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Abstract

In this paper we provide analytical and numerical Lyapunov functions that prove stability and performance of a
First Order Reset Element (FORE) in feedback interconnection with a SISO linear plant. The Lyapunov functions
also allow to establish finite gain L2 stability from a disturbance input acting at the input of the plant to the plant
output. L2 stability is established by giving a bound on the corresponding L2 gains. The proof of stability and
performance is carried out by showing that the Lyapunov functions constructed here satisfy the sufficient conditions
in the main results of [25]. In the paper we also point out and illustrate via a counterexample an analysis subtlety
overlooked in the preliminary results of [27].

1 Introduction

First Order Reset Elements (FOREs) correspond to first order linear systems whose state is reset to zero whenever
the input and the state values have opposite signs. First order reset elements were first introduced in [16] as a
generalization of the so-called Clegg integrator [10, 19] which is the special case of a FORE having its pole at the
origin. Despite their early origins (the first scheme of [10] was presented still in the analog controllers era), reset
controllers didn’t capture much attention until recent years. A nice summary of the early research results on reset
control systems is given in the recent paper [7].

Reset controllers reach beyond the use of classical linear and nonlinear control schemes because the state response
of the closed-loop is a discontinuous function of time (due to the occurrence of resets). If on one hand this fact becomes
a difficulty for the analysis of stability and performance, on the other hand, it is a peculiarity that may allow in certain
cases to achieve performance specifications that overcome the intrinsic limitations of classical control architectures (see
[3, 12]). A nice feature of reset control systems is that they are well described as hybrid systems, namely systems
whose dynamics are governed by the combination of a flow map of the type ẋ = f(x, v), only active in certain subsets
of the state space, called the flow set and a jump map of the type x+ = g(x, v) which is active in another subset of the
state space, called the jump set. A necessary requirement of the corresponding description is that the union of the flow
and the jump set coincides with the whole state space, so that a jump or a flow rule will be available for any initial
condition, even though this is not yet sufficient to guarantee forward completeness (therefore existence of solutions).
In fact, the matter of existence of solutions for hybrid systems in general and reset systems as a special case has been
addressed in many different ways in the recent literature and one of the main issues is to rule out solutions that jump
infinitely many times on compact time intervals (the so-called Zeno solutions).

Several approaches have been taken in the recent literature to model control systems involving FOREs, so that
formal statements about their stability and performance could be proved. Some recent works (see, [17, 15, 8]) rely on
explicit characterization of the reset time, but this only applies to second order systems. For higher order systems, the
trajectories are seen as a patching of different pieces between reset times (this is why Zeno solutions need to be ruled
out) and patching them together (see, [14, 9, 4]). In [25, 27], we proposed a novel interpretation of reset systems, both
in terms of the characterization of the flow and jump sets and in terms of the notation used to characterize the hybrid
systems dynamics. In particular, for the first time, we recognized in [27] that the analog circuit first proposed in [10]
for the Clegg integrator was forced to reset in half of the state space, so that trajectories were not allowed to flow in
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a very large set. Moreover, adopting the hybrid representation for solutions proposed in [13], allowed us to cast the
problem of exponential stability as a problem of robust exponential stability (where the distance between solutions
was redefined, as in [13] relying on hybrid domains). This new framework allowed us to introduce novel stability and
performance conditions for FORE control systems and to establish for the first time results about exponential stability
and L2 performance of reset systems that would be exponentially stable without resets (see [25, 27] for details). Similar
approaches were later also adopted in [26, 1, 21, 20, 2], leading to further results in the context of reset control systems.

In [25, 27] we addressed and solved the problem of Zeno solutions by introducing the so-called “temporal regu-
larization” within the dynamic equations. Temporal regularization, also used in [18, 8], corresponds to not allowing
resets unless a certain time interval ρ > 0 has passed since the last reset. It is straightforward that updating the jump
and flow rules with this extra constraint referring to a new state variable τ(t) whose flow equation is τ̇ = 1 rules out
Zeno solutions because in any compact time interval of length T there can be no more than T/ρ resets. The same
technique will be used here.

The initial ideas developed in [24, 27] led to two main research directions. A first one mainly focused on properties
of planar reset systems whose desirable properties allowed to conclude useful results on higher order reset systems
having minimum phase relative degree 1 plants. Those results are reported in [23] which summarizes a number of recent
conference papers. A different direction corresponds to addressing the stability and performance of the control system
with FOREs by directly constructing a Lyapunov function for the closed-loop. This approach led to a few analytic
Lyapunov functions capable of addressing FOREs controlling an integrator (namely a simple planar system) reported
in [28] and summarized here and to a class of quadratic and piecewise quadratic Lyapunov functions reported in [27]
and revisited and improved here. In particular, we further develop on the piecewise quadratic Lyapunov construction
of [27] pointing out a subtlety in the Lyapunov conditions and the corresponding analysis, which calls into question
the result in [27, Theorem 3]. The potential pitfalls of ignoring this subtlety are illustrated here by a simple example
for which the piecewise quadratic construction of [27] leads to a function satisfying all the required conditions, even
though the closed-loop system generates diverging trajectories. This example is however only illustrative and cannot
be taken as a counterexample because it does not completely fit into the framework used in [27] and also used here.
We also propose in this paper a new set of Lyapunov conditions, solving the subtlety of [27] while still being capable
to establish exponential and L2 stability. In particular, we show on other examples that there are cases when the
construction proposed here leads to substantially the same exponential stability conclusions and L2 gain bounds.

The paper is structured as follows: in Section 2 we give the fundamental equations of a SISO control loop with a
linear plant and a FORE. In Section 3 we illustrate the analytic construction of Lyapunov functions for a FORE con-
trolling an integrator, in Section 4 we discuss and extend the quadratic and piecewise quadratic numerical constructions
and in Section 5 we illustrate the results on three simulation examples.

2 FORE SISO control loops

Consider a strictly proper SISO linear plant whose dynamics is described by

P
{

ẋp = Apxp + Bpuu + Bpdd,
y = Cpxp,

(1)

where u ∈ R is the control input, d ∈ R
nd is an L2 bounded disturbance input, y ∈ R is the measured plant output

and Ap, Bpu, Bpd and Cp are matrices of appropriate dimensions.
For the plant (1), assume that a control system is designed with a FORE element described by the following

dynamics:

FORE

{

ẋr = λrxr + v, if vxr ≥ 0
x+

r = 0, if vxr ≤ 0,
(2)

Interc′n

{

u = kxr,
v = −y

(3)

where k denotes the loop gain and λr ∈ R denotes the pole of the FORE. Note that λr can be any real number (including
positive ones) while k should be positive. For example, choosing k = 1 and λr = 0 corresponds to implementing in
the FORE the well known Clegg integrator introduced in [10] and recently discussed in [27, 23] using the notation
adopted here. The closed-loop system (1), (2), (3) is of interest because it falls into the category of linear reset control
systems that received much attention in recent years (see [4, 25] and references therein). For example, in [3] it was
shown that this type of control architecture can overcome intrinsic limitations of linear control.

The closed-loop (1), (2), (3) is such that each state in the subspace X0 := {(xp, xr) : xr = 0} belongs both to the
flow and to the jump set (indeed in that subspace xry = 0). Moreover, the subspace X0 has the peculiarity that each
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point in it is invariant with respect to jumps, namely for each x̄r ∈ X0, we have x̄+
r = x̄r. As a consequence, regardless

of the controller and plant dynamics, the FORE control system (1), (2), (3) exhibits Zeno solutions that jump infinitely
many times at the same nonzero value of the state. To avoid this non converging Zeno behavior and allow to establish
useful exponential stability properties of the FORE control system, (see, [13, 25]), the overall closed-loop system
is augmented with temporal regularization namely with a timer τ ensuring that between two consecutive resets (or
jumps) there is a minimum dwell time ρ. Then the closed-loop system is described by the following equations, where
x = [xT

p xr]
T ∈ R

n:

τ̇ = 1,
ẋ = Ax + Bdd,

}

if xT Mx ≥ 0 or τ ≤ ρ,

τ+ = 0,
x+ = Arx,

}

if xT Mx ≤ 0 and τ ≥ ρ,

y = Cx

(4)

where A denotes the flow matrix, Ar denotes the reset matrix and M characterizes the flow and the jump sets (note
that these two sets have their boundaries in common). Based on the values in (1), (2) and (3), the matrices in (4) are

[

A Bd

C

]

=





Ap Bpuk Bpd

−Cp λr 0
Cp 0



 (5a)

[

Ar M
]

=

[

I 0 0 −CT
p

0 0 −Cp 0

]

(5b)

In this paper we provide analytical and numerical Lyapunov constructions to analyze the exponential and L2

stability from d to y of (4), (5).

3 Gain estimation via analytic construction of Lyapunov functions

3.1 Background

One of the big advantages of the model introduced in Section 2 and adopted in [25, 27] stands in the fact that the
search for Lyapunov functions guaranteeing stability and performance properties can be carried out by imposing the
flow condition in the subset of the state space where the system flows and only imposing a decrease condition along
jumps in the subset where jumps are allowed to happen (this condition is typically weaker than the flow one). In
[25] this intuition is formalized in terms of Lyapunov-based results for a general class of reset systems. Those results
allow us to establish exponential stability of the closed-loop and L2 performance properties. The main result of [25]
can be written as follows for the special reset control system in (4), when only focusing on second order homogeneous
Lyapunov functions.

Proposition 1 [25] Consider the reset control system (4) with the matrix selection (5). Assume that there exists a
locally Lipschitz function V (x) := xT P (x)x, and strictly positive constants a1, a2, γ, εM and εS, such that

1. a1|x|2 ≤ V (x) ≤ a2|x|2 for all x ∈ R
n,

2. P (λx) = P (x) = PT (x) > 0 for all x ∈ R
n and for all λ ∈ R,

3.
∂V (x)

∂x
(Ax + Bdd) + εS |x|2 +

1

γ
|y|2 − γ|d|2 < 0, for almost all x such that xT (M + εMI)x ≥ 0,

4. V (Arx) − V (x) ≤ 0 for all x such that xT Mx ≤ 0.

Then there exists a small enough ρ∗ > 0 such that for any fixed ρ ∈ (0, ρ∗), the FORE control system (4) is exponentially
stable and has a finite L2 gain from d to y which is smaller than γ.

Remark 1 The condition at item 2 corresponds to requiring that the Lyapunov function is homogeneous of degree
two. The condition at item 3 corresponds to requiring that in a set that is slightly larger than the flow set the Lyapunov
function is a disturbance attenuation Lyapunov function for the input w and the output y. The condition at item 4
corresponds to requiring that the Lyapunov function does not increase along resets. As compared to the main result
in [25], Proposition 1 does not explicitly require that immediately after the resets the closed-loop state belongs to the
flow set. Indeed, since resets will always drive the FORE state to zero, the state after reset will necessarily belong to
the flow set (by the structure of M) and no extra requirement is needed on the resetting strategy. ◦
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3.2 Explicit Lyapunov functions for FORE controlling an integrator plant

This results of Proposition 1 can be exploited to analytically construct a Lyapunov function by first focusing on the
flow set and designing a suitable shape to guarantee decrease along flows and then patching the Lyapunov level sets
with an extra piece which satisfies the jump condition in the rest of the state-space. We address here the simple, yet
very relevant case of a FORE connected to an integrator plant. This planar system has been widely studied in the
literature and its improved L2 performance properties are here characterized by way of a pair of analytic Lyapunov
functions. The bounds corresponding to equation (7) are graphically represented in Figure 7 in Section 5, where they
are compared to the bounds obtained by using the numerical optimization tools of Section 4.

Theorem 1 Given any λr ∈ R, Consider the closed-loop between the integrator plant

ẏ = u + d, (6)

and the FORE (2), (3) with k = 1. Then there exists a Lyapunov function V (·) which satisfies the conditions in
Proposition 1 and, as ρ → 0, gives a bound (depending on the FORE’s pole λr) for the L2 gain estimate from d to y
arbitrarily close to the following value:

γ(λr) ≤











2

|λr|
+ |λr|, if λr < 0,

max

{

π

2
,

2π

4 + πλr

}

, if λr > − 4

π
.

(7)
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Figure 1: Level sets of the two Lyapunov functions proposed in Theorem 1 (solid) and trajectories of the closed-loop
selecting θǫ = 0.05 (dashed). Left: λr = −1. Right: λr = 1. The gray zones correspond to the jump set (first and
third quadrants) while the white zones correspond to the flow set (second and fourth quadrants).

Sketch of the proof. The proof relies on Proposition 1 and is only sketched here (see [28] for details). It consists in
proposing two candidate Lyapunov functions (one for each one of the two bounds in (7)). In particular, as illustrated
in the level sets reported in Figure 1, both functions are defined as follows:

V (x) :=

{

Vf (x), if xT Mθε
x ≥ 0,

xT P̂ x, if xT Mθε
x ≤ 0,

(8)

where x := [y xr]
T , θǫ is a small enough angle and Mθǫ

:=
[

sin(2θǫ) −1
−1 sin(2θǫ)

]

is associated with the inflated upper left

and lower right regions bounded by the dashed lines in Figure 1; these correspond to the second and fourth quadrants
inflated by an angle θǫ. Given the selection (8), each bound in (7) arises from selecting a smooth Vf (·) which is positive

definite in {x : xT Mθε
x ≥ 0}. Moreover, the matrix P̂ is selected so that continuity of V (·) is ensured and the jump

condition at item 4 of Proposition 1 is satisfied (this is always possible for any smooth Vf (·) which is positive definite

in {x : xT Mθε
x ≥ 0} and for a small enough θε). In particular, we pick P̂ diagonal with the following diagonal

entries:
[

p̂1

p̂2

]

=

[

cos2 θε sin2 θε

sin2 θε cos2 θε

]−1 [

v1

v2

]

(9)
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where v1 := Vf ((cos θε, sin θε)) and v2 := Vf ((sin θε, cos θε)) are the values of Vf (·) on the patching hyperplanes. With
this selection continuity at the patching surfaces is guaranteed. To see this, consider for example the patching surface
x = (xr, y) = (cos θε, sin θε) (the other one follows similar steps). Using (9) it follows that

xT P̂ x =

[

cos θε

sin θε

]T [

p̂1 0
0 p̂2

] [

cos θε

sin θε

]

=
[

cos2 θε sin2 θε

]

[

p̂1

p̂2

]

= v1

= Vf ((cos θε, sin θε)) = Vf (x).

Based on (8), to prove the first bound in (7) the following selection is made:

Vf (x) := xT Px := xT

[

− 2+λ2

r

λr
1

1 − 2
λr

]

x, (10)

while for the second bound in (7), the function Vf is selected in terms of a polar coordinate system (r, θ) satisfying
(y, xr) = (r cos θ, r sin θ):

Vf :=

{

1
2r2

(

θ − π
2 + 1

2 sin 2θ + ϕǫ(θ)
)

, if θ ∈
[

π
2 − θε, π + θε

]

,
1
2r2

(

θ − 3π
2 − 1

2 sin 2θ + ϕǫ(θ − π
2 )

)

, if θ ∈
[

3π
2 − θε, 2π + θε

]

,
(11)

where ϕǫ(θ) = ǫ
(

1
2 max{|λr|,1} − sin θ cos θ

)

and ǫ is a small enough positive constant. •
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Figure 2: Simulations of step responses of closed-loops between FOREs and an integrator for different values of λr.

Remark 2 (From intuition to formalization) The results of Theorem 1 correspond to the mathematical formalization
of the following intuitive reasoning about the closed-loop (2), (3), (6) with k = 1. Since the plant is an integrator,
then the linear part of the control system will always correspond to trajectories that move from the second to the
first quadrant and (symmetrically) from the fourth to the third quadrant performing some sort of clockwise spinning
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around the origin. In addition, whenever the closed loop poles are complex, trajectories are actually spirals because
they also move from the first quadrant to the fourth one and (symmetrically) from the third to the second one. The

closed-loop poles can be explicitly computed as a function of λr and they correspond to s1,2 =
λr±

√
λ2

r−4

2 . More
specifically, λr = 0 corresponds to closed trajectories (circles in the phase plane), small λr < 0 leads to exponentially
stable trajectories spinning inward toward the origin and small λr > 0 leads to exponentially unstable trajectories
spinning outward toward infinity. When resets come to place, any of these stable and unstable trajectories will be
blocked when it approaches the second and fourth quadrant, and will be reset to zero, no matter what the value of λr

is. This intuitively explains the conclusion about exponential stability established in Theorem 1. Let’s consider now
the bounds on the L2 gain from d to y. Large negative values of λr will correspond to exponentially stable branches of
trajectories that move very slowly toward the resetting quadrants, therefore the L2 gain of the corresponding closed-
loops will be larger as λr becomes more negative (see also the very left of Figure 7). The decreasing trend of the gain
as λr approaches zero only occurs up to a certain point in the linear case because the linear trajectories approach the
unstable cases (occurring with λr > 0). Conversely, in the reset case, the branches approaching the reset quadrants
become increasingly fast and steep, even for positive values of λr. The corresponding gain becomes then smaller.
This trend is easily understood by inspecting the simulations of Figure 2, where several step responses (corresponding
to increasing values of λr) are reported. From these simulations it becomes evident that as λr approaches +∞, the
step responses approach a step output (so that the gain is expected to approach zero) because they correspond to
an increasingly fast exponentially unstable branch up to the desired set-point, followed by a constant branch. The
decreasing trend of the gain as λr approaches +∞ is confirmed by the numerical results reported in Figure 7 of
Section 5 with reference to Example 2, whereas the bound provided by our Lyapunov approach is non decreasing. An
analytical proof of the fact that the gain approaches zero as λr approaches +∞ has been given in [22, 23] when using
a slightly modified closed-loop which ensures strict decrease along jumps thereby relaxing the requirement to inflate
the set where the flow condition holds. ◦

4 Gain estimation via numerical construction of quadratic and piecewise

quadratic Lyapunov functions

An alternative construction to the analytic one considered in the previous section can be followed by relying on
numerical tools implementing convex formulations of optimization strategy aimed at minimizing the gain estimate
when using quadratic and piecewise quadratic Lyapunov functions. Then the stability and performance conditions in
the flow and the jump sets can be formulated as linear matrix inequalities (LMIs).

4.1 Quadratic Lyapunov construction

The following theorem which establishes the existence of a single quadratic Lyapunov function satisfying the conditions
of Proposition 1, namely the same quadratic function satisfies the flow condition in the flow set and the jump condition
in the jump set. This theorem was also reported without proof in [25, Proposition 1], for illustration purposes.

Theorem 2 (Quadratic Lyapunov conditions) Consider the reset control system (4) with the matrix selection (5). If
the following linear matrix inequalities in the variables P = PT > 0, τF , τR ≥ 0, γ > 0 are feasible:





AT P + PA + τF M PBd CT

⋆ −γI 0
⋆ ⋆ −γI



 < 0,

AT
r PAr − P − τRM ≤ 0,

(12)

Then there exists a small enough ρ∗ > 0 such that for any fixed ρ ∈ (0, ρ∗), the FORE control system (4) is exponentially
stable and has a finite L2 gain from d to y which is smaller than γ.

Proof. Consider the quadratic Lyapunov function V (x) = xT Px, where P is given by the LMIs (12). We show next
that this function satisfies the four items of Proposition 1.
Items 1 and 2. They follow in a straightforward way because P is constant symmetric and positive definite.
Item 3. Since the first inequality in (12) is strict, there exists a small enough ǫ > 0 such that





AT P + PA + τF (M + ǫI) PBd CT

⋆ −γI 0
⋆ ⋆ −γI



 < 0. (13)
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Pick now εM and εS small enough to satisfy ǫ = εM + εS/τF . By applying the S-procedure and a Schur complement
(see, e.g., [6]), we get

∂V (x)

∂x
ẋ + εS |x|2 +

1

γ
|y|2 − γ|d|2 < 0, if xT (M + εMI)x ≥ 0.

Item 4. By applying the S-procedure to the second inequality in (12), we get

xT (AT
r PAr − P )x ≤ 0, if xT Mx ≤ 0,

which corresponds to item 4 evaluated for V (x) = xT Px. •
Although the LMI results in Theorem 2 can be a useful tool for establishing the stability and performance of a

FORE control system, there are severe limitations to what can be shown using that convex relaxation of the condition
in Proposition 1, mainly arising from the conservativeness associated with the use of quadratic Lyapunov functions. 1

Indeed, it is possible to show that the conditions (12) are never feasible if the FORE element is not exponentially
stable. As an example of this, consider the case of a FORE controlling an integrator studied in Section 3. With all
the external signals at zero, we have during flow:

ẏ = kxr

ẋr = λrxr − y.

Consider a quadratic Lyapunov function V (x) = [ y
xr

]
T

[

p11

p12

2
p12

2
p22

]

[ y
xr

] and its derivative along the system flow:

V̇ (x) = −p12y
2 + (p12k + 2p22λr)x

2
r + (2p11k + p12λr − 2p22)xry,

Due to the shape of the flow set, we need V̇ (x) < 0 both when xr = 0, which requires p12 > 0 and when y = 0, which
requires p12 < 0 because k, p22 > 0 and λr ≥ 0 by assumption. The result follows from the contradiction that p12

needs to be both positive and negative.
Based on the above reasoning, the result of Theorem 2 does not appear to be good to prove useful stability and

performance properties induced by resets on an otherwise unstable linear closed-loop. Indeed, with an integrating
plant the corresponding LMIs are infeasible exactly when the linear closed-loop system stops being exponentially
stable (despite the fact that, based on Theorem 1 we know that the reset closed-loop is exponentially stable for any
positive or negative λr).

4.2 Piecewise quadratic Lyapunov construction

The most natural relaxation of the quadratic conditions of Theorem 2 consists in piecewise quadratic conditions where
several quadratic functions are selected in different cones of the state space and patched together to form a unique
piecewise quadratic function. The arising patched function is continuous as long as the quadratic functions coincide
at the patching surfaces and is homogeneous of degree two because the patching surfaces are cone boundaries. In
general, piecewise quadratic relaxations of convex quadratic conditions lead to non convex formulations that do not
correspond to LMIs. However, in our case, it is possible to write convex conditions by exploiting the special structure
of the flow and jump sets.

As shown in Figure 3, the proposed Lyapunov function is patched on suitable sectors of the (xr, y) plane. More
specifically, assume first that the plant (1) is in observability canonical form (so that Cp = [0 · · · 0 1]). Then,
given N ≥ 2 specifying the total number of sectors in the partition and a small value θǫ > 0, denote the patching

angles −θǫ = θ0 < 0 < θ1 < · · · <
π

2
< θN =

π

2
+ θǫ (for example, in our case studies we select θi = i

N
π
2 , for all

i ∈ {1, . . . , N − 1}). Then, for each i ∈ {0, . . . , N}, define the patching hyperplanes generated by those angles as

Θi =
[

01×(n−2) sin(θi) cos(θi)
]T

, (14a)

and their orthogonal matrices Θi⊥ (so that ΘT
i⊥Θi = 0) as

Θi⊥ :=

[

I 0 0
0 cos(θi) − sin(θi)

]T

. (14b)

1The conservativeness of quadratic Lyapunov results is actually a well known fact also in other nonlinear control research areas.
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Figure 3: The type of piecewise quadratic Lyapunov functions constructed in Theorem 3.

Based on the patching hyperplanes, also define the sign indefinite matrices characterizing each sector between two
patching surfaces as

S0 := Θ0Θ
T
N + ΘNΘT

0

Si := −(ΘiΘ
T
i−1 + Θi−1Θ

T
i ), i = 1, . . . , N,

Sǫ1 :=





0(n−2)×(n−2) 0 0
0 0 sin(θǫ)
0 sin(θǫ) −2 cos(θǫ)





Sǫ2 :=





0(n−2)×(n−2) 0 0
0 −2 cos(θǫ) sin(θǫ)
0 sin(θǫ) 0



 .

(14c)

so that, with reference to Figure 3, x ∈ Si, namely in the section of state-space spanned by θ ∈ [θi, θi+1] whenever
xT Six ≥ 0. Similarly, S0 and Sǫ1, Sǫ2 characterize the cones of Figure 3 corresponding to the strict subset of the jump
set and to the two shaded regions close to the horizontal and vertical axes, respectively. Based on this parametrization
of the partition by way of θi, i = 0, . . . , N , the following theorem can be stated.

Theorem 3 (Piecewise quadratic Lyapunov conditions) Consider the reset control system (4) with the matrix selection
(5). Assume (without loss of generality) that the plant (1) is in observability canonical form (so that Cp = [0 · · · 0 1]).

Choose any N ≥ 2 and any θǫ > 0. For any selection of θi, i = 0, . . . , N such that −θǫ = θ0 < 0 < θ1 < · · · <
π

2
<

θN =
π

2
+ θǫ, define the matrices in (14) and Z = [In−2 0(n−2)×2].

If the following linear matrix inequalities in the variables Pi = PT
i > 0, τFi ≥ 0, i = 1, . . . , N , P0 = PT

0 > 0,
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τJ , τǫ1, τǫ2 ≥ 0, γ > 0 are feasible:





AT Pi + PiA + τFiSi PiBd CT

⋆ −γI 0
⋆ ⋆ −γI



 < 0, i = 1, . . . , N, (15a)





Z(AT P0 + P0A)ZT ZP0Bd ZCT

⋆ −γI 0
⋆ ⋆ −γI



 < 0, (15b)

AT
r P1Ar − P0 + τJS0 ≤ 0 (15c)

AT
r P1Ar − P1 + τǫ1Sǫ1 ≤ 0 (15d)

AT
r P1Ar − PN + τǫ2Sǫ2 ≤ 0 (15e)

ΘT
i⊥ (Pi − Pi+1)Θi⊥ = 0, i = 0, . . . , N − 1, (15f)

ΘT
N⊥(PN − P0)ΘN⊥ = 0 (15g)

then there exists a small enough ρ∗ > 0 such that for any fixed ρ ∈ (0, ρ∗), the FORE control system (4) is exponentially
stable and has a finite L2 gain from d to y which is smaller than γ.

Remark 3 An interpretation of the LMIs (15) will be useful. The piecewise quadratic Lyapunov function arising
from Theorem 3 is obtained by patching together N quadratic functions (characterized by the matrices P1, . . . , PN )
defined in the (inflated) flow set and one quadratic function (characterized by the matrix P0) in the jump set, as
represented in Figure 3. Note that in most of the state space either a flow or a jump condition needs to be satisfied,
except for the dashed sectors in the figure, where both the jump and flow conditions are enforced by (15). The level
set sketched in Figure 3 represents a possible solution arising from the LMI constraints. In particular, conditions
(15f), (15g) ensure that the Lyapunov function is continuous on the patching surfaces. Moreover, condition (15c)
enforces the jump condition from the set S0, condition (15d) enforces it from the set Sǫ1 corresponding to the portion
of the set S1 overlapping with the jump set, and similarly for condition (15e) and Sǫ2. Conditions (15a) ensure that
the proposed Lyapunov function is a disturbance attenuation Lyapunov function everywhere except for S0. Finally,
condition (15b) ensures that the function xT P0x used in the jump set is a disturbance attenuation Lyapunov function
at the boundary with the flow set consisting in the origin of Figure 3, namely the set where (xr, y) = (0, 0). ◦

Remark 4 For implementation purposes, the LMI constraints (15) can be solved via an auxiliary LMI problem
consisting of only strict linear matrix inequalities. In particular, it is first useful to impose Pi > ζI, i = 0, . . . , N ,
where ζ is a positive number small enough not to make the L2 gain estimate too conservative (we selected ζ = 0.001
for our example studies). Then a very small tolerance ε can be fixed (for our examples we used ε = 10−10) and the
non strict LMIs (15c), (15e) can be replaced by the strict LMIs

AT
r P1Ar − P0 + τJS0 < 0

AT
r P1Ar − PN + τǫ2Sǫ2 < 0

(16)

while the nonstrict LMI (15d) should be broken in the following two conditions

−
[

01×(n−1) 1
]

P1





0(n−2)×1

1
0



 + τǫ1 sin(θǫ) < 0 (17)





−εI
[

In−2 0(n−2)×2

]

P1

[

0(n−1)×1

1

]

⋆ −ε



 < 0. (18)

Finally, the equality constraints (15f) can be replaced by the LMIs

[

−εI ΘT
i⊥ (Pi − Pi+1) Θi⊥

⋆ −εI

]

< 0,

(and similarly for (15g)). The arising solutions will satisfy the LMIs (15) up to a very small tolerance (proportional to
the size of ε). This can be shown by slightly twisting the arising matrices to enforce the required continuity constraints
using the tools given in Appendix A. ◦
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Proof of Theorem 3 The proof follows the same steps as the proof of Theorem 2, even though the technicalities are
more involved because the Lyapunov function that we are considering here is piecewise quadratic instead of simply
quadratic.

The following fact, whose proof is straightforward, will be useful to simplify the proof of the theorem.

Fact 1 Consider two sets

SA := {x : xT MAx ≥ 0}
SB := {x : xT MBx ≥ 0}

then, for any τA > 0, τB > 0, the set

SAB := {x : xT (τAMA + τBMB)x ≥ 0}

satisfies SA ∩ SB ⊆ SAB ⊆ SA ∪ SB.

Define the following cones in R
n:

Si := {x : xT Six ≥ 0}, i = 0, . . . , N,

Sǫi := {x : xT Sǫix ≥ 0}, i = 1, 2.

By applying a Schur complement and the S-procedure, equations (15a) imply that

d(xT Pix)

dx
ẋ +

1

γ
|y|2 − γ|w|2 < 0, ∀x ∈ Si, i = 1, . . . , N. (19)

Moreover, denote by x1 the first n − 2 components of the state x and by x2 = [ y
xr

] the last two components,
so that x = [ x1

x2
]. Then, by Finsler’s lemma [11], and performing a Schur complement, condition (15b) implies that

d(xT P0x)
dx ẋ + 1

γ |y|2 − γ|w|2 < 0 for all x = [ x1

0 ] with x1 ∈ R
n−2. By continuity and since the inequality in (15a) and

(15b), are strict, it follows that there exists ǫ̂1 > 0 such that in the set

Ŝ1 := {x : |x2| ≤ ǫ̂1|x1|}
= {x : xT M̂1x ≥ 0}, M̂1 =

[

ǫ̂1In−2 0
0 −I2

]

,
(20)

the following flow condition holds:

d(xT Pix)

dx
ẋ +

1

γ
|y|2 − γ|w|2 < 0, i = 0, . . . , N. (21)

Define also the following set:

Ŝ2 :=
⋃

i=1,...,N

Si

= {x : xT M̂2x ≥ 0}, M̂2 =

[

0(n−2)×(n−2) 0

0
[

ǫ̂2 −1
−1 ǫ̂2

]

]

,
(22)

where it can be verified after some calculations that ǫ̂2 = sin(2θǫ).
Consider the following candidate Lyapunov function

V (x) := xT Pix, if x ∈ Si, i = 0, . . . , N (23)

which covers the whole space R
n because by definition

⋃

i=0,...,N

Si = R
n. Then note that by equation (21) the function

V (·) satisfies the flow condition for all x ∈ Ŝ1 defined in (20). Moreover, by (19), V (·) satisfies the flow condition for
all x ∈ Ŝ2 defined in (22). Consider now τ̂ = ǫ̂2

1+ǫ̂1
> 0 and note that τ̂ M̂1 + M̂2 = M + ǫI, where ǫ = ǫ̂1ǫ̂2

1+ǫ̂1
> 0. Then

by Fact 1, the flow condition is satisfied in {x : xT (M + ǫI)x ≥ 0} ⊆ Ŝ1 ∪ Ŝ2 and the flow condition at item 3 of
Proposition 1 is satisfied.

Regarding the jump condition, observe that, by construction, S0 ∪ Sǫ1 ∪ Sǫ2 coincides with the jump set, namely

S0 ∪ Sǫ1 ∪ Sǫ2 = {x : xT Mx ≤ 0}. (24)
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Moreover, by the S-procedure, equations (15c), (15d) and (15e) respectively imply that

AT
r P1Ar − P0 ≤ 0, ∀x ∈ S0,

AT
r P1Ar − P1 ≤ 0, ∀x ∈ Sǫ1 ,

AT
r P1Ar − PN ≤ 0, ∀x ∈ Sǫ2 ,

(25)

which by (24) and the definition of V (·) in (23), corresponds to the jump condition at item 4 of Proposition 1 applied
to V (·) in the three sectors which cover the jump set. In particular, note that after any jump the state belongs to the
region where V (x) = xT P1x. This is why P1 is involved in all the inequalities (25).

Since the condition at item 2 of Proposition 1 directly follows from the definition (23), we only need to show that
the V (·) in (23) is Lipschitz to complete the proof of the theorem. The Lipschitz property directly follows from the
fact that V (·) is constructed by patching a finite number of Lipschitz functions and that continuity is ensured by the
equality constraints (15f), (15g). •

−30 −20 −10 0 10 20 30
−10

−8

−6

−4

−2

0

2

4

6

8

10

y

x r

Figure 4: An example which shows the importance of imposing an overlapping on the sets where the flow and the
jump conditions hold.

Remark 5 Note that, different from the preliminary results in [27], in the numerical construction of Theorem 3, we
explicitly impose that there is a (generally small) sector where the flow and the jump conditions are both satisfied
(this corresponds to the dashed areas in Figure 3). Note also that, according to Figure 3, the constant θǫ corresponds
to the size of the sector in the (xr, y) plane where both the jump and flow conditions are enforced. In general, a
smaller θǫ corresponds to requiring a smaller time regularization constant ρ because the closed-loop state is allowed to
overflow in a smaller portion of the jump set. Moreover, the new condition (15b) enforces a good property for xT P0x
at the boundary between the flow and jump sets where (xr, y) = (0, 0). This extra constraint allows to guarantee good
flow conditions in an inflated version of the flow set, so that the results of [25] apply. These extra conditions were not
enforced in [27], thus calling into question the result of [27, Theorem 3].

A counterexample seems difficult to find because the structure of the FORE control loops in (5) helps ruling out
defective cases. Nevertheless, the possible issues arising from omitting the overlap conditions (15d), (15e) can be
illustrated by a simple planar example characterized by d = 0, A =

[

0.5 −1
1 −1

]

, and M =
[

0 −1
−1 0

]

. For this system,
the conditions in [27, Theorem 3] are feasible and the corresponding construction gives the function with the level
set shown in Figure 4. However, despite the fact that the underlying linear system without resets is exponentially
stable (it leads to the thin solid trajectory in the figure), when adding resets, the system’s state response starting

from the initial condition x0 =
[

10 −10
]T

goes to infinity sliding along the boundary between the flow and the
jump set. The corresponding trajectory is represented by the bold curve in the figure. The trajectory, after crossing
the horizontal flow set boundary, exhibits the sawtoothed shape arising from flowing in the jump set until τ < ρ and
then jumping back to the horizontal axis in some sort of chattering-like behavior. Note that this example does not
satisfy the conditions of Theorem 3 because the diverging chattering is not allowed based on the overlapping flow and
jump conditions. Note also that this example does not fit into the framework (5) which would require A(2,1) = −1
because Cp = 1 by the observability canonical form of the plant. In other words, it requires changing the sign of v
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in the second interconnection equation of (3) and, consequently, swapping the jump and flow set inequalities in (2).
This results in a quite unnatural FORE implementation where the state is reset when the FORE input and state have
the same sign, rather than opposite signs as in (2). However, since the proof of [27, Theorem 3] does not use any
information on the structure of A in (5) (nor the proof of Theorem 3 of this paper does), this example is illustrative
of the potential problems with [27, Theorem 3]. ◦

Remark 6 Unlike most of the existing work on FORE control systems, in the stability conditions considered here we
are not incorporating any reference signal. However, by following the same reasonings as in [4] it is straightforward to
generalize the approach to set point regulation whenever the plant contains an integrator (namely an internal model
of the reference signal). This is the strategy adopted in Examples 2 and 3 in Section 5, where step references are
considered in cases where the plant contains an internal model (namely it has a pole at the origin). Note however
that, for those examples, the estimated L2 gain would is still from d to y and does not correspond to the L2 gain from
r to y. For more general results with reference signals, the reader is referred to the developments in [29, 21, 26, 23]. ◦

5 Examples

In this section we will show how the LMI formulations given in Section 4 can be used to establish useful stability and
performance properties of reset control systems involving FOREs. We first address the most classical example of a
Clegg integrator (namely a FORE With λr = 0) connected to an integrator, then we address the case of a FORE
connected to an integrator, which has been already studied in Section 3 by way of analytic Lyapunov constructions
and finally we discuss a higher order example.

Example 1 (A Clegg integrator controlling an integrator plant) One of the simplest reset systems considered in the
literature corresponds to a Clegg integrator connected in feedback with an integrating plant. Studying the stability of
this simple closed-loop by Lyapunov tools is already a challenging task to accomplish which was addressed and solved
recently in [15, 17]. The equations of the closed-loop system before temporal regularization can be written as







ẏ = xr + d
ẋr = r − y,

}

if xr(r − y) ≥ 0,

x+
r = 0, if xr(r − y) ≤ 0.

(26)

Exponential and L2 stability of this closed-loop is established in Theorem 1 in Section 3. Here, by employing the
LMI-based techniques of Section 4, we also give a tight estimate on the L2 gain of the system from the input d to
the output y. In light of the stability properties established, in Theorem 1 and e.g., in [15, 17], we may expect to get
an estimate of the L2 gain from d to y using the quadratic Lyapunov functions proposed in Theorem 2. However,
the LMI constraints therein proposed turn out to be non feasible for this particular problem. Indeed, even for such
a simple closed-loop system, a piecewise quadratic Lyapunov function is necessary to obtain an estimate of the L2

gain. When using the LMIs of Theorem 3, it is necessary to use at least N = 2 to prove the closed-loop exponential
stability. 2 Moreover, as N increases, tighter and tighter bounds are obtained for the L2 gain of the system. Table 1
reports some of the values obtained by increasing the number of regions.

N 2 3 4 8 15 50

gain 2.8338 1.8188 1.3766 0.9145 0.8839 0.8701

Table 1: Example 1: estimates of the L2 gain of (26) determined by piecewise quadratic Lyapunov functions.

It is instructive to study the level sets of the piecewise quadratic Lyapunov functions arising from the LMIs of
Theorem 3. For the case of N = 4 (corresponding to five quadratic functions), Figure 5 shows on the left the level
sets of the quadratic functions involved in the piecewise quadratic construction, and on the right, a level set of the
patched piecewise quadratic Lyapunov function. It is interesting to notice that the Lyapunov function is non-convex.
Qualitatively, the nonconvexity should allow for significant degrees of freedom in Lyapunov functions constructions.
Indeed, it has been recently shown in [5] that there are situations where convex Lyapunov functions are insufficient to
prove stability. ◦

2All the numbers in Table 1 have been determined following the strategy commented in Remark 4 with ε = 1e − 10.
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Figure 5: Example 1: level sets of the five quadratic Lyapunov functions used for the case N = 4 (left). Level set of
the arising piecewise quadratic Lyapunov function (right).

Example 2 (A FORE controlling an integrator) It has been discussed in several papers (see, e.g., [14, 3, 12]) that
reset control systems can overcome certain limitations of linear control systems. In particular, for an integrating plant,
it is shown in [14] that the reset controller can achieve arbitrarily large rising time of the closed-loop while guaranteeing
zero overshoot. This is proved to be non achievable for linear control systems (see [14] for details). In [14, §9.2.1],
a FORE with time constant λr = −1 connected in unit negative feedback to an integrator is used to illustrate this
fact. For this example, step reference inputs are considered, based on the observation (see Remark 6 and [4]) that the
plant contains an internal model of the reference signal, so that asymptotic tracking reduces to stability analysis after
a suitable change of coordinates. The closed-loop responses of the system without reset (solid) and of the system with
resets (bold) is shown in Figure 2 reported in Section 3 when illustrating the results of Theorem 1. Note that the
statements in [14, 3] claiming that reset control overcomes the intrinsic limitations of linear feedback hinge upon the
fact that the closed-loop with resets induces no overshoots with fast rise time (which would be impossible for a linear
feedback). Here we do not address this issue but we illustrate the exponential stability and L2 gain estimates arising
from our theorems by showing that our Lyapunov tools are capable of establishing exponential stability of the reset
system also in cases when the underlying linear dynamics is exponentially unstable.

According to our notation, the closed-loop system before temporal regularization is described by the following
dynamics







ẏ = xr + d
ẋr = λrxr − (r − y),

}

if xr(r − y) ≥ 0,

x+
r = 0, if xr(r − y) ≤ 0,

(27)

Where λr = −1 and r is the step reference signal. Similar to the previous example, the stability of this closed-loop
system (therefore, by Remark 6 also the asymptotic tracking property for step references) is established by Theorem 1
in Section 3. However, we can use the tools introduced in Section 4 for the construction of quadratic or piecewise
quadratic Lyapunov functions obtain a (tight) estimate of the input/output gain from the disturbance input d to
the output y. For this example, it is of interest to compare the L2 gain of the reset control system to the L2 gain
characterizing the closed-loop without resets. In particular, the L2 gain of the linear closed-loop is 1.468 and the
estimate arising from the quadratic Lyapunov construction of Theorem 2, corresponding to 1.84, is not good enough
to show that the L2 gain of the reset control system is improved as compared to the linear case. However, determining a
bound using the piecewise quadratic construction of Theorem 3 leads to a less conservative estimate of 1.18 (determined
using 51 quadratic Lyapunov functions), which is able to predict the improved performance of the reset control system.

Figure 6 shows on the left the level sets of the quadratic functions involved in the piecewise quadratic construction,
and on the right, a level set of the patched piecewise quadratic Lyapunov function (bold) compared to the level set of
the quadratic Lyapunov function establishing the 1.84 gain estimate. Note that for this example the optimal piecewise
quadratic Lyapunov function is nonconvex again.

It is useful to emphasize that it not necessary for the FORE element in (27) to be exponentially stable. Indeed,
as already proved in Theorem 1, any real selection of λr enforces closed-loop stability and finite L2 gain from d to
y. Figure 7 represents the different bounds obtained by the piecewise quadratic construction of Theorem 3 for a
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Figure 6: Example 2. Left: level sets of the 51 quadratic Lyapunov functions used for the case N = 50. Right: level set
of the arising piecewise quadratic Lyapunov function (bold) and of the quadratic Lyapunov function from Theorem 2.
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Figure 7: Example 2. The L2 gain estimates obtained by using PWQ Lyapunov functions (dashed) for different
values of the FORE’s pole λr, compared to the corresponding linear performance (solid) and to the analytic bounds
established in Theorem 1 (dash-dotted). The “*” at λr = 0 corresponds to the lower bound established in Remark 8.

wide range of values of λr. This gain curve (solid) is compared to the corresponding linear closed-loop gain (dashed),
namely the gain that one obtains from the linear closed-loop in the absence of resets. Inevitably, as λr approaches
zero from the left, this curve goes to infinity because the linear closed-loop is exponentially unstable for positive λr’s.
The L2 gain bounds established in Theorem 1 by way of analytic Lyapunov constructions are also reported in Figure 7
(dash-dotted curves). Note that the numerical estimates arising from Theorem 3 improve upon the analytic bounds.

◦

Remark 7 (Comparing analytic and numerical bounds) In Figure 7 the L2 bounds obtained in Theorem 1 for different
values of λr are compared to the numerical bounds obtained by applying the numerical results proposed in Section 4.
Note that the numerical bounds are always tighter than the analytic ones, however, the relevance of the analytic
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results stands in the fact that exponential stability and a bound on the L2 gain is proved for all values of λr, whereas
the numerical tools lead to infeasibility due to numerical problems for positive values of λr that become too large. ◦

Remark 8 (A lower bound on the L2 gain for λr = 0) An interesting question corresponds to asking how tight the
analytic and numerical bounds of Figure 7 are. A partial answer to this question is given by the following result which
establishes that for the case λr = 0 (namely, the Clegg integrator), the gain is not smaller than

√

π/8 ≈ 0.626, which
coincides with the star reported in Figure 7.

To show this property for the gain, consider the closed-loop without temporal regularization (the extension is
trivial) given by

ẏ = xr + d,
ẋr = −y,

(28)

and select the following initial conditions y(0) ∈
(√

2
2 , 0

)

, xr(0) = −y(0). Then select the following disturbance:

d(t) =

{

2 exp(t)y(0) t ∈ [0, t∗],
0 t > t∗,

where t∗ := ln
( √

2
−2y(0)

)

. Then it is immediate to check that

‖d‖2 =
√

4 · 1
2 [exp(2t∗) − 1]y2(0)

≤
√

2| exp(t∗)y(0)| = 1.

and that in the limit as y(0) → 0, ‖d‖2 → 1. Then, by substituting in (28) and considering that xr(t) = − exp(t)y(0),
the following holds:

y(t) =

{

exp(t)y(0) t ∈ [0, t∗],
− cos(t − t∗ + π/4) t ∈ [t∗, t∗ + π/4].

It follows that in the first time interval [0, t∗], since y(t) = 0.5d(t), we have

‖y[0,t∗]‖2
2 =

1

2
[exp(2t∗) − 1]y2(0),

and that in the limit as y(0) → 0, ‖y[0,t∗]‖2
2 → 1/4. For the remaining time interval, we have

∥

∥y[t∗,t∗+π/4]

∥

∥

2

2
=

∫ π/2

π/4

cos2(τ)dτ

=

∣

∣

∣

∣

1

2
t +

1

4
sin(2t)

∣

∣

∣

∣

=
π

4
− π

8
− 1

4
.

Since the state is reset to zero and remains there after t∗ + π/4, then, in the limit as y(0) → 0, we have

‖y‖2 →
√

π

8
=

√

π

8
‖d‖2,

which proves the claim. ◦

Example 3 (An example with a second order plant) As a last example we consider a two dimensional linear plant
controlled by a FORE discussed in [24], where 3 the (incorrect) tools of [27] were used to establish closed-loop stability
and finite L2 gain from d to y for different values of λr. Here we revisit the same example and employ Theorem 3. For
this specific example, the missing conditions in [27, Theorem 3] do not cause any evident difference on the stability
and L2 gain results so the curves arising from applying [27, Theorem 3] and Theorem 3 of this paper are substantially
coincident (see Figure 8).

3Note that in [24] the L2 gain estimate is different from here because following [27, Remark 5], the extra constraints Pi > I, i = 0, . . . , N

were added to the LMI constraints, thus making the estimate more conservative.
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In this example, originally discussed in [14], a FORE element whose linear part is characterized by the transfer
function 1

s+1 (namely with λr = −1) controls via a negative unitary feedback a SISO plant whose transfer function

is P = s+1
s(s+0.2) . For this example, the control system involving the FORE is shown in [14] to behave more desirably

than the linear control system. It was shown in [14] that the reset system had only about 40% overshoot of the linear
closed-loop system while retaining the rise time of the linear design. This example can be further interpreted using the
results of this paper. Indeed, when computing the L2 gain from a disturbance d acting at the plant input to the plant
output y, the linear closed-loop system has an H∞ norm around 5, while using the piecewise quadratic construction
of Theorem 3 we obtain that the L2 gain of the reset system is smaller than 2.7.
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Figure 8: L2 gains of linear and reset closed loops for Example 3, as a function of the pole of the FORE. The thin
solid curve corresponds to the one reported in [24].

Figure 8 shows the L2 gains for the linear closed-loop and the reset closed-loop as a function of the pole of the
FORE (N = 20 is chosen in Theorem 3). Similar to the previous example, the introduction of resets does not cause
any increase of the L2 gain estimate, thus suggesting that the closed-loop performance is improved by the resets for
any value of λr. Moreover, for positive values of λr (unstable FOREs) the linear closed-loop is unstable, while the
reset closed-loop guarantees smaller gains. The case studied in [14] corresponds to the horizontal coordinate λr = −1
in Figure 8.

For this example it seems appropriate to show the different time responses obtained when using the linear controller
guaranteeing the minimum L2 gain in Figure 8 (namely λr ≈ −1.8) and when using the FORE for different values of
λr. These responses are reported in Figure 9. ◦

Acknowledgement. The authors would like to thank Sophie Tarbouriech, Christophe Prieur and Thomas Loquen
for useful discussions about the new proof of Theorem 3.

6 Conclusions

In this paper we provided analytical and numerical constructions of Lyapunov functions that establish stability and L2

performance of SISO controllers based on First Order Reset Elements for SISO linear plants. The analytic constructions
have been given for the planar case, namely with a scalar plant and the numerical constructions based on quadratic
and piecewise quadratic Lyapunov functions apply to plants of any order. The proposed constructions have been
illustrated on several simulation examples.
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Figure 9: Time responses for different values of the FORE pole, with and without resets for Example 3.

A Patching discontinuous level sets

In this appendix we give some general results on how to modify the level sets of two quadratic Lyapunov functions
to allow for a continuous patched Lyapunov function (which is piecewise quadratic), where the patching zone is a
hyperplane. In particular, we show that the modification that needs to be enforced on one of the two functions is
bounded in size by the mismatch between the two functions on the patching hyperplane.

A.1 Patching on one hyperplane

Proposition 2 (Patching on one hyperplane) Consider two functions V1(x) = xT P1x and V2(x) = xT P2x, with
x ∈ R

n, and a patching hyperplane Hθ := {x : x1 sin θ − x2 cos θ = 0}, for θ ∈ [0, π). This hyperplane can be also
defined as

Hθ = {x : hT x = 0}, where h =
[

sin θ − cos θ 0 · · · 0
]T

.

Define the following worst case mismatch between V1 and V2 at the patching hyperplane:

δ := sup
x∈Hθ\{0}

xT (P1 − P2)x

xT x
. (29)

Then there exists a matrix ∆P such that

|∆P | ≤ δ (30)

xT (P1 − P2 + ∆P )x = 0, ∀x ∈ Hθ. (31)

Equivalently, the patching between V1 = xT P1x and Ṽ2 = xT (P2 − ∆P )x (alternatively, V2 = xT P2x and Ṽ1 =
xT (P1 + ∆P )x) is continuous on the hyperplane Hθ.

Proof. Define the matrix H :=
[

h h⊥
]

, where h⊥ =





cos θ 0
sin θ 0

0 In−2



 has columns forming a basis of Hθ. Then

H is nonsingular and |H| = |H−1| = 1.
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Define

∆P = −H−T

[

0 0
0 hT

⊥(P1 − P2)h⊥

]

H−1.

Since h⊥ is a basis of Hθ and hT
⊥h⊥ = I, then by equation (29), |hT

⊥(P1 − P2)h⊥| < δ and equation (30) follows from
|H| = |H−1| = 1. To prove equation (31), since h⊥ has columns forming a basis of Hθ, it is sufficient to prove

hT
⊥(P1 − P2 + ∆P )h⊥ = 0. (32)

The matrix on the left hand side of (32) is the lower right entry of the following matrix which is shown to be zero
below:

HT (P1 − P2 + ∆P )H = HT (P1 − P2)H −
[

0 0
0 hT

⊥(P1 − P2)h⊥

]

=
[

h h⊥
]T

(P1 − P2)
[

h h⊥
]

−
[

0 0
0 hT

⊥(P1 − P2)h⊥

]

=

[

⋆ ⋆
⋆ 0(n−1)×(n−1)

]

where “⋆” denotes “don’t care” elements. •
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Figure 10: The level sets for Example 4. The patching hyperplane is the dashed line.

Example 4 In this example we patch together the two functions with P1 = [ 2.5 2.5
2.5 7.5 ] and P2 = [ 4 1

1 2 ] on the hyperplane
with θ = π/4. We get δ = 3.5 and ∆P = − [ 1.75 1.75

1.75 1.75 ], with |∆P | = 3.5.
The level sets of the patched functions are represented in Figure 10, where the first column represents the functions

before patching, the second column represents the functions after modifying P1 and the third column represents the
functions after modifying P2. ◦

A.2 Patching on two hyperplanes

Proposition 3 (Patching on two hyperplanes) Consider two functions V1(x) = xT P1x and V2(x) = xT P2x, with
x ∈ R

n, and two patching hyperplanes Hθ1
:= {x : x1 sin θ1 − x2 cos θ1 = 0}, for θ1 ∈ [0, π) and Hθ2

:= {x :
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x1 sin θ2 −x2 cos θ2 = 0}, for θ2 ∈ [0, π), θ2 6= θ1 (namely, the hyperplanes are not coincident). These hyperplanes can
be also defined as

Hθ1
= {x : hT

1 x = 0}, where h1 =
[

sin θ1 − cos θ1 0 · · · 0
]T

,

Hθ2
= {x : hT

2 x = 0}, where h2 =
[

sin θ2 − cos θ2 0 · · · 0
]T

,

Define the following worst case mismatch between V1 and V2 at the patching hyperplanes:

δ := sup
x∈Hθ1

∪Hθ2
\{0}

xT (P1 − P2)x

xT x
. (33)

Then there exists matrix ∆P such that

|∆P | ≤ 3δ (1 − | cos(θ1 − θ2)|)−1 (34)

xT (P1 − P2 + ∆P )x = 0, ∀x ∈ Hθ1
∪Hθ2

. (35)

Equivalently, the patching between V1 = xT P1x and Ṽ2 = xT (P2 − ∆P )x (alternatively, V2 = xT P2x and Ṽ1 =
xT (P1 + ∆P )x) is continuous on the hyperplanes Hθ1

and Hθ2
. (As a consequence, the corresponding piecewise

quadratic function is Lipschitz).

Proof. Define the matrix H :=
[

h1,⊥ h2,⊥ h0

]

, where hi,⊥ := [ cos θi sin θi 0 ··· 0 ]
T
, i = 1, 2 and h0 = [ 0 In−2 ]

T
.

Then H is nonsingular because θ1 6= θ2. Moreover, since by construction HT H =

[

1 cos(θ1−θ2) 0
cos(θ1−θ2) 1 0

0 0 In−2

]

, then it

follows that σmin(H) =
√

1 − | cos(θ1 − θ2)|, namely the square root of its smallest eigenvalue. Define

∆P = −H−T





hT
1,⊥(P1 − P2)h1,⊥ 0 hT

1,⊥(P1 − P2)h0

0 hT
2,⊥(P1 − P2)h2,⊥ hT

2,⊥(P1 − P2)h0

hT
0 (P1 − P2)h1,⊥ hT

0 (P1 − P2)h2,⊥ hT
0 (P1 − P2)h0



H−1. (36)

Note that −HT ∆PH (corresponding to the matrix in square brackets in (36)) can be written as the sum of three

matrices: M1 :=

[

hT
1,⊥

0
hT
0

]

(P1 − P2) [ h1,⊥ 0 h0 ], M2 :=

[ 0
hT
2,⊥

hT
0

]

(P1 − P2) [ 0 h2,⊥ h0 ] and M3 := −
[

0
0

hT
0

]

(P1 − P2) [ 0 0 h0 ].

The maximum singular value of each of them is upper bounded by δ in (33) because the columns of [ h1,⊥ h0 ] are a
basis of Hθ1

, the columns of [ h2,⊥ h0 ] are a basis of Hθ2
and the columns of [ h0 ] are a basis of their intersection. Then,

since σmax(M1 + M2 + M3) ≤ 3δ, it follows that σmax(∆P ) ≤ 3δσ−2
min(H), which implies (34).

Regarding equation (35), its proof can be carried out along the same lines as the proof of equation (31) in Proposi-
tion 2 after noting that the columns of

[

h1,⊥ h0

]

are a basis of Hθ1
and that the columns of

[

h2,⊥ h0

]

are a basis
of Hθ2

. In particular, the result follows from the following reasoning generalizing the one at the end of Proposition 2:

HT (P1 − P2 + ∆P )H = HT (P1 − P2)H −





hT
1,⊥(P1 − P2)h1,⊥ 0 hT

1,⊥(P1 − P2)h0

0 hT
2,⊥(P1 − P2)h2,⊥ hT

2,⊥(P1 − P2)h0

hT
0 (P1 − P2)h1,⊥ hT

0 (P1 − P2)h2,⊥ hT
0 (P1 − P2)h0





=





hT
1,⊥

hT
2,⊥
hT

0



 (P1 − P2)
[

h1,⊥ h2,⊥ h0

]

−





hT
1,⊥(P1 − P2)h1,⊥ 0 hT

1,⊥(P1 − P2)h0

0 hT
2,⊥(P1 − P2)h2,⊥ hT

2,⊥(P1 − P2)h0

hT
0 (P1 − P2)h1,⊥ hT

0 (P1 − P2)h2,⊥ hT
0 (P1 − P2)h0





=





0 ⋆ 0
⋆ 0 0
0 0 0(n−2)×(n−2)





•

Example 5 In this example we patch together again the two functions with P1 = [ 2.5 2.5
2.5 7.5 ] and P2 = [ 4 1

1 2 ] on the
hyperplanes with θ1 = π/4 and θ2 = 3.5

4 π. We get δ = 3.5, so that the bound in (34) is 3δ(1− | cos(θ1 − θ2)|)−1 ≈ 17.

We get for this example ∆P =
[

0.299 −2.3492
−2.3492 −2.6005

]

, with |∆P | = 3.9113.
The level sets of the patched functions are represented in Figure 11 where the first column represents the functions

before patching, the second column represents the functions after modifying P1 and the third column represents the
functions after modifying P2. ◦
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Figure 11: The level sets for Example 5. The patching hyperplanes are shown by dashed lines.
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