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Abstract: Given a continuous time nonlinear closed loop system, we investigate sampled–data
feedback laws for which the trajectories of the sampled–data closed loop system converge to the
continuous time trajectories with a prescribed rate of convergence as the length of the sampling
interval tends to zero. We derive necessary and sufficient conditions for the existence of such
sampled–data feedback laws and — in case of existence — provide explicit redesign formulas and
algorithms for these controllers.
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1 Introduction

One of the most popular methods for sampled–data controller design is the design of a
controller based on the continuous-time plant model, followed by a discretization of the
controller [3, 4, 11]. This method, often referred to as emulation, is attractive since the
controller design is carried out in two relatively simple steps. The first (design) step is
done in continuous-time, completely ignoring sampling, which is easier than the design that
takes sampling into account. The second step involves the discretization of the controller
and there are many methods that can be used for this purpose. Simple methods, however,
may not perform well in practice since the required sampling rate may exceed the hardware
limitations even for linear systems [9, 1]. This has led to a range of more advanced controller
discretization techniques for linear systems, see, e.g., [1, 3].

In the nonlinear case, the survey paper [12] gives an overview about a number of methods,
which show that under suitable control theoretic assumptions (involving, e.g., the relative
degree of the system) an exact sampled–data reproduction of the continuous time input–
output behavior is possible. An important special case is the analysis of the possibility of

∗This research was supported by the Alexander von Humboldt Foundation while the third author was
visiting the Johann Wolfgang Goethe-University in Frankfurt am Main and the University of Bayreuth in
Bayreuth, Germany as a Humboldt Fellow.

1
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feedback linearization with sampled feedback control which was studied during the 1980s
(see, e.g., [2] and the references therein). Our approach in this paper is on the one hand
less demanding, because we only aim at an approximate reproduction of the continuous
time response, on the other hand it is more demanding than the input–output behavior
analysis because we want to approximately reproduce the full state trajectory.

The present paper builds on results from [15], where a redesign method based on control
Lyapunov functions and Fliess expansions has been developed, avoiding, however, the use
of control Lyapunov functions. The purpose of our sampled–data feedback construction
lies in minimizing the difference between the continuous time system and the sampled–data
system after one sampling–interval, either with respect to some auxiliary output function
or with respect to the whole state. In the latter case, whose analysis is the main topic
of this paper, a straightforward induction allows to conclude closeness of trajectories at
sampling instances for each compact time interval. In this approach, minimization is not
meant in the sense of optimal control (for an optimal control approach to this problem
we refer to the model predictive technique presented in [16, 7]). Instead, minimization
is to be understood asymptotically in the sense that for sampling interval length T > 0
the difference between continuous and sampled response at time T should be smaller than
O(T k) for some k > 0. Then, the larger the k is, the faster the sampled–data trajectory
will converge to the continuous time one and thus we are interested to choose the order of
convergence k as large as possible.

The contribution of this paper is twofold: On the one hand we derive necessary and suffi-
cient conditions expressed in terms of Lie brackets and derivatives of the vector fields which
allow to conclude whether a certain order of convergence k of the sampled–data trajectories
to the continuous time trajectories is realizable or not. In particular, we show that one
needs rather restrictive geometric properties in order to obtain an order of convergence
k ≥ 4. On the other hand, if the conditions are satisfied, then we present analytic formulas
for the sampled–data controllers which realize this convergence rate.

The paper is organized as follows. In Section 2 we present the setting and the preliminary
results from [15]. In Section 3 we consider a sampled–data feedback first considered in
[15] and present a sufficient structural condition on the system under which this feedback
provides a sampled–data trajectory arbitrarily close to the continuous time one. In Section
4 we consider a very large class of admissible sampled–data feedback laws and derive a
necessary and sufficient structural condition for the difference O(T k) for k = 4 and give a
formula for the sampled–data feedback law realizing this performance. Since conditions for
larger k become very complicated, we only comment on the condition for k = 5 and instead
present a maple program for checking these conditions and computing the corresponding
sampled–data controllers in the appendix. Finally, in Section 5 we illustrate our results by
two examples. Two appendices contain a technical result and the mentioned maple code.

2 Setup

We consider nonlinear control affine systems of the form

ẋ(t) = f(x(t), u(t)) := g0(x(t)) + g1(x(t))u(t) (2.1)
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with vector fields g0, g1 : Rn → Rn and control functions u : R → R. For simplicity of
exposition we consider single input systems (i.e., u(t) ∈ R), because for the multi input
case the computations and expressions become much more involved.

We assume that a static state feedback u0 : Rn → R has been designed which solves some
control task for the continuous time closed loop system

ẋ(t) = f(x(t), u0(x(t))) . (2.2)

The solutions of (2.2) with initial value x0 at initial time t0 = 0 will be denoted by
φ(t, x0). We assume that all functions involved are smooth with sufficiently high degree of
smoothness such that the derivatives taken in what follows are well defined and continuous.

Our goal is to find a feedback uT (x) such that the solution trajectories of the sampled data
closed loop system

ẋ(t) = f(x(t), uT (x(tk))), t ∈ [tk, tk+1), k = 0, 1, . . . (2.3)

for the sampling sequence tk = kT and sampling period T > 0 are close to those of the
continuous time closed loop system (2.2). More precisely, denoting solutions of (2.3) by
φT (t, x0, uT ), we want to find uT such that the difference after one sampling time step

∆φ(T, x0, uT ) := ‖φ(T, x0)− φT (T, x0, uT )‖∞ (2.4)

becomes small, with ‖x‖∞ = maxi=1,...,n |xi| denoting the maximum norm in Rn.

For the feedback uT we consider the following general class of functions.

Definition 2.1 An admissible sampled data feedback law uT is a family of maps uT : Rn →
R, parameterized by the sampling period T ∈ (0, T ∗] for some maximal sampling period
T ∗, such that for each compact set K ⊂ Rn the inequality

sup
x∈K, T∈(0,T ∗]

|uT (x)| < ∞

holds.

Note that for existence and uniqueness of the solutions to (2.3) we do not need any con-
tinuity assumptions on uT . Boundedness is, however, imposed, because from a practical
point of view unbounded feedback laws are physically impossible to implement and from
a theoretical point of view they often lead to closed loop systems which are very sensitive
to modeling or approximation errors, cf., e.g., the examples in [6, 13]. A special class of
these admissible feedback laws which was proposed in [15] is given by

uT (x) =
M∑
i=0

T iui(x), (2.5)

with u0 from (2.2) and u1, . . . , uM : Rn → R being locally bounded functions.

In the present paper, we are in particular interested in asymptotic estimates, i.e., in the
behavior of the difference (2.4) for T → 0. For this purpose we use the following definition.
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Definition 2.2 Let k ∈ N.

(i) For some compact set K ⊂ Rn we write

∆φ(T, x0, uT ) = O(T k) on K

if there exists C > 0 such that the inequality ∆φ(T, x0, uT ) ≤ CT k holds for all x0 ∈ K.

(ii) We write
∆φ(T, x0, uT ) = O(T k)

if ∆φ(T, x0, uT ) = O(T k) on K for each compact subset K ⊂ Rn, where the constant C in
(i) may depend on the choice of K.

If we are able to establish ∆φ(T, x0, uT ) = O(T k), then it follows by a standard induction
argument that on each interval [0, t∗] we obtain

‖φ(t, x0)− φT (t, x0, uT )‖∞ ≤ O(T k−1) (2.6)

for all times t = iT , i ∈ N with t ∈ [0, t∗]. In particular, this “closeness of trajectories”
allows to prove that several stability concepts carry over from φ to φT in a semiglobal
practical sense, see [14].

In order to establish estimates for (2.4) we consider a smooth real valued function

h : Rn → R

and derive estimates for the differences

∆h(T, x0, uT ) := |h(φ(T, x0))− h(φT (T, x0, uT ))|. (2.7)

The function h plays the role of an auxiliary output function but it does not need to have
any physical meaning as an output of the system. Applying the respective results to the
specific functions

hj(x) := xj , j = 1, . . . , n

and the respective differences

∆hj(T, x0, uT ) := |hj(φ(T, x0))− hj(φT (T, x0, uT ))|, j = 1, . . . , n. (2.8)

we are able to conclude the desired estimate for ∆φ, because if ∆hj(T, x0, uT ) ≤ C holds
for some constant C > 0 and all j = 1, . . . , n, then ∆Φ(T, x0, uT ) ≤ C follows.

For a problem similar to the one posed in this paper, in [15] the feedback law

uM
T (x) =

M∑
i=0

T i

(i + 1)!
diu(φ(t, x))

dti

∣∣∣∣
t=0

, (2.9)

i.e., (2.5) with

ui(x) =
1

(i + 1)!
diu(φ(t, x))

dti

∣∣∣∣
t=0

(2.10)
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was discussed. Note that the results in [15] were formulated for Lyapunov functions V
instead of general real valued functions h, however, the usual Lyapunov function properties
were only needed for the interpretation of the results and not for the proofs. Hence, we
can in particular apply Theorem 4.11 of this reference to our setting which shows that for
M = 0 (note that u0

T = u0) the estimate

∆h(T, x0, u
0
T ) = O(T 2)

holds while for M = 1 the estimate

∆h(T, x0, u
1
T ) = O(T 3)

holds.

In Remark 4.13 of [15]1 it was observed that the above estimates for ∆h using (2.9) do
not hold in general for M ≥ 2. It is the purpose of the present paper to find necessary
and sufficient conditions under which it is possible to generalize these results to larger M .
Furthermore, we will discuss whether other choices for the feedback uT different from (2.9)
can provide better asymptotic estimates.

Our analysis is based on Theorem 3.1 from [15]. In order to state this theorem we need to
introduce some notation: for a vector field g : Rn → Rn and a scalar function h : Rn → R
we denote the directional derivative of h in the direction of g by

Lgh(x) :=
d

dx
h(x) · g(x),

cf. Isidori [8]. Furthermore, we define multinomial coefficients
(

n
n0 ... nM

)
:= n!

n0!n1!...nM !

as well as multi-indices ν := (n0, n1, . . . , nM ) and we use the notation |ν| :=
∑M

j=0 nj and
‖ν‖ :=

∑M
j=0 j · nj .

Now we can state [15, Theorem 3.1].

Theorem 2.3 Consider the system (2.1), a smooth function h : Rn → R, the continuous
closed loop system (2.2) and the sampled data closed loop system (2.3) with controller uT

given by (2.5). Then, for sufficiently small T , we can write:

h(φT (T, x, uT ))− h(x)
T

=
M∑

s=0

T s[Lg1h · us + ps(x, u0, . . . , us−1)] + O(TM+1), (2.11)

where p0(x) = Lg0h(x) and

ps(x, u0, . . . , us−1) =
s∑

k=1

1∑
i0=0,...,ik=0

Lgi0
· · ·Lgik

h(x)

(k + 1)!

( ∑
|ν|=|Ik|
‖ν‖=s−k

(
|Ik|

n0 n1 . . . nM

) s−1∏
j=0

u
nj

j

)

(2.12)
for s ≥ 1 with Ik denoting the multi index Ik = (i0, i1, . . . , ik).

Note that ps is independent of the value of M appearing in (2.12) provided M ≥ s − 1,
because the condition ‖ν‖ = s− k ≤ s− 1 implies ns = . . . = nM = 0.

1In fact, the main formula in [15, Remark 4.13] is flawed because the factor “2” in the term −2Lg1Lg0V ·
u1/3! should not be there. Still, the assertion of the remark remains true.
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3 A sufficient condition

Our first main result is a condition under which the sampled data feedback law uM
T from

(2.9) yields trajectories which are arbitrary close to the continuous time ones. In this
theorem, we use the Lie bracket of two vector fields f, g : Rn → Rn defined by

[f, g] =
d

dx
g · f − d

dx
f · g,

cf. Isidori [8].

Theorem 3.1 Consider the system (2.1), the continuous closed loop system (2.2) and the
sampled data closed loop system (2.3) with controller uM

T given by (2.9) for some M ∈ N.
Assume that the condition

[g0, g1] = 0 (3.1)

holds, i.e., that the vector fields g0 and g1 commute. Then

∆h(T, x, uM
T ) = O(TM+2) (3.2)

holds for every smooth function h : Rn → R and consequently also

∆φ(T, x, uM
T ) = O(TM+2). (3.3)

Proof: The proof of this theorem relies on the (technical) Proposition 6.1, which can be
found in the appendix. Under condition (3.1), Proposition 6.1 states that

1
(i + 1)!

di+1

dti+1
h(φ(t, x))

∣∣∣∣
t=0

= Lg1h(x)ui(x) + pi(x, u0, u1, . . . , ui−1) for all i ∈ N (3.4)

with pi from Theorem 2.3 and ui from (2.10). Inserting these terms into the Taylor expan-
sion of h(φ(t, x)) in t = 0 and evaluating the expansion in t = T yields

h(φ(T, x)) = h(x) +
M+1∑
i=1

T i

i!
di

dti
h(φ(t, x))

∣∣∣∣∣
t=0

+ O(TM+2)

= h(x) +
M∑
i=0

T i+1

(i + 1)!
di+1

dti+1
h(φ(t, x))

∣∣∣∣∣
t=0

+ O(TM+2)

= h(x) +
M∑
i=0

T i+1 [Lg1h(x)ui(x) + pi(x, u0, u1, . . . , ui−1)] + O(TM+2). (3.5)

On the other hand, multiplying (2.11) by T and adding h(x) we obtain

h(φT (T, x, uT )) = h(x) +
M∑

s=0

T s+1[Lg1h(x)us + ps(x, u0, . . . , us−1)] + O(TM+2). (3.6)

Now, comparing (3.5) and (3.6) we obtain the assertion.
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Remark 3.2 The above proof also shows that — unless g1(x) = 0 and up to terms of order
O(TM+1) — under condition (3.1) the feedback law uM

T (x) from (2.9) is the only feedback
law for which (3.3) holds: in order to see this, consider an arbitrary admissible feedback
law ũT . Comparing (3.5) and (3.6) for M = 0 yields that if g1(x) 6= 0 then ũT (x) must be
of the form ũT (x) = u0(x) + T ũ1(x) in order to satisfy (3.3) with M = 0. Repeating this
argument inductively, one sees that for each M ∈ N the feedback law ũT must be of the
form

ũT (x) = uM
T (x) + O(TM+1)

in order to satisfy (3.3).

Remark 3.3 It should be noted that condition (3.1) is well known in the numerical ap-
proximation theory of control systems, cf. e.g. [5, 17]. We will show in Corollary 4.12,
below, that it is also necessary for (3.3) in those points x in which the derivative of u0

along the solutions φ does not vanish.

4 A necessary and sufficient condition

In this section we investigate a necessary and sufficient condition for the existence of an
admissible feedback law uT which achieves

∆h(T, x, uT ) = O(TM+2) (4.1)

or
∆φ(T, x, uT ) = O(TM+2). (4.2)

and provide a formula for this feedback law. Since the necessary and sufficient condition
turns out to be much more involved than the sufficient condition (3.1) we restrict ourselves
to the case M = 2. This is the first nontrivial case given that (4.1) and thus (4.2) for
M ≤ 1 are always achievable by (2.9) without any further conditions, cf. [15, Theorem
4.11].

For the necessary and sufficient condition it turns out that the cases (4.1) and (4.2) require
different conditions which is why we state them in two separate theorems. We start with
(4.1).

Theorem 4.1 Consider the system (2.1), the continuous closed loop system (2.2), a
smooth function h : Rn → R and a compact set K ⊂ Rn.

If the condition ∣∣L[g0,g1]h(x) · Lg0+g1u0u0(x)
∣∣ ≤ c|Lg1h(x)| (4.3)

holds for some constant c ≥ 0 and all x ∈ K, then there exists an admissible feedback
law uT : Rn → R satisfying (4.1) on K with M = 2 given by In this case, any feedback
uT : Rn → R of the form

uT (x) =

{
u2

T (x) + T 2

12

L[g0,g1]h(x)·Lg0+g1u0u0(x)

Lg1h(x) + O(T 3), x ∈ K̃

u1
T (x) + O(T 2), x /∈ K̃

(4.4)
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with u1
T and u2

T from (2.9) and

K̃ := {x ∈ K |Lg1h(x) 6= 0}

solves (4.1) with M = 2.

Conversely, if there exists an admissible feedback law uT : Rn → R satisfying (4.1) on K̃
with M = 2, then (4.3) holds for all x ∈ cl K̃. In this case, this feedback uT must be of
the form (4.4) for all x ∈ K̃.

Proof: From the Taylor expansion of h(φ(t, x)) in t = 0 we obtain the identity

h(φ(t, x)) = h(x) +
2∑

i=0

T i+1 [Lg1h(x)ui(x) + pi(x, u0, . . . , ui−1)]

+
T 3

12

(
(Lg1Lg0h(x)− Lg0Lg1h(x))Lg0+g1u0u0(x)

)
+ O(T 4) (4.5)

with ui from (2.10) and pi from (2.12). We use the identity

Lg1Lg0h(x)− Lg0Lg1h(x) = −L[g0,g1]h(x)

and compare the coefficients of (4.5) with (2.11) inductively for i = 0, 1, 2. For x /∈ cl K̃
this yields that the proposed feedback realizes (4.1) with M = 2 provided (4.3) holds.

For x ∈ cl K̃ this coefficient analysis yields that any feedback ũT of the form

ũT (x) =

{
u0(x) + Tu1(x) + T 2ũ2(x) + O(T 3), x ∈ K̃

u0(x) + Tu1(x) + O(T 2), x /∈ K̃
(4.6)

with u0 and u1 from (2.10), and ũ2(x) satisfying

ũ2(x)Lg1h(x) =
1
12

(
L[g0,g1]h(x) · Lg0+g1u0u0(x)

)
+ u2(x)Lg1h(x) (4.7)

with u2(x) again from (2.10) realizes (4.1) with M = 2.

Now assume that (4.3) holds for all x ∈ K. Then it follows that uT from (4.4) satisfies
(4.6)–(4.7) and that the feedback is admissible in the sense of Definition 2.1, because it is
bounded. In particular, this shows that a feedback uT satisfying (4.1) on cl K̃ with M = 2
exists.

Conversely, assume that uT is an admissible feedback satisfying (4.1) on K with M = 2.
Then, this feedback must satisfy the conditions (4.6)–(4.7). Since uT is admissible, it is in
particular bounded and thus (4.7) implies (4.3) for x ∈ K̃. Since all expressions in (4.3) are
continuous in x, we also obtain (4.3) for x ∈ cl K̃. In addition, the inductive comparison
of (4.5) with (2.11) shows that any feedback ũT realizing (4.1) with M = 2 must satisfy
(4.6)–(4.7) for x ∈ K̃, which shows that uT must be of the asserted form.
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Remark 4.2 Note that condition (4.3) is necessary and sufficient on cl K̃ but only suf-
ficient on K \ cl K̃. This can be verified using the approach in [12, Section 3.1 and the
references therein] based on the relative degree:

Assume, for instance, the existence of an open subset O ⊂ K \ cl K̃ on which (2.1) has
relative degree r = 2, i.e., Lg1h(x) = 0 and Lg1Lg0h(x) 6= 0 for all x ∈ O. Then, by
straightforward computations one sees that on O the feedback

uT (x) = u0(x) + T
2
3
u1(x) (4.8)

for u1 from (2.10) satisfies (4.1) with M = 2 for each x ∈ O, regardless of whether (4.3)
holds, which shows that this condition is in general not necessary outside cl K̃.

At the first glance, (4.8) seems to contradict (4.4), because the two feedback laws are
different for x ∈ O ⊂ K \ K̃. However, a closer examination reveals that under condition
(4.3) in fact for any β ∈ R the feedback

uT (x) = u0(x) + Tβu1(x)

for u1 from (2.10) satisfies (4.1) with M = 2 on O. The advantage of specifying β = 1 in
(4.4) lies in the fact that this choice will also work on ∂K̃ (i.e., in particular on ∂O). In
contrast to this, the choice β = 2/3 — which is the only correct choice on O if (4.3) is not
satisfied — will not in general work on ∂K̃.

Since in what follows we do not need necessary conditions outside K̃, we will not elaborate
this topic in further detail.

Remark 4.3 On K̃, the necessary and sufficient condition (4.3) can be interpreted as
follows: For x ∈ K̃ the control ũ2 can always be used in order to induce any third order
correction. However, if Lg1h(xn) → 0 for some sequence xn ∈ K, then the control effort
needed for this purpose may be unbounded which may make the resulting feedback not ad-
missible in the sense of Definition 2.1. Condition (4.3) guards against this situation.

Remark 4.4 The sufficient condition (3.1) implies L[g0,g1]h(x) ≡ 0 which in turn implies
(4.3) for all x ∈ K.

Remark 4.5 A geometric explanation of the difference between the sufficient condition
(3.1) and the necessary and sufficient condition (4.3) on K̃ can be given by looking at
the coefficient for T 3 in the Taylor expansion (4.5). On the one hand, this coefficient
contains terms which can always be compensated for by a suitable choice of uT , these are
Lg1h(x)u2(x) and the terms contained in p2. On the other hand, it contains the expression

1
12

(
−L[g0,g1]h(x) · Lg0+g1u0u0(x)

)
which reflects the change of h in the direction −[g0, g1] with speed Lg0+g1u0u0(x), which
forms a part of the motion of the trajectory of (2.2). This direction can in general not be
generated using a constant linear combination of g0 and g1, which is why one could call
this expression the indirect motion.

The difference between the conditions now is that (3.1) rules out this indirect motion while
the condition (4.3) ensure that its effect on h can be compensated for by an admissible
sampled data feedback.
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Remark 4.6 From the continuity of the expressions in (4.3) it is easily seen that the
condition (4.3) is always satisfied if K̃ = K. In particular, in many practical examples
it might be possible to choose a reasonable set K for which K̃ = K holds. Then, our
proposed feedback (4.4) will yield ∆h = O(T 3) on K and ∆h = O(T 2) outside K, i.e., we
can improve the sampled data performance with respect to h at least in parts of the state
space. It should, however, be mentioned that for arbitrary real valued functions h this is of
limited use, because in general it will not be possible to inductively conclude an estimate
analogous to (2.6) for the difference |h(φ)− h(φT )|. An exception is the case where h = V
is a Lyapunov function for (2.2), because in this case the proposed control law renders the
Lyapunov difference along the sampled data trajectories close to those of the continuous
time ones. For a detailed discussion of this topic we refer to [15].

The reason for the fact that ∆h = O(T 3) is rather easy to obtain is due to the fact that the
values h(φ) and h(φT ) to be matched are one–dimensional. The necessary and sufficient
condition becomes much more restrictive if we consider ∆φ, as the following theorem shows.

Theorem 4.7 Consider the system (2.1), the continuous closed loop system (2.2) and a
compact set K ⊂ Rn satisfying K = cl intK. Then there exists an admissible feedback
law uT : Rn → R satisfying (4.2) on K with M = 2 if and only if there exists a bounded
function α : K → R satisfying

[g0, g1](x)Lg0+g1u0u0(x) = α(x)g1(x). (4.9)

In this case, any feedback uT : Rn → R of the form

uT (x) =

{
u2

T (x) + T 2

12 α(x) + O(T 3), x ∈ cl K̃

arbitrary, x /∈ cl K̃
(4.10)

with u2
T from (2.9) and

K̃ := {x ∈ K | g1(x) 6= 0}

satisfies (4.2) with M = 2. Furthermore, each feedback satisfying (4.2) with M = 2 is of
the form (4.10) for x ∈ K̃ and the function α in (4.9) can be chosen as α(x) = 0 for x /∈ K̃.

Proof: We first show that under condition (4.9) any feedback of the form (4.10) satisfies
the assertion.

First note that for x /∈ cl K̃ the feedback value uT (x) is indeed arbitrary. This follows since
on K \ cl K̃ the control system is given by ẋ = g0(x). Thus, on the open set int (K \ cl K̃)
the Taylor expansions of φ(t, x) and φT (t, x, uT ) coincide for any order, regardless of the
values of u0 and uT , i.e., we obtain (4.2) for any M > 0 for arbitrary uT . By continuity of
the expressions in the Taylor expansion this property carries over to cl int (K \ cl K̃) which
contains K \ cl K̃ because we have assumed K = cl int K.

It is hence sufficient to show that uT satisfies the assertion for x ∈ cl K̃. Assume that the
function α exists and is bounded. Fix i ∈ {1, . . . , n} and consider the function hi(x) = xi.
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Using the expression vi for the i–th component of a vector v ∈ Rn, a simple computation
using the identities

Lg1hi(x) = g1(x)i and L[g0,g1]hi(x) = [g0, g1](x)i

shows that whenever g1(x)i 6= 0, then the function α from (4.9) satisfies

α(x) =
[g0, g1](x)iLg0+g1u0u0(x)

g1(x)i
=

L[g0,g1]hi(x) · Lg0+g1u0u0(x)
Lg1hi(x)

.

If g1(x)i = 0 then the feedback is of the form u1
T + O(T 2) for u1

T from (2.9). Thus,
the feedback is of the form (4.4) for h = hi and we can use Theorem 4.1 to conclude
∆hi(T, x, uT ) = O(T 4) for all x ∈ cl K̃. Since i ∈ {1, . . . , n} was arbitrary, this im-
plies ∆φ(T, x, uT ) = O(T 4). Furthermore, again by Theorem 4.1, any feedback yielding
∆φ(T, x, uT ) = O(T 4) must be of the form (4.10) if g1(x)i 6= 0 and since for each x ∈ K̃
we have g1(x)i 6= 0 for some i ∈ {1, . . . , n} it must be of the form (4.10) for all x ∈ K̃.

Conversely, assume that an admissible feedback law uT satisfying (4.2) on K with M = 2
exists. Then for each x ∈ K̃ we have g1(x)i 6= 0 for some suitable i ∈ {1, . . . , n}. Thus,
applying Theorem 4.1 for h = hi we obtain that uT must be of the form (4.4) for h = hi

and some i = 1, . . . , n, i.e., of the form (4.10). In particular, α(x) meeting (4.9) exists on
K̃ and since uT is admissible this function α must be bounded on K̃. On the open set
int (K \ cl K̃) we have g1 ≡ 0, thus also [g0, g1] ≡ 0, which by continuity also holds on
cl int (K \ cl K̃) = K \ cl K̃. Hence we can choose α(x) = 0 for x ∈ K \ cl K̃. This defines
a bounded function α for x ∈ K̃ ∪ (K \ cl K̃) = K \ (cl K̃ \ K̃). It remains to define α on
cl K̃ \ K̃. Since cl int K = K and K̃ is open relative to K we obtain cl K̃ = cl int K̃. Thus
for any x ∈ cl K̃ we find a sequence xn → x with xn ∈ int K̃, i.e., xn /∈ cl K̃ \ K̃. Since α
is already defined on this set, satisfies (4.9) and is bounded, by continuity we obtain

‖[g0, g1](x)Lg0+g1u0u0(x)‖ = lim
n→∞

‖[g0, g1](xn)Lg0+g1u0u0(xn)‖

≤ lim
n→∞

|α(xn)|︸ ︷︷ ︸
bounded

‖g1(xn)‖︸ ︷︷ ︸
→0

= 0.

This implies [g0, g1](x)Lg0+g1u0u0(x) = g1(x) = 0 and thus we can set α(x) = 0 on cl K̃ \ K̃
in order to satisfy (4.9). This finishes the proof.

Remark 4.8 While the condition ensuring ∆h = O(T 4) is still relatively easy to satisfy
at least in parts of the state space, cf. Remark 4.6, the condition about the existence of
α : K → R with (4.9) is rather strong. If Lg0+g1u0u0(x) 6= 0 (i.e., if the continuous time
feedback is not constant up to second order terms along the solution), it says that indirect
motion generated by the Lie bracket [g0, g1] (cf. Remark 4.5) must be contained in the span
of g1.

Remark 4.9 Conditions for M ≥ 3 can be obtained in a similar way but they become
more and more involved, because the number of higher order Lie brackets to be considered
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grows exponentially. For instance, for M = 3 the analogous condition to (4.9) is the
existence of a bounded function β : K → R satisfying

β(x)g1(x)i =
1
24

(
L2

g0
Lg1hi(x)− Lg1L

2
g0

hi(x)
)
Lg0+g1u0u0(x)

+
1
24

[g0, g1](x)iL
2
g0+g1u0

u0(x)

+
1
24

(
Lg0L

2
g1

hi(x)− L2
g1

Lg0hi(x)
)
u0(x)Lg0+g1u0u0(x)

− 1
24

(
Lg0Lg1hi(x) + Lg1Lg0hi(x) + 2L2

g1
h(x)u0(x)

)
α(x)

for each i = 1, . . . , n, hi(x) = xi and α from (4.9).

This is in contrast to the sufficient condition (3.1) which implies that all higher Lie brackets
appearing in the formulas vanish and which therefore holds for all M ≥ 2.

Remark 4.10 Despite the fact that the conditions for higher order sampled–data feedback
control become rather complicated, for a given continuous time closed loop system it is
possible to give a rather simple recursive maple procedure which checks the conditions for
arbitrary order and calculates the corresponding sampled–data feedback, if possible. The
maple code for this purpose is given in the Appendix.

Remark 4.11 The conditions for sampled feedback linearizability derived in [2] bear some
similarities with the conditions we derived here. In particular, necessary conditions for
sampled feedback linearizability derived in [2] (under varying assumptions) include con-
ditions like [g1, [g0, g1]] = 0 and [g1, [g0, g1]] = αg1 for an analytic function α : Rn → R.
However, apart from the obvious similarity of these conditions to our conditions (3.1) and
(4.9) and from the fact that geometric conditions on the vector fields appear naturally in
both problems, there does not seem to be a deeper connection. In fact, to our opinion
such a connection cannot be expected because the problems are different in two important
points: on the one hand, our results give asymptotic estimates while sampled feedback
linearizability is an exact property and thus more difficult to establish. On the other hand,
feedback linearization allows for additional coordinate changes which add more flexibility
to the problem and thus simplify it. Thus, neither problem follows from the other and
hence one cannot expect that the needed conditions imply each other in one way or the
other.

Using the results in this section, we now return to the feedback uM
T from (2.9) and show

that condition (3.1) is also necessary for (3.3), at least for a suitable set of states x.

Corollary 4.12 Consider the system (2.1), the continuous closed loop system (2.2) and
the sampled data closed loop system (2.3) with controller uM

T given by (2.9) for some
M ≥ 2. Assume that (3.3) holds. Then condition (3.1) holds for each x ∈ Rn for which
Lg0+g1u0u0(x) 6= 0.

Proof: If (3.3) holds for some M ≥ 2, then in particular it holds for M = 2 on any
compact ball K = clBr(0). Thus, from Theorem 4.7 we obtain the existence of a function
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α satisfying (4.9). Furthermore, we obtain that uM
T = uT +O(T 3) for uT from (4.10) which

is only possible if α(x) = 0 for x ∈ K̃. Since α(x) can be chosen as 0 for x /∈ K̃, we obtain
α ≡ 0 on K. This implies that the right hand side of (4.9) equals 0 for all x ∈ K and since
K is an arbitrary compact ball we obtain

[g0, g1]Lg0+g1u0u0(x) = 0

for each x ∈ Rn. This implies the assertion.

5 Examples

We illustrate our results by two examples. The first example is a simple artificial system
for which (3.1) does not hold but (4.9) holds. It is given by(

ẋ1

ẋ2

)
=
(

x1

x2

)
+
(

x2
2

2x2
1

)
u

with
u0(x) = −x1 − 1.

Here one computes

[g0, g1] =
(

x2
2

2x2
1

)
= g1(x),

which immediately implies that (4.9) holds on every compact set K with

α(x) = Lg0+g1u0u0(x) = x3
1 + x2

1 − x1.

The resulting sampled–data feedback laws for M = 0, 1, 2 are, respectively,

uT (x) = −x1 − 1, (5.1)

uT (x) = −x1 − 1 +
T

2
(
x1x

2
2 + x2

2 − x1

)
(5.2)

and

uT (x) = −x1 − 1 +
T

2
(
x1x

2
2 + x2

2 − x1

)
(5.3)

+ T 2

(
−1

4
x1 +

3
4
x1x

2
2 −

2
3
x4

1x2 −
4
3
x3

1x2 −
2
3
x2

1x2 −
1
6
x1x

4
2 −

1
6
x4

2 +
7
12

x2
2

)
.

Figure 5.1 shows the x1–component of the respective trajectories for x0 = (−1, 1)T and
sampling interval T = 0.2. Here the line without symbols is the continuous time trajectory.

Note that at time t = 1, i.e., after 1/T sampling intervals, we expect the difference between
the continuous time solution and the sampled–data solution to be of order TM+1. Figure
5.2 shows a log–log plot of these differences which confirms that the respective controllers
yield this accuracy.
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Figure 5.1: Comparison of the sampled–data controllers (5.1, o), (5.2, x) and (5.3, �)

10
−1

10
−4

10
−3

10
−2

10
−1

Figure 5.2: Difference between continuous time and sampled–data solutions at t = 1 for
sampled–data controllers (5.1, o), (5.2, x) and (5.3, �)

Our second example is a second order version of the Moore–Greitzer jet engine model(
ẋ1

ẋ2

)
=
(
−x2 − 3x2

1/2− x3
1/2

0

)
+
(

0
1

)
u.

Based on a continuous time stabilizing backstepping feedback law derived in [10, Section
2.4.3] given by

u0(x) = −7x1 + 5x2,

several sampled–data controllers laws were derived in [15]. Despite the fact that these
controllers show good performance, we can now prove that no sampled data feedback uT

can satisfy ∆φ(T, x, uT ) ≤ O(T 3). This follows, because for this system we obtain

[g0, g1](x)Lg0+g1u0u0(x) =
(

32x2 + 21
2 x2

1 + 7
2x3

1 − 35x1

0

)
,
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which is not of the form

α(x)g1(x) =
(

0
α(x)

)
for any scalar function α : R2 → R. Thus condition (4.9) is violated and consequently a
controller uT yielding ∆φ(T, x, uT ) ≤ O(T 3) cannot exist.

6 Appendix A: A technical result

Proposition 6.1 Consider the continuous closed loop system (2.2) with solutions φ(t, x0)
and assume that the condition (3.1), i.e.,

[g0, g1] = 0

holds. Then the equation

1
(s + 1)!

ds+1

dts+1
h(φ(t, x))

∣∣∣∣
t=0

= Lg1hus + ps(x, u0, u1, . . . , us−1)

holds for all s ∈ N with ps from Theorem 2.3 and us from (2.10).

Proof: We prove the assertion by induction over s ∈ N. For s = 1, we obtain

d2

dt2
h(φ(t, x))

= L2
g0+g1u0

h(x) = Lg0+g1u0(Lg0h(x) + Lg1h(x)u0(x))

= L2
g0

h(x) + Lg0(Lg1h(x)u0(x)) + Lg1Lg0h(x)u0(x) + Lg1(Lg1h(x)u0(x))u0(x)

= L2
g0

h(x) + Lg0Lg1h(x)u0(x) + Lg1h(x)Lg0u0(x) + Lg1Lg0h(x)u0(x)

+L2
g1

h(x)u0(x)2 + Lg1h(x)Lg1u0(x)u0(x)

= L2
g0

h(x) + Lg0Lg1h(x)u0(x) + Lg1Lg0h(x)u0(x) + L2
g1

h(x)u0(x)2

+Lg1h(x) Lg0+g1u0u0(x)︸ ︷︷ ︸
=2u1(x)

On the other hand, we have

p1 =
1∑

i0=0,i1=0

1
2!

Lgi0
Lgi1

h(x)

 ∑
|ν|=|I1|
‖ν‖=0

( |I1|
n0 n1 . . . nM

) 0∏
j=0

u
nj

j


=

1
2

[
Lg0Lg0h(x) + [Lg0Lg1h(x) + Lg1Lg0h(x)]u0 + Lg1Lg1h(x)u2

0

]
,

which shows the claim for s = 1.
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Now we perform the induction step s − 1 → s. For the left hand side of the asserted
equality we obtain

1
(s + 1)!

ds+1

dts+1
h(φ(t, x))

∣∣∣∣
t=0

(6.1)

=
1

(s + 1)!
Ls+1

g0+g1u0
h(x)

=
1

s + 1
Lg0+g1u0

1
((s− 1) + 1)!

Ls
g0+g1u0

h(x)

I.A.=
1

s + 1
Lg0+g1u0

[
Lg1h(x) · us−1(x) + ps−1(x, u0, . . . , us−2)

]
=

1
s + 1

{
Lg0Lg1h(x)us−1(x) + Lg1Lg1h(x)u0(x)us−1(x)

+ Lg1h(x) Lg0+g1u0us−1(x)︸ ︷︷ ︸
=(s+1)us(x)

+Lg0+g1u0ps−1(x, u0, . . . , us−2)
}

Omitting the arguments for brevity, we thus have to show that

Lg0Lg1h · us−1 + Lg1Lg1hu0us−1 + Lg0+g1u0ps−1

s + 1
= ps (6.2)

for ps from (2.12).

In order to prove (6.2) we proceed the following way: We consider the summands of the
outer sum in the definition of ps given by

1∑
i0=0,...,ik=0

Lgi0
· · ·Lgik

h(x)

(k + 1)!

( ∑
|ν|=|Ik|
‖ν‖=s−k

(
|Ik|

n0 n1 . . . nM

) s−1∏
j=0

u
nj

j

)
(6.3)

for k = 1, . . . , s and show that (6.3) consists of those terms from the left hand side of (6.2)
which contain exactly k + 1 Lgi operators applied to h. Since each term on the left hand
side of (6.2) contains at least 2 and at most s + 1 Lgi operators, this proves (6.2).

We start with k = 1. In this case, if s− 1 is even, then (6.3) becomes

1
2
(Lg0Lg1h + Lg1Lg0h)us−1 +

1
2
Lg1Lg1h

(
2u0us−1 + 2

s−1
2
−1∑

i=1

uiu(s−1)−i + u2
s−1
2

)
(6.4)

while if s− 1 is odd, then (6.3) evaluates to

1
2
(Lg0Lg1h + Lg1Lg0h)us−1 +

1
2
Lg1Lg1h

(
2u0us−1 + 2

s−2
2∑

i=1

uiu(s−1)−i

)
. (6.5)

All the terms in this expression contain exactly two Lgi operators. Collecting the terms
with exactly two Lgi operators on the left hand side of (6.2) using (6.4) and (6.5) for ps−1

and the identity

Lg0Lg1 = Lg1Lg0 (6.6)
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implied by (3.1), one obtains that the terms with exactly two Lgi operators on the left
hand side of (6.2) equal (6.3) for k = 1.

Now we prove the same property for 2 ≤ k ≤ s. Using (6.6) we can rewrite the summands
in (6.3) as

1
(k + 1)!

(
k + 1

i

)
Lg0 . . . Lg0︸ ︷︷ ︸

i times

Lg1 . . . Lg1︸ ︷︷ ︸
(k+1−i) times

h ·

 ∑
|ν|=k+1−i
‖ν‖=s−k

( k + 1− i

n0 . . . nM

) s−1∏
j=0

u
nj

j

 (6.7)

with i = |Ik| ranging from 0, . . . , k+1. The expression (6.7) contains exactly i Lg0 operators
and k + 1 − i Lg1 operators. On the left hand side of (6.2), using again (6.6), the terms
containing exactly this number of operators can be written as

1
s + 1

[
Lg0

 1
k!

(
k

i− 1

)
Lg0 . . . Lg0︸ ︷︷ ︸
(i−1) times

Lg1 . . . Lg1︸ ︷︷ ︸
(k+1−i) times

h

 ∑
|ν|=k+1−i
‖ν‖=s−k

( k + 1− i

n0 . . . nM

) s−1∏
j=0

u
nj

j




+Lg1

 1
k!

(
k

i

)
Lg0 . . . Lg0︸ ︷︷ ︸

i times

Lg1 . . . Lg1︸ ︷︷ ︸
(k−i) times

h

 ∑
|ν|=k−i
‖ν‖=s−k

( k − i

n0 . . . nM

)
u0

s−1∏
j=0

u
nj

j


 (6.8)

+
1

(k + 1)!

(
k + 1

i

)
Lg0 . . . Lg0︸ ︷︷ ︸

i times

Lg1 . . . Lg1︸ ︷︷ ︸
(k+1−i) times

h

 ∑
|ν|=k+1−i

‖ν‖=s−(k+1)

( k + 1− i

n0 . . . nM

)
Lg0+g1u0

s−1∏
j=0

u
nj

j

].
Thus, we have to show that (6.7) and (6.8) coincide for i = 0, . . . , k +1. To this end we fix
one summand in (6.7) — i.e., one multi–index (n0, . . . , nM ) — and collect all summands in
(6.8) containing the control product

∏s−1
j=0 u

nj

j . Once we have shown that these summands
coincide, equality of (6.7) and (6.8) follows because one easily checks that (6.8) does not
contain control products which do not appear in (6.7).

In order to collect the appropriate summands in (6.8) we have to identify the indices ν for
which the control products in the three terms in (6.8) equal

∏s−1
j=0 u

nj

j . For the first term in
(6.8) this simply amounts to setting ν = (n0, . . . , nM ) and in the second term in (6.8) one
obtains the right product by setting ν = (n0 − 1, n1, . . . , nM ), provided n0 ≥ 1, otherwise
this term does not contain this product. The last term in (6.8) is the most complicated
to treat. Here by definition of the uj in (2.9) the derivative of u

nj

j appearing in the last
expression evaluates to

Lg0+g1u0

s−1∏
j=0

u
nj

j =
s−2∑
l=0

nlu
nl−1
l (l + 2)ul+1

s−1∏
j=0
j 6=l

u
nj

j

where it is sufficient to take the sum over l to s− 2 because ‖ν‖ = s− (k + 1) and k ≥ 2
imply ns−1 = 0. Thus, in order to obtain

∏s−1
j=0 u

nj

j in the third term we need to take the
multi–indices ν = (n0, . . . , nl−1, nl + 1, nl+1 − 1, nl+1, . . . , nM ) for all l = 0, . . . , s− 2 with
nl+1 ≥ 1 (if nl+1 = 0 then the third term does not contain this product).
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Taking this into account, equality of (6.7) and (6.8) is equivalent to

1
(k + 1)!

(
k + 1

i

)(
k + 1− i

n0 . . . nM

)
· (s + 1) (6.9)

=
1
k!

(
k

i− 1

)(
k + 1− i

n0 . . . nM

)
+

1
k!

(
k

i

)(
k − i

n0 − 1 n1 . . . nM

)
+

1
(k + 1)!

(
k + 1

i

) s−2∑
l=0

(
k + 1− i

n0 . . . nl−1 nl + 1 nl+1 − 1 nl+2 . . . nM

)
(l + 2)(nl + 1)

using the convention
(

n
n0 n1...nM

)
= 0 if one of the ni is negative. Equality (6.9) is

equivalent to

s + 1
i!

· 1
n0! . . . nM !

=
i

i!
· 1
n0! . . . nM !

+
1
i!

n0

n0! . . . nM !

+
1
i!

1
n0! . . . nM !

s−2∑
l=0

(l + 2) · nl+1 · (nl + 1)
nl + 1

(6.10)

=
1

i!n0! . . . nM !

(
i + n0 +

s−2∑
l=1

(l + 2)nl+1

)
.

Observe that (6.9) and (6.10) are equivalent also in the case that n0 = 0 or nl+1 = 0 for
some l = 0, . . . , s − 2, because in this case the corresponding summand in term in (6.9)
vanishes by our convention and the corresponding summand in (6.10) vanishes, too.

Now, (6.10) follows from

i + n0 +
s−2∑
l=0

(l + 2)nl+1 = i + n0 +
s−1∑
l=1

(l + 1)nl

= i +
s−1∑
l=0

nl︸ ︷︷ ︸
=|ν|=k+1−i

+
s−1∑
l=0

l nl︸ ︷︷ ︸
=‖ν‖=s−k

= s + 1

This shows that (6.7) and (6.8) coincide also for k = 2, . . . , s which implies (6.2) and thus
finishes the proof.

7 Appendix B: maple code

In this appendix we provide a maple code2, which checks the conditions for the existence
of a sampled–data controller satisfying (4.2) and computes the controller, if this condition
is satisfied.

The algorithm has the following structure
2Note to the reviewers: we included the code for reviewing purposes. If the final version should exceed

the page limits, we can remove it and make it available on a web page, instead.
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1 set uT = u1
T from (2.9)

2 for p from 2 to M do
3 for k from 1 to n do
3 compute the Taylor approximations Tc ≈ φ(T, x)

and Td(u) ≈ φT (T, x, u) up to order T p+2

5 compute the difference ∆(usolve) = Tc − Td(uT + T pusolve)
and truncate all terms ≤ O(T p+3)

6 solve ∆(usolve) = 0 and set utest
k = usolve

7 if k ≥ 2 and utest
k 6= utest

k−1 stop
8 end of k–loop
9 set uT := uT + T putest

n

10 end of p–loop

Starting from uT defined in Step 1, iteratively for p = 2, . . . ,M the procedure computes
feedback terms utest

k such that (4.1) holds for M = p, uT + T putest
k and the functions

hk(x) = xk, k = 1, . . . , n. If all utest
k , k = 1, . . . , n, can be computed and coincide, then the

new feedback uT + T putest
n will satisfy (4.2) for M = p.

Since the equation to be solved in Step 6 is linear in usolve, maple will return a solution
provided usolve appears in this equation. During this procedure, the algorithm will not
check the boundedness of usolve, hence the boundedness of the resulting feedback uT has
to be checked by the user.

uT := proc(g0::Vector, g1::Vector, u0::algebraic, dim::algebraic, M::algebraic)

local uT, uTc, u, fc, fd, Lc, Tc, Ld, Td, xv,

p, k, i, hd, hdiff, hdiffu, hdiffus, utest, failure,

ord;

# define the continuous and sampled-data vector field for one sampling period T

fc := Vector(dim);

fd := Vector(dim);

for k from 1 to dim do

fc[k] := g0[k] + g1[k]*u0:

fd[k] := g0[k] + g1[k]*uTc:

od;

# define an auxiliary vector for computing derivatives

xv:=Vector(dim,symbol=x);

# define the zeroth and first order term of the sampled-data controller uT

uT := simplify(u0 + T*evalm(jacobian(Vector([u0]),xv)&*fc)[1]/2):

ord := M;

for p from 2 to M do

for k from 1 to dim do

Lc[0] := [x[k]]:

Tc[0] := Lc[0]:

Ld[0] := [x[k]]:
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Td[0] := Ld[0]:

# compute the coefficients Tc of the Taylor expansion

# for the continuous time system and state component k

for i from 1 to p+1 do

Lc[i] := evalm(jacobian(Lc[i-1],xv)&*fc);

Tc[i] := T^i/(i!)*Lc[i];

od;

# compute the coefficients Td of the Taylor expansion

# for the sampeled--data system and state component k

for i from 1 to p+1 do

Ld[i] := evalm(jacobian(Ld[i-1],xv)&*fd);

Td[i] := T^i/(i!)*Ld[i];

od:

# compute the difference hdiff of the k-th component of

# the Taylor approximations

hdiff := 0;

for i from 0 to p+1 do

hd[i]:=evalm(Td[i]-Tc[i]):

hdiff:=evalm(hdiff+hd[i]);

od:

# compute the p-th component utest[k] of the sampled-data

# feedback for the function h_k(x)=x_k

hdiffu:=eval( subs(uTc=uT+T^p*usolve,hdiff[1]));

hdiffus:=simplify(convert(series(hdiffu,T=0,p+2),polynom));

utest[k]:=solve(hdiffus=0,usolve):

# check, whether utest[k]=utest[k-1]

failure := false;

if (k>=2) then

if (utest[k]<>utest[k-1]) then

failure := true;

break;

end;

end;

od;

# if not, print error message and stop computation

if failure then

printf("desired order M=%d not feasible\n",M);

ord := p-1;

break

end;

# if yes, add p-th component to sampled-data feedback uT

uT := simplify(uT + T^p*utest[1]):

od:
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# output of the resulting feedback

printf("feedback computed for M=%d",ord);

uT;

end:

For the two examples from Section 5, the application of the procedure is given below. For
Example 1, the feedback laws computed by uT(g0,g1,u0,1); and uT(g0,g1,u0,2); are
given in (5.2) and (5.3), respectively.

# Example 1

g0 := Vector([x[1],x[2]]); g1 := Vector([x[2]^2,2*x[1]^2]);

u0 := -x[1] - 1;

uT(g0,g1,u0,2,1);

uT(g0,g1,u0,2,2);

uT(g0,g1,u0,2,3);

uT(g0,g1,u0,2,4);

# Example 2

g0 := Vector([-x[2] - 3/2*x[1]^2 - 1/2*x[1]^3, 0]); g1 := Vector([0,1]);

u0 := -7*x[1] + 5*x[2];

uT(g0,g1,u0,2,1);

uT(g0,g1,u0,2,2);

Acknowledgement: We would like to thank Dorothée Normand–Cyrot and Salvatore
Monaco for useful discussions on the relation between different approaches to digital con-
trol.
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