we Lo with |z] < A,, |u| < Ay, |lwrlly < Ay, we have |Ff — F| < Tp(T).
Sufficient checkable conditions for one-step consistency are given next (for the proof see [7]).

Lemma 1 F§ is one-step consistent with F§ if the following conditions hold: 1. F§ is one-step con-
sistent with FEYeT (z, u,wr) := o + fk(;ﬂ)T f(z,u,w(s))ds; 2. given any strictly positive real numbers
(Ag, Ay, Ay), there exist p1 € Koo, T* > 0, such that, for all T € (0,T*) and all x1,x2 € R" with
max{|z1]|, |z2|} < Ag, all u € R™ with |u| < A, and all w € R with |lw| < A, the following holds

|f(.’L'1,’LL,’lU) - f(.Z'Q,’LL,’lU)l S P1(|-'171 - H72|)
The following lemma was proved in [3] and is needed in the sequel.

Lemma 2 Let p: R>9 =+ R>q be a continuous positive definite function. Then there exist p1 € Koo and

p2 € L such that p(r) > p1(r)p2(r),Vr > 0.



3 Main results

In this section we state and prove the main results of this paper. The first main result (Theorem 1)
presents sufficient conditions on the continuous-time plant model, the controller and the approximate
discrete-time plant model that guarantee that if the controller achieves semiglobal practical Lyapunov
iISS for the approximate model (see Definition 3), then the same controller would yield a semiglobal
practical iISS bound on the solutions of the exact discrete-time plant model (see Definition 4). The
second main result (Theorem 2) presents similar conditions for integral input to integral state stability.
We emphasize that examples in [10], where only stability of input-free systems was considered, show
that our results are close in some sense to being necessary. Indeed, we can find systems satisfying all but
one (arbitrary) condition of the above Theorems and the exact dicrete-time system is not semi-globally

practically stable.

In order to state the following two definitions, we consider the family of systems:
#(k +1) = Fr(z(k), wr[k]) . (7)

Definition 3 Suppose that the following property holds: there exist continuous functions oy, as, as and
7 € K and for any strictly positive real numbers (A1, As, Az, 1) there exist strictly positive real numbers
T* and L such that for all T € (0,T*) there exists a function Vy : R** — R>q such that for all € R
with |Z| < Ay and all w € Loo(A2) N L5(As) the following holds:

oy (|Z]) < Vr(F) < o2(|2])

~ k T .
AVr < —ag(|E]) + & [4TVT A(w(s)])ds + 61

where AVy = Vp(Fr(Z,wr)) — Vr(Z) and, moreover, for all x1,x5,z with |(;vf zT)T| , |(a:g zT)T| €

®)

[0,A1] and oll T € (0,T*), we have |Vr(z1,2) — Vr(x2,2)| < L|z1 — 22].

1. If the above property holds with a1, as € Koo and a continuous positive definite function as, then the
family of systems (7) is Lyapunov semiglobally practically integral input to state stable (Lyapunov-SP-
iISS). The function Vr is then called an iISS-Lyapunov function for the family Fr.

2. If the above property holds with oy, asz, a3 € Ko, then the family of systems (7) is Lyapunov semiglob-
ally practically integral input to integral state stable (Lyapunov-SP-iliSS). The function Vi is then called

an iliSS-Lyapunov function for the family Fr.
We note that iIiSS is strictly stronger property than iISS, as shown in [13] for continuous-time systems.

Definition 4 Suppose that there exist § € KL and a,v,x € K such that:

1. for any strictly positive real numbers (Az, Ay1, Aws,d) there exists T* > 0 such that for all T €



0,T%), |2(0)] < Az and w € Loo(Ay1) N Ly (Ay2), the solutions of the system exist and satisfy
ao|2(k)]) < B(E(0)|,kT) + f w(s))ds + 6,Vk € N. Then the family of systems (7) is said to
be semiglobally practically integral input to state stable (SP-iISS).

2. for any strictly positive real numbers (Az, Ay, d) there exists T* > 0 such that for all T € (0,T*),
|2(0)] < Az andw € Loo(Ay), the solutions of the system exist and satisfy Ef:o a(|2())T < x(|2(0)])+
fkT (lw(s)|)ds + Tké,Vk € N. Then the family of systems (7) is said to be semiglobally practically in-

tegral input to integral state stable (SP-iliSS).

The following theorem contains the first main result of this paper. It gives checkable conditions on the
approximate model, controller and the continuous-time plant model that guarantee that if a controller
achieves Lyapunov-SP-iISS of the approximate discrete-time plant model, the same controller would

achieve SP-iISS of the exact discrete-time plant model.

Theorem 1 Suppose that: (i) The family of approzimate discrete-time models F§ is Lyapunov-SP-iISS;
(ii) F% is one-step consistent with Ff.; (i) ur is uniformly locally bounded. Then, the family of exact

discrete-time models Ff. is SP-iISS.

The following theorem contains our second main result. It gives checkable conditions on the approximate
model, controller and the continuous-time plant model which guarantee that if a controller achieves
Lyapunov-SP-iliSS of the approximate discrete-time plant model, the same controller would achieve

SP-iliSS of the exact discrete-time plant model.

Theorem 2 Suppose that: (i) The family of approzimate discrete-time models F§ is Lyapunov-SP-
iliSS; (i) F% is one-step consistent with F%; (iii) ur is uniformly locally bounded. Then, the family of

ezact discrete-time models F§ is SP-iliSS.

Remark 1 We note that our main results allow the family of controllers to depend discontinuously
on states. Moreover, under mild conditions (see for instance results in [11]) it is possible to over-
bound also inter-sample bahaviour and to conclude from Theorem 1 that: there exist 3 € KL and
a,v € Ko such that for any strictly positive real numbers (Az, Ay1, Awe,d) there exists T* > 0 such
that for all T € (0,T*), |E(to)| < Az and w € Loo(Ay1) N L (Ay2), the solutions of the system satisfy
a(|Z(®)]) < B(|Z(to) )+ ft Nds + 8, Vt > t, > 0. A similar statement can be made for
1IiSS, where we could prove that trajectories of the sampled-data system satisfy in a semiglobal practical

sense the following bound ftto (|2(s)Dds < x(|Z(ts)]) + ft |)ds + 6t ¥Vt > t, > 0.



Remark 2 Similarly to results presented in [7], we may also start with an approzimate discrete-time
model of the plant for which we assumed that disturbances are constant during sampling intervals w(t) =
w(kT) = const.,Vt € [kT, (k 4+ 1)T),k € N. In this case, the approzimate and exact models will depend
on w(kT) (not on wrlk]) which means that they are difference equations (not functional difference
equations). It was shown in [7] that a “weak” form of consistency property can be stated in this case and
it can be used in a very similar manner to state a result similar to Theorem 1 or Theorem 2 except that
the bounds in Definition 4 would hold for a smaller class of disturbances whose derivatives also need to

be bounded. We did not pursue this direction for space reasons.

4 Proofs of main results

The following lemmas are used in the proof of Theorem 1 (proofs are given at the end of this section).

Lemma 3 Given any T > 0 and any continuous positive definite function p: R>o — R>q, there exists
a KL function with the following property. Suppose that y : N — R and a nondecreasing function
w : N = Ryo satisfy for all k € [0,k*) with 0 < k* < oo and all y, < A, where Ay > ¢; + ¢ the
following two conditions: (i) yr+1 < yr + c1; (i) yr > c2 = Yry1 — yr < —Tp(max{yy + wg,0}). Then
there exists 8 € KL such that for all yo < Ay, and all k € [0, k) the following holds:

Yr < B(Yo, kT) + wg +c¢1 +¢o . 9)

Lemma 4 Suppose that T > 0 and y : N — R satisfy the following inequality for all k € [0,k*)
Yk+1 — Y < —=Tp1(yx) - p2(2yx), where k* € NU {oo}, p1 € Koo is locally Lipschitz and ps € L. Then,
there exists 8 € KL such that the following holds yi, < B(yo,kT), Vk € [0,k*).

Proof of Theorem 1: Let a3 come from item (i) of Theorem and let gy € K and pga € L
be generated using Lemma 2 such that as(s) > p1(s) - pa(s),V¥s > 0. Let pi(s) := p1 o a; ' (s) and
pa(s) == paoa;(s), pi(s) == 2p1(s). Let 3 be generated via Lemma 4 using p} and p,. Let y(s) := 27(s)
and a(s) := a1 (s).

Let (Ag, Ayr, Ayz,8) be given. Define A; := a] ' (aa(Ay) + Aya +6) + 1, Ay := Ay and Ay :=
Ayo. Let 6, = %. Let (A1, A2, As3,6;) generate T and L via item (i) of Theorem, where
without loss of generality we can assume that L > 1. Let A; generate A, and Ty via item (iii) of
Theorem. Let (A1,Ay, Az) generate p and Ty via item (ii) of Theorem. Let T > 0 be such that
LT;p(TF) < min{1,¢} and Lp(T}) < 6;. Let & > 0 be such that a; '(a2(A,) + Az +6 +6) <

oy (a2(A,) + Az +6) + 3, and denote Ty := ﬁ. Denote T¢ := Wi)wl). Finally, we introduce



T* := min{Ty, Ty, T3, T, T, Tg }. To shorten notation we denote V¢ := Vp(Fg(Z(k),wlk])), V¢ :=
Vo (FE(&(k), w[k])) and Vi := V(Z(k)).

Consider now an arbitrary & such that Vi < aa(A;) + Ays + & (this implies |#x| < a7 (a2(A,) +
Ayz +90) < Ar), w € Log(A2) N L5(A3) and T € (0,7*). Using item (i) and our choice of T}, we can

write that:
(k+1)T
Ve Vis -Tas(lad)+ [ Alule)ds+ [V - Vil + Tor (10)
KT
From our choice of T we can write using item (i) of Theorem:
041(|(F:%,GT)|) < Ve < e+ T’?(Az) +T6 < OLQ(Aq;) +As3+d0+ S,
which implies from the definition of & that
(Ff,Gr)l < o H(a2(As) + A5 +6+3) < ot (a2(As) + A5 +6) +1/2 < A
and from our choice of T} and the fact that L > 1 we have:

(Ff,Gr)| < |(Ff,Gr)| + [(Ff,Gr) = (Ff,Gr)| < a7 H(a2(A;) + Ay +6) +1/2+ |Ff — F|

< oy (ae(Ar) + Az +8) +1=A .

Hence, using local Lipschitz condition of Vi in item (i), item (ii) and our definition of Ty, T3 and T}

we can write that:
|Vke _ Vka| < L|F7€, _F,;L,| < LTp(T) < Té; . (11)

From (10) and (11) and our definitions of p1, p» we can write:

(k+1)T
Ve-Ve < -Tam+ [ dllw(e)ds + T2
kT
and using the fact that p;(s)p2(s) > 46, for all s € [6/2,A;], we can write:

(k+1)T

> V-V —gn0ni+ [ s (12
kT

)
Vi 2 B
Moreover, using (10), (11) and the definitions of T} and Tg we can write:

6 4
Vke S Vka+ |Vke —Vka| S Vk + Z + Z - (13)

Introduce wy, := fOkT F(Jw(s)|)ds and define yy := V; — wy. Note that wy, is nondecreasing, wg = 0 and

Yo = Vo. Then we have from (12) and (13), with g(s) := p}(s)p=2(s) that

)
yert S Ykt g (14)
0 ~
Yk 25 = Ykt = Yo < —Tp(max{y, +wi, 0}) (15)



whenever y, < az(A;) + Az +d — Az. Note that since V3, > 0 and wr < Ao for all £ > 0, we
have that yr > —As,Vk > 0. Moreover, we show now by induction that y, € [0, a2(A;) + 0] implies
that yr < a2(A;) + 0,Vk > 0. Suppose that yr € [—As,a2(A;) + 6]. Then we have that either
Yk € [0/2,0a2(A;) + 6], in which case we have from (15) that ypr1 < yr < a2(A;) + J or we have that
yr € [-A3,d/2), in which case we have from (14) that yr4+1 < yr + /2 < § < az(A,) + 6. Hence, for
any yo € [0,a2(A;) + 8] we have that y, € [-As, a2(A;) + 6],Vk > 0 and therefore all conditions of
Lemma 3 hold with k* = co. We conclude from Lemma 3 with Ay = a2(Az) + 6, &1 = ¢2 = §/2 and
p(s) = pi(s)p2(s) that yr < B(yo,kT) + wi + § + &, Vk > 0, which implies (using the definition of y;

and the fact that yo = V,) that Vi < 8(Vo,kT) + 2w, + § , Vk > 0 and consequently
kT
(a0 < Blaa(z) k1) +2 [ A(uw(s))ds+ 8k >0,
0

which completes the proof.

Proof of Theorem 2: We first need to show that a suitable dissipation inequality holds along
trajectories of the exact discrete time model.
Claim: Given any triple (A, A,,d) of positive real numbers there exists T such that for any T € (0, T)
there exists a family of functions Vi (z) with a1 (|z|) < Vr(z) < az(]z|) and
(k+1)T
Vr(Fr (&, wr)) — Vr(#) < —Tas(|2]) + /kT Y(jw(s)[) ds + T4 (16)
for all |Z] < Ay, all w € Loo(Ay) -

To this end, consider a family of Lyapunov functions as in second part of Definition 3, which exists by

virtue of assumption (i). The following obvious upper-bound holds:
Vi =V SV =V + V7 =V . (17)

Let us assume T}, L and the family Vi as being generated by assumption (i) with the quadruple
A = max{Ag, a7 Haa(Az) +1) +1}, Ag := Ay, Az :=F(A,) and & := §/2. Let T < 1 without loss
of generality. Then, since A, < Ay and Lo(Ay) = Loo(A2) N L5(A3) for signals defined over a time
interval of less than 1 unit of time, we have that for all Z;s with |Z,| < A,, for all w € L (Ay) and all

T € (0,7T7)
(k+1)T
Ve — Vi < —Tas(|7k]) +/ 5(|w(s)|) ds + Té,. (18)
kT

Consider now the difference V)¢ — V}?|. In order to find a suitable bound we exploit the Lipschitzianity

conditions which come from Lyapunov SP-iliSS and from one-step consistency. Both of them can be



applied provided that T is sufficiently small; in fact, for all Z; and all w as in (18) we have
a1(|}7}|) < Vka < Vi + T(’?(Az) + 51) < OéQ(Am) +1< Ozl(Al) (19)

where the last inequality only holds for all T € (0,1/[(A;) + 61]). Notice that (19) is satisfied with

some margin, so that by exploiting (ii) and (iii) conditions of theorem we obtain:
\Fil < VFH +1Fp = F2l < apt(aa(Ag) + 1) + |Ff — Fp| < A (20)

where the last inequality holds provided that we consider T' € (0, min{7%.T5}), T3 being generated to-
gether with A, from assumption (iii), and T such that T5 p(T5) < 1 where p is generated by assumption
(ii) with the triple (Az, Ay, Ay). Combining (19) and (20) and exploiting the Lipschitz condition of Vr

together with one-step consistency we are able to conclude
Vi —=Vi'| < L|Ff — Fp| < LTp(T) < T4y, (21)

for all T € (0, T;) where T} is such that Lp(Ty) < 6,. We can now define T' = min{T}, T3, T, T, 1/[7(As)+
01]}, so that combining (17), (18) and (21) we get the desired dissipation inequality (16).

We show next how to derive SP-iliSS by adding over time the inequality in (16). Let (A,, A,,d) be
an arbitrary triple of positive reals. We generate the family of Lyapunov functions Vr in (16) by letting
A, =ar oazoaz  ([F(Ay) +8)+1, Ay = max{A,,7 'oas(A,)} and § = é. Notice that (16) implies:

(k+1)T
Vi (Fe(@r,wr)) = Vr(iy) < —Tazoay ' (Vr(ig)) + /kT F(w(s)])ds + T (22)
for all || < A,, all w € Lo(Ay). Pick an arbitrary & with |Z9| < A,. Then we have, by definition
of Ay, Vr(Z) < az(A;) < az0oaz(y(Ay) +6). Tt is by now a standard argument to show that
V(o) < azoaz ([7(Ay) +9]) yields Vir(3r) < a0 az* ([F(Ay) +6]), for all w € Loo(A,,) and as long

as (22) holds. This is a fortiori true also for all w € Log(Ay) C Loo(Ay).

Therefore, since this in turn implies |Z;| < A, we can show by contradiction that (22) actually holds

for all £ > 0. As a final step in the proof just take a sum of (22) from 0 to k in order to get:

k—1 k—1 kT
V(&) Z (Ve (Zig1) — Vo (Z;)) < —TZag oay ' (Vr(&;)) + / A(|w(s)|) ds + Tké.
i=0 =0 0
Since a1 (|z|) < Vr(z) < az(|z]), we can write:
k—1 k—1 KT
TY azoayoai(|#]) <T Y azoay (Vi) < / Y(lw(s)]) ds + Tké + az(|Zo])- (23)
i=0 i=0 0

Proof of Lemma 3: First we note that for all y, > ¢; we have from (ii) that yr4+1 < yi and if

Yk < co we have from (i) that yx41 <y + c1 < ¢1 + ¢2. Moreover, since A, > ¢; + ¢; we conclude that

10



the set {y : y < ¢1 + ¢2} is forward invariant, that is, yo < ¢1 + ¢2 implies yi, < ¢1 +¢o for all k € [0, k*).
Suppose now that A > yo > ¢1 + ¢c2 > 0. Define k; := min{k > 0 : yr < ¢1 + c2} (with k; = k* if
yr > ¢1 + ¢ for all k € [0,k*)). Hence, for all k > k; (if k1 < k*) we have that y; < ¢1 + ¢» since the
set {y : y < ¢1 + ¢2} is forward invariant and so (9) holds. Define now kg := min{k > 0 : yp < wy}
(with ko = ky if yr > wy, for all k € [0,k1)). Note that for all k£ € [0,k;) we have from (ii) that yy
is non-increasing and also recall wy, is assumed to be a nondecreasing function of time. Hence, for all
k € [ko, k1) (if ko < k1) we have that y; < wy and so (9) holds. Finally, consider k € [0, k). Note
that yr > wy > w; for all i € [0, k] and since y is non-increasing, we have that y; > yr > w; for all
such i. Therefore, 0 < y; < y; + w; < 2y; for all i € [0,k]. From Lemma 2 and (ii) we can write that
Yir1 — ¥i < =Tp1(yi)p2(2y;), Vi € [0,k]. From Lemma 4 we conclude that y; < B(yo,iT), Vi € [0, k]
and hence the bound (9) holds, which completes the proof.

Proof of Lemma 4: Consider an arbitrary y, and the corresponding sequence yi. We introduce a
new continuous and piecewise linear variable Vt € [kT p2(2yg), (k + 1)Tp2(2yx)), k € [0,k* — 1): n(t) =
yr + (m - k) (Yrs1 — yr), and we let p((k* — D)Tpa(2yr-—_1)) = yp-—_1 if k* # oo. Note that
(kT p2(2yr)) = yi for all k € [0,k*). Denote t* := k*T pa(2y~). Since 7 is continuous and piecewise
linear, it is differentiable for almost all ¢ € [0,¢*). Hence, we can write that for all ¢t € [kT p2(2yx), (k +

1)Tp2(2yx)), k € [0,k* — 1) we have:

0 = % < —pi(wr) (24)

Moreover, since yp+1 < yi for all k € [0, k*), we have n(t) < yy, for all t € [kT p2(2yr), (k+1)Tp2(2yr)), k €
[0,k* —1). We can conclude from (24) that 7(t) < —p1(n(t)), for a.a.t € [0,t*). Using the standard
comparison principle (see Proposition 2.5 in [6]) and since p; is assumed locally Lipschitz, we conclude
that there exists 81 € KL such that we have n(t) < Bi1(no,t), Vt € [0,t*). We let t = kT pa(2y) to
obtain yr < B1(Yo, kT p2(yx))- Since yp+1 < yk, k € [0, k* — 1) we conclude that y, < yo,Vk € [0,k*) and
we since py € L, we can write yx < B1(Yo, kT p2(yr)) < B1(yo, kTp2(yo)) =: B(yo, kT),Vk € [0,k*),
where it is easy to see that 3(s,t) := B1(s,tpa2(s)) € KL.
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