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Im Emulationsansatz zum Entwurf einer Regelung über ein Kommunikationsnetz wird

der Regler zunächst in kontinuierlicher Zeit ohne Berücksichtigung des Netzwerks

entworfen und dann als Abtastregler implementiert. Dieser Ansatz ist attraktiv wegen

seiner Einfachheit, benötigt aber i.A. hinreichend kleine Abtastraten für ein gutes

Regelverhalten des resultierenden Abtastsystems. Unter Bandbreitenbeschränkungen

kann daher die Regelgüte bis hin zur Instabilität beeinträchtigt werden. In dieser Arbeit

stellen wir verschiedene analytische und numerische Entwurfstechniken zur Anpassung

des Emulationsreglers an die Abtastsituation vor, mit denen die Regelgüte des

Emulationsreglers verbessert wird um so die benötigte Kommunikationsbandbreite zu

verringern.

In the emulation approach to controller design for networked control systems the

controller is first designed in continuous time ignoring the network and then

implemented as a sampled-data controller. While very attractive for its simplicity,

typically sufficiently small sampling periods are needed in order to ensure satisfactory

performance of the resulting sampled-data closed loop. Thus, in the presence of network

bandwidth constraints performance loss up to instability may occur. In this paper we

present a variety of analytical and numerical techniques for the redesign of sampled-data

controllers which improve the sampled-data performance of the non-redesigned

controller and aim at reducing the necessary communication bandwidth.
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1 Introduction

Emerging technologies, such as drive-by-wire cars and
fly-by-wire aircraft, lead to novel control system archi-
tectures in which numerous control loops are closed over
a single network that may also be used to transmit in-
formation from unrelated users. Motivation for this set-
up comes from reduced cost, volume and weight of the
system, as well as easier installation and maintenance.
This motivates research into the class of Networked Con-

trol Systems (NCS) in which multiple actuators and sen-
sors are connected to the network (modelled as a serial
communication channel) and only a subset of these can
access the network to transmit their values at any trans-
mission instant.

Design of NCS is currently attracting a lot of atten-
tion in the literature. For instance, an emulation-like
approach to design controllers for NCS was considered
in [26, 27], i.e., the controller is designed ignoring the
network and then implemented over the network with a
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sufficiently small sampling period. While very attracti-
ve for its simplicity, a common problem in emulation is
that the sampling period needed to guarantee stability
of the closed-loop may be too small to be implementa-
ble on the actual network. In other words, the required
network bandwidth1 may have to be higher than what
is available on the real network and, hence, the emula-
tion approach can not be used in such cases and more
sophisticated techniques are needed.

In this paper we consider nonlinear sampled-data sy-
stems as the simplest example of nonlinear NCS in which
all sensors and actuators get access to the network at
each transmission instant. This allows us to concentrate
our study on the effect of bandwidth constraints, howe-
ver, our results can be modified in order to cover more
general NCS which is subject of our current research.
For linear sampled-data systems, a large range of ad-
vanced controller discretisation and redesign techniques
have been developed, see, e.g., [1, 3, 16]. In the nonlinear
case, results are more scarce and often restricted to ad
hoc solutions. Notable exceptions are methods addres-
sing specific control tasks like feedback linearisation, see,
e.g., [2] and the references therein, or using structural
assumptions on the input-output behaviour, for instance
on the relative degree, see [21] and the references the-
rein.

For general classes of nonlinear systems, the authors ha-
ve recently started developing a framework for controller
redesign to be used within the emulation framework of
sampled-data nonlinear systems [10, 11, 12, 23, 24, 33].
This approach aims at redesigning the emulated control-
ler so that stability of the closed-loop can be preserved
with larger sampling periods (i.e. smaller bandwidth)
than with the non-redesigned emulated controllers.

In this paper we discuss several analytical and numeri-
cal techniques derived within this framework. The ana-
lytical approaches [12, 23, 33] are based on Fliess and
Taylor expansions and are attractive because they yield
closed analytic formulas for the resulting sampled-data
feedback laws and theoretical insight into the possibili-
ties and limitations of sampled-data controls, in parti-
cular from a geometrical point of view. The numerical
approaches [10, 11, 24, 33] are based on online optimisa-
tion techniques. Compared to the analytical techniques
they are in general more flexible and often show better
performance, however, they require fast and efficient on-
line optimisation algorithms in order to be applicable in
practice.

The paper is organised as follows: In Section 2 we defi-
ne the setup and give a more detailed overview of the
methods. In Section 3 we present the analytical techni-
ques either based on considerations of solution trajec-
tories only or utilising suitable continuous-time Lyapu-
nov functions. The numerical techniques are discussed
in Section 4 starting with the sketch of a simple least

1 Sampling period is inversely proportional to bandwidth.

squares approach followed by a more detailed treatment
of a general model predictive control scheme. In Secti-
on 5 we illustrate the techniques by numerical examples
and Section 6 concludes the paper.

2 Preliminaries and Overview

We consider a nonlinear plant model

ẋ(t) = f(x(t), u(t)) (1)

with vector field f : R
n × U → R

n which is continuous
and locally Lipschitz in x, state x(t) ∈ R

n and control
u(t) ∈ U ⊂ R

m. Throughout the paper we will use the
following standing assumption:

We assume that a locally Lipschitz continuous sta-
tic state feedback u0 : R

n → R
m has been designed

which solves some given control problem for the
continuous-time closed-loop system

ẋ(t) = f(x(t), u0(x(t))) x(0) = x0 (2)

whose solution we denote by φ(·, x0).

Our goal is now to design uT (x) such that the correspon-
ding sampled-data solution φT (·, x0, uT ) of the closed-
loop system using a sampler and zero order hold

ẋ(t) = f(x(t), uT (x(kT ))), t ∈ [kT, (k + 1)T ) (3)

k = 0, 1, . . ., reproduces the behaviour of the continuous-
time system — either in terms of the system trajectories
or in terms of a Lyapunov function — and thus improves
the performance of the sampled-data closed loop system.
Note that our solution concept for (3) coincides with the
S-solution (sampled solution) proposed in [4] and that
we omit the explicit listing of the control u0 in φ(·, x0)
to distinguish it from the emulated implementation used
for (3).

2.1 Techniques based on an asymptotic series
expansions

This paper gives a survey of several techniques for
the redesign of uT . Our first approach, developed in
[12, 23, 33], uses an asymptotic analysis in order to
study the difference between the continuous-time mo-
del (2) and the sampled-data model (3), i.e., we stu-
dy the sampled-data system’s behaviour for T → 0.
To this end, for a function a : R × R

n → R we write
a(T, x) = O(T q), if for any compact set K ⊂ R

n there
exists a constant C > 0 (which may depend on K) such
that the inequality a(T, x) ≤ CT q holds for all elements
x ∈ K. If we consider a specific set K we explicitly write
a(T, x) = O(T q) on K. For our analysis we consider an
“output” function h : R

n → R and derive series expan-
sions for the difference

∆h(T, x0, uT ) := |h(φ(T, x0)) − h(φT (T, x0, uT ))|. (4)
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Note that h here is not a physical output of the sy-
stem but rather a scalar auxiliary function which can
be chosen in different ways. For instance, establishing
∆hi(T, x0, uT ) = O(T q) for hi(x) = xi and i = 1, . . . , n
one obtains ∆φ(T, x0, uT ) = O(T q) for the difference

∆φ(T, x0, uT ) := ‖φ(T, x0) − φT (T, x0, uT )‖∞ (5)

measured in the maximum norm ‖ · ‖∞. From this
estimate it follows by a standard induction argument
that on each interval [0, t∗] we obtain ∆φ(t, x0, uT ) ≤
O(T q−1) for all times t = kT , k ∈ N with t ∈ [0, t∗]
which in particular allows to carry over stability pro-
perties from φ to φT , see [29, 30].

If u0 is a stabilising feedback law with a corresponding
Lyapunov function V : R

n → R, then another possible
choice of the auxiliary function is h = V . In this case we
study (4) for h = V in order to estimate

∆V (T, x0, uT ) := |V (φT (T, x0, uT ))−V (φ(T, x0))|. (6)

Here one may again choose uT in order to establish
∆V (T, x0, uT ) = O(T q) but the fact that V is a Lyapu-
nov function leads to alternative choices. In particular, a
reasonable design objective for uT would be to make the
Lyapunov difference V (φT (T, x0, uT ))−V (x) as negati-
ve as possible in order to achieve a faster decrease of the
Lyapunov function V along the sampled-data trajectory.
This approach leads to sampled-data feedback laws with
correction terms of the well known −LgV structure.

In order to facilitate the analytical computations for the
representation of (4) we restrict ourselves to control af-
fine systems where f in (1)–(3) takes the form

f(x, u) = g0(x) + g1(x)u (7)

with vector fields g0, g1 : R
n → R

n. For simplicity of ex-
position, in the analytical approach we consider single
input systems, i.e., u ∈ U ⊆ R. Corresponding results for
the multi input case can be found in [14].

2.2 Methods using an optimisation approach

The second class of methods we discuss in this paper re-
lies on numerical optimisation techniques and was inve-
stigated in [10, 11, 24, 33]. These techniques need fewer
structural assumptions, typically work better for larger
sampling times and allow to explicitly include the inter
sampling behaviour in the redesign — at the price of
replacing the analytical formulas for uT by a numeri-
cal (online) optimisation. The idea of the methods is to
use the continuous-time trajectory φ(t, x0) as a reference
and to minimise the deviation of φT (t, x0, uT ) from this
reference. The simplest approach uses a least squares
optimisation which iteratively minimises the difference
on each sampling interval. A more powerful — but also
computationally more demanding — optimisation crite-
rion is the minimisation of an infinite horizon functional

given by

∞∑

j=0

(j+1)T∫

jT

l(φT (t) − φ(t, x0), uT (φT (jT )))dt (8)

using the abbreviation φT (t) = φT (t, x0, uT ). This cri-
terion explicitely takes into account the whole future of
the systems’ behaviour and thus minimises the avera-
ged error over [0,∞). In order to solve this optimisation
problem and to compute the feedback uT online we em-
ploy a model predictive control (MPC) scheme using a
receding horizon technique.

2.3 Notations and basic definitions

Concerning the feedback uT , we consider the following
general class of functions.

Definition 2.1 An admissible sampled-data feedback
law uT is a family of maps uT : R

n → R
m, parameteri-

sed by the sampling period T ∈ (0, T ∗] for some maxi-
mal sampling period T ∗, such that for each compact set
K ⊂ R

n the inequality

sup
x∈K, T∈(0,T∗]

|uT (x)| < ∞

holds.

Note that for existence and uniqueness of the solutions
to (3), we do not need any continuity assumptions on uT .
Boundedness is, however, imposed, because unbounded
feedback laws are physically impossible to implement
and often lead to closed-loop systems which are very
sensitive to modelling or approximation errors, cf., e.g.,
the examples in [9, 25, 29].

Throughout the paper we use the following notation: a
function γ : R≥0 → R≥0 is said to be of class K if it
is continuous, zero at zero and strictly increasing. It
is of class K∞ if it is also unbounded. It is of class L
if it is strictly positive and it is decreasing to zero as
its argument tends to infinity. A continuous function
β : R≥0 × R≥0 → R≥0 is of class KL if for every fixed
t ≥ 0 the function β(·, t) is of class K and for each fi-
xed s > 0 the function β(s, ·) is of class L. For subsets
D ⊂ R

n we use the notation cl D, int D for the closure
and the interior of D. The notation | · | stands for the
Euclidean norm while ‖x‖∞ = max

i=1,...,n
|xi| denoted the

maximum norm in R
n. Furthermore (cf. [15]) we deno-

te the directional derivative of a function h : R
n → R in

the direction of g : R
n → R

n by

Lgh(x) :=
d

dx
h(x) · g(x)

and the Lie bracket of vector fields g0, g1 : R
n → R

n by

[g0, g1] =
d

dx
g1 · g0 −

d

dx
g0 · g1.
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3 Analytical redesign techniques

In this section we describe the analytical redesign tech-
niques from [12, 23, 33]. We consider nonlinear control
affine systems (7) and assume that all functions involved
are smooth with sufficiently high degree of smoothness
such that the derivatives taken in what follows are well
defined and continuous. While the admissible sampled-
data feedback uT we are looking for may in principle
be completely unrelated to u0, in the sequel it will turn
out that a certain relation between u0 and uT must hold.
More precisely, we will see that the resulting sampled-
data feedback (if existing) will be of the form

uT (x) =

M∑

i=0

T iui(x) (9)

with u0 from (2) and u1, . . . , uM : R
n → R being locally

bounded functions. This structure appears to be rather
natural and was also obtained as the outcome of the
design procedure in several other papers, cf. [2, 20, 28].

All our analytical approaches are based on the following
theorem ([23, Theorem 3.1]) for a closed-loop control
affine system (2) of the form (7) with controller (9).

Theorem 3.1 Consider the vector field (7), a smooth
function h : R

n → R, the continuous-time closed-loop
system (2) and the sampled-data closed-loop system (3)
with controller uT given by (9). Then, for sufficiently
small T , we can write:

h(φT (T, x, uT )) = h(x) +

M∑

s=0

T s+1[Lg1
h · us (10)

+ ps(x, u0, . . . , us−1)] + O(T M+2).

The proof of this theorem relies on a comparison of the
Taylor series expansion of the continuous-time closed-
loop system (2)

h(Φ(T, x)) = h(x) +

∞∑

i=1

T i

i!

dih(Φ(T, x))

dti

∣∣∣∣
t=0

(11)

with the Fliess series expansion of the sampled-data sy-
stem (3) at the sampling time T . Explicit formulas for
the pi-terms can be found in [23] and [33, Sections 3.1
and 3.2], here we only restate p0(x) = Lg0

h(x) and

p1(x, u0) =
1

2

[
Lg0

Lg0
h(x) + (Lg0

Lg1
+ Lg1

Lg0
)

h(x)u0(x) + Lg1
Lg1

h(x)u0(x)2
]
.

The next theorem is a rather straightforward conse-
quence from Theorem 3.1 performing a careful evaluati-
on of the pi-terms. For its proof see [23, Theorem 4.11]

for the cases (i) and (ii) and [12, Theorem 3.1] for case
(iii). For its formulation we use the notation

ui(x) =
1

(i + 1)!

diu0(φ(t, x))

dti

∣∣∣∣
t=0

. (12)

Theorem 3.2 Consider the vector field (7), the
continuous-time closed-loop system (2), the sampled-
data closed-loop system (3), a smooth function h : R

n →
R and a compact set K ⊂ R

n. Then the following asser-
tions hold for ui from (12).

(i) ∆h(T, x0, uT ) = O(T 2) holds on K for

uT (x) = u0(x).

(ii) ∆h(T, x0, uT ) = O(T 3) holds on K for

uT (x) = u0(x) + Tu1(x).

(iii) If the condition

∣∣L[g0,g1]h(x) · Lg0+g1u0
u0(x)

∣∣ ≤ c|Lg1
h(x)| (13)

holds for some constant c ≥ 0 and all x ∈ K, then

∆h(T, x0, uT ) = O(T 4)

holds on K for uT (x) =




u0(x) + Tu1(x) + T 2u2(x) +
T 2

12
αh(x), x ∈ cl K̃

u0(x) + Tu1(x), x /∈ cl K̃

with αh(x) :=
L[g0,g1]h(x) · Lg0+g1u0

u0(x)

Lg1
h(x)

and

K̃ := {x ∈ K |Lg1
h(x) 6= 0}.

Here the feedback laws uT in (i) and (ii) are unique up
to higher order terms in T on K and the feedback law
in (iii) is unique up to higher order terms on K̃. Fur-
thermore, on cl K̃ the sufficient condition (13) is also
necessary for the existence of uT in (iii).

Remark 3.3 On K̃, the necessary and sufficient con-
dition (13) can be interpreted as follows: For x ∈ K̃ one
can always induce any third order correction. However,
if Lg1

h(xn) → 0 for some sequence xn ∈ K̃, then the
control effort needed for this purpose may be unbounded
which causes the resulting feedback to be not admissible
in the sense of Definition 2.1. Condition (13) guards
against this situation.

3.1 High order approximations of trajectories

In this section, following [12], we use Theorem 3.2
for finding a feedback uT (x) such that the trajecto-
ry of the sampled-data system is close to the one of
the continuous-time closed-loop system (2). More pre-
cisely, we want to find uT such that the difference
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∆φ(T, x0, uT ) after one sampling period becomes as
small as possible, i.e., of order O(T p) for p as large as
possible.

The corresponding theorem [12, Theorem 3.6] for ∆φ
is obtained by applying Theorem 3.2 to h(x) = xi, i =
1, . . . , n:

Theorem 3.4 Consider the vector field (7), the
continuous-time closed-loop system (2), the sampled-
data closed-loop system (3) and a compact set K ⊂ R

n

satisfying K = cl intK. Then the following assertions
hold for ui from (12).

(i) ∆φ(T, x0, uT ) = O(T 2) holds on K for

uT (x) = u0(x).

(ii) ∆φ(T, x0, uT ) = O(T 3) holds on K for

uT (x) = u0(x) + Tu1(x).

(iii) If there exists a bounded function α : K → R satis-
fying

[g0, g1](x)Lg0+g1u0
u0(x) = α(x)g1(x) (14)

then
∆φ(T, x0, uT ) = O(T 4)

holds on K for uT (x) =




u0(x) + Tu1(x) + T 2u2(x) +

T 2

12
α(x), x ∈ cl K̃

arbitrary, x /∈ cl K̃

with K̃ := {x ∈ K | g1(x) 6= 0}.

Here the feedback laws uT in (i) and (ii) are unique up
to higher order terms in T on K and the feedback law
in (iii) is unique up to higher order terms on K̃. Fur-
thermore, on cl K̃ the sufficient condition (14) is also
necessary for the existence of uT in (iii).

Remark 3.5 Necessary and sufficient conditions for
O(T p), p ≥ 5, can be obtained in a similar way but
become more and more involved, because the number
of higher order Lie brackets to be considered grows
exponentially, cf. [33, Chapter 5]. However, despite
this growing complexity, for a given continuous-time
closed-loop system it is possible to give a rather sim-
ple recursive maple procedure which checks the con-
ditions for arbitrary order and calculates the corre-
sponding sampled-data feedback. This maple code is
available on www.math.uni-bayreuth.de/∼lgruene/

publ/redesign tra.html.

Remark 3.6 If we disregard the necessity and focus on
merely sufficient conditions for O(T p), p ≥ 5, the deri-
vation is considerably easier. For instance, in [33] (see
also [12]) it was shown that the feedback law

uT (x) =

p−2∑

i=0

T iui(x)

with ui from (12) realises ∆φ = O(T p) for arbitrary p ≥
2 if the vector fields g0 and g1 commute, i.e., [g0, g1] = 0.
It should be noted that this condition is also well known
in the numerical approximation theory of control sy-
stems, cf., e.g., [8, 32].

This commutativity condition could be considerably wea-
kened in [22], where it was shown that if the vector fields
[g0, g1] and g1 are parallel, then sampled-data feedback
laws uT realising ∆φ = O(T p) exist for all p ≥ 2. He-
re, however, the resulting formulas for uT again become
very complicated.

Observe that while (13) ensuring ∆h = O(T 4) is still
relatively easy to satisfy at least in parts of the state
space, cf. [12, Remark 3.5], assumption (14) is rather
strong. It demands that the direction generated by the
Lie bracket [g0, g1] must be contained in the span of g1

whenever Lg0+g1u0
u0(x) 6= 0.

On the other hand, while the estimate ∆φ(T, x0, uT ) ≤
O(T p) allows an immediate inductive2 extension to ar-
bitrary compact time intervals yielding ∆φ(t, x0, uT ) ≤
O(T p−1) (due to the fact that an estimate for the who-
le state is available), this is in general not possible for
the estimate ∆h(T, x0, uT ) ≤ O(T p). A notable excep-
tion is the case when h = V is a Lyapunov function for
the closed-loop system, a situation studied in [23] which
we will present next.

3.2 Redesign using Lyapunov functions

For several classes of systems (7) nowadays there exist
systematic methods to design a stabilising continuous-
time control law of the form u = u0(x) and an associa-
ted Lyapunov function V : R

n → R≥0, i.e., there exist
α1, α2, α3 ∈ K∞ such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (15)
∂V

∂x
[g0(x) + g1(x)u0(x)] ≤ −α3(|x|) ∀x ∈ R

n. (16)

Examples of such methods are backstepping [6, 18] and
forwarding [31] or methods based on control Lyapunov
functions, such as Sontag’s formula [15]. We now illu-
strate how the knowledge of V can be used in the rede-
sign procedure, an approach which can be extended to
more general dissipation inequalities [19].

Integrating (16) one obtains an estimate for the Lyapu-
nov difference

V (φ(t, x0)) − V (x) ≤ −

∫ t

0

α3(|φ(τ, x0)|)dτ

︸ ︷︷ ︸
=:α(t,x)

. (17)

2 cf. [29, Section 2.2.2]. The procedure is similar to the con-
vergence proof of numerical one-step approximations. The
necessary numerical stability condition follows from our Lip-
schitz assumptions on f and u0.
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Using (17) and (15), there exists a function β ∈ KL such
that solutions of the closed-loop system (2) satisfy:

|φ(t, x0)| ≤ β(|x0|, t) ∀x0 ∈ R
n, t ≥ 0 . (18)

Note that β can be computed from α1, α2 and (17), cf.
[17, Section 4.4]. In what follows we assume that the
estimate on |φ(t, x0)| from (18) satisfies all desired per-
formance specifications in terms of overshoot and con-
vergence speed. This motivates our redesign objective,
which is to ensure that φT (T, x0, uT ) satisfies (17) ap-
proximately for t = T with as little error as possible in
order to minimise the performance loss due to sampling.

A first approach to achieve this goal is to apply Theo-
rem 3.2 with h = V . Using this theorem, from (17) one
immediately gets

V (φT (T, x0, uT )) − V (x) ≤ −α(T, x) + O(T p) (19)

for p = 2, 3, 4 depending on the choice of uT (p = 4 being
feasible if (13) holds for h = V ).

Although this choice might already yield satisfactory
performance, in the special case of the Lyapunov dif-
ference it makes sense to go beyond the mere high order
approximation of the continuous-time behaviour. Inde-
ed, we can mimic techniques of Lyapunov controller re-
design for continuous-time systems for robustification of
the system (see [5, 17]). In this approach, the redesigned
controller is providing more negativity to the Lyapunov
difference than the original controller u0(x). This ty-
pically yields high gain controllers that have the well
known −LgV structure, see, e.g., [31].

In our sampled-data setting this leads to the following
problem: Suppose that we have (19). Then we want to
design ũT so that

V (φT (T, x0, ũT )) − V (x) ≤ −α̃(T, x) + O(T p̃)

holds with

α̃(T, x) > α(T, x) for T > 0, x 6= 0 and p̃ ≥ p .

Hence we want to achieve more Lyapunov decrease with
the redesigned controller (i.e., α̃(T, x) > α(T, x)) while
not decreasing the order in T of the (possibly) positive
remainder terms (i.e., p̃ ≥ p). Thus, it is expected that
the redesigned controller will provide faster decrease of
the Lyapunov function for sufficiently small sampling
periods, which results in a faster response and typically
enlarges the domain of attraction.

In the following we sketch how such a redesign can be do-
ne based on Theorem 3.1. We start from uT = u0 which
according to Theorem 3.2 realises (19) with p = 2. Using
the controller structure (9) the first M +1 terms in (10)
turn out to have the following form:

O
(
T 0

)
: Lg1

V · u0 + Lg0
V (20)

O
(
T 1

)
: Lg1

V · u1 + p1(x, u0) (21)

...
...

O
(
T M

)
: Lg1

V · uM + pM (x, u0, . . . , uM−1). (22)

This special triangular structure allows us to use a re-
cursive redesign. Since u0 is already given from the
continuous-time plant model (7), p1(x, u0) is known and
thus we can design u1 from (21). We will choose u1

such that the O(T ) terms in the expansion (10) are
more negative than when u1 = 0. Proceeding recursi-
vely, at each step j ∈ {2, . . . , M} we design uj to ma-
ke the O(T j)-term more negative based on the know-
ledge of pj(x, u0, . . . , uj−1) since all previous ui, i =
0, 1, 2, . . . , j−1 have already been designed. One way to
choose uj arises from the observation that any function
uj(x) with uj(x)Lg1

V (x) ≤ 0 will achieve more decrea-
se of V (·) if we neglect the terms of order ≥ j + 1. For
example, one such choice is

uj(x) = −γj(V (x)) · (Lg1
V (x)) , (23)

where the gain γj ∈ K is a design parameter determi-
ned in order to be able to dominate the sign indefini-
te function pj(x, u0, . . . , uj−1). For details of this and a
comparative discussion of other designs see [23, Section
4.1].

Remark 3.7 An important point is that whenever
Lg1

V (x) 6= 0, i.e., when x ∈ K̃ in Theorem 3.2, then in
principle we can dominate the terms pj(x, u0, . . . , uj−1)
by increasing the gain of uj. However, due to saturati-
on in actuators which is always present in practice, an
arbitrary increase in gain is not feasible.

4 Optimisation based redesign

All approaches developed so far yield asymptotic esti-
mates, i.e., estimates which hold up to some remain-
der term of order O(T p) which will become negligible
for sufficiently small T . On the one hand this approach
yields considerable theoretical insight into the problem
and always ensures the existence of an interval (0, T ∗]
such that the resulting redesigned controllers uT per-
form better than the original non-redesigned controller
u0(x) for T ∈ (0, T ∗]. On the other hand, however, the
upper bound T ∗ of this interval is no design parameter
in this approach. This may pose a problem, for instance
if bandwidth constraints of a network impose a lower
bound Tmin on the realisable sampling time. Then, in
order to obtain a performance improvement we need to
ensure T ∗ ≥ Tmin, which may only be achievable by tu-
ning the design parameters using trial and error.

This explains why in this section we present alternative
approaches based on numerical optimisation techniques,
which enable us to design uT for prespecified sampling
times T . Other benefits of these methods are that the
inter sampling behaviour of the solutions can be expli-
citly included in the optimisation criterion and that we
do not need to impose a control affine structure or scalar
input. The price we have to pay for this enlarged flexi-
bility is that we can no longer expect closed analytic
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expressions for uT . Instead, the controllers are now gi-
ven as solutions to — at times computationally involved
— optimisation problems, which need efficient numerical
solvers in order to allow for an online implementation.

4.1 One-step optimisation

The simplest possible optimisation scheme, investigated
in [33], is to minimise the distance between φ and φT

individually on each sampling interval (kT, (k+1)T ] for
k = 0, 1, 2, . . .. In order to encode this in an objective
function taking the inter sampling behaviour into ac-
count we pick m ≥ 1 and define for the k-th sampling
interval

F (xk, u) :=
1

2

m∑

i=1

|φT (iT/m, xk, u) − φ(k + iT/m, x0)|
2

where xk = φT (kT, x0, uT ). Then, recursively for k =
0, 1, . . . we let uT (xk) be the minimiser of this expressi-
on, i.e.,

uT (xk) = argmin
u∈U

F (xk, u).

This is a standard nonlinear least squares problem which
can be solved efficiently with the Levenberg-Marquardt
or the Gauss-Newton algorithm, cf. [33, section 7.2]. A
decisive factor in the selection of these optimisation al-
gorithms is that both are iterative ones. It turns out that
for a satisfactory solution it is often sufficient to use ve-
ry few iterations, a fact which significantly reduces the
computational effort. This simple approach often leads
to noticeable improvements over the analytic redesign,
see [33, section 7.3 and 7.4] and Section 5, in particular
it enlarges the range of sampling periods for which the
sampled-data system remains stable. A further improve-
ment is obtained if we initialise our iterative optimisati-
on with the analytically redesigned controller instead of
u0 which helps to keep the number of iterations small.

Closeness of the trajectories φ(t, x0) and φT (t, x0, uT )
for t from compact time intervals (and thus practi-
cal asymptotic stability of the sampled-data closed-loop
provided φ is asymptotically stable [29]) follows induc-
tively from the closeness on the individual intervals.

4.2 Model Predictive Control

The one-step optimisation is easy to implement and to
analyse, however, the individual optimisation on each
sampling interval is clearly insufficient in order to mini-
mise the deviation over the whole time interval [0,∞).
For this purpose, the model predictive control (MPC)
approaches developed in [24, 10, 11] turn out to be mo-
re powerful.

In order to measure and minimise the infinite horizon
difference between both trajectories in a suitable ave-
raged sense, for piecewise constant control functions
v : R

+
0 → U with v[jT,(j+1)T ) ≡ vj we denote the solu-

tion of
ẋ(t) = f(x(t), v(t)), x(0) = ξ0 (24)

by φT (t, ξ0, v). Then we define the cost functional

J(ξ0, x0, v) :=

∞∑

j=0

(j+1)T∫

jT

l(φT (t, ξ0, v) − φ(t, x0), vj)dt,

where l : R
n ×U → R≥0. For instance, for l(x, u) = |x|2

the optimal control minimises the L2 distance between
the two trajectories, but this approach is very flexible
and more general choices of l are possible including, e.g.,
the penalisation of the control effort.

The minimisation of J poses an optimal control problem
with infinite horizon which involves solving a Hamilton-
Jacobi-Bellman type equation in order to obtain the op-
timal feedback control which in our nonlinear setting is
typically too hard to be solved directly.

In order to circumvent this computational burden we
apply a receding horizon technique in which we reduce
the horizon to a finite length M · T for some M ∈ N.
This will give us a suboptimal MPC controller whose
numerical computation is manageable and results in the
problem of minimising

JM (ξ0, x0, v) :=

M−1∑

j=0

(j+1)T∫

jT

l(φT (t, ξ0, v) − φ(t, x0), vj)dt

+ F (φT (MT, ξ0, v), φ(MT, x0)), (25)

where F is a terminal cost estimating the cost-to-go.

In order to obtain the sampled-data feedback law uT

from the minimisation of (25) we proceed in the typical
MPC fashion: Solving the minimisation problem yields
an optimal control function

û = argmin
v

JM (ξ0, x0, v) (26)

which is defined on [0, MT ] and piecewise constant, i.e.,
û[jT,(j+1)T ) ≡ ûj ∈ U for j ∈ {0, . . . , M − 1}. We define
the feedback value in (ξ0, x0) to be the first element of
the sequence ûj , i.e.,

uT (ξ0, x0) := û0. (27)

This procedure is repeated iteratively by shifting the ho-
rizon forward in time by T . According to this procedure
uT = uM is a static state sampled-data feedback for the
coupled system (24, 2).

In contrast to the one-step optimisation a simple itera-
tive proof for the closeness of φT (t, x, uT ) to φ(t, x) does
not work: due to the minimisation over larger horizons it
may happen that the difference φT (T, x, uT )−φ(T, x) af-
ter one sampling interval is large in which case an induc-
tion to the next sampling interval fails. Thus, we need
to use genuine MPC techniques [7] in order to analyse
the closed-loop behaviour. The following theorem gives
the respective stability statement, for its proof see [24,
Theorem 3.1].
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Theorem 4.1 Suppose the following conditions hold:

(i) l and F are continuous;
(ii) U is bounded;
(iii-a) The continuous-time system (2) is globally asym-

ptotically stable;
(iii-b) There exists a constant r0 > 0 and a function γ ∈

K∞ such that ∀ |y| ≥ r0

l(y, u) ≥ max

{
max

|x|≤2|y|
|f(x, u)|, γ(|y|)

}
;

(iii-c) f(·, ·) and u0(·) in (2) are locally Lipschitz in their
arguments;

(iv) The value function is such that for some ᾱ ∈ K∞

we have that VM (ξ, x) ≤ ᾱ(|(ξ, x)|) for all M ≥ 0 and
all (ξ, x) ∈ R

2n.

Then there exists a function β ∈ KL such that for each
pair of strictly positive real numbers (∆, δ) there exists a
constant M∗ ∈ Z≥1 such that for all (ξ, x) ∈ B∆, M ≥
M∗ and all t ≥ 0 the solutions of the continuous-time
system (2), (24) satisfy

|(φT (t, ξ0, uT ) − φ(t, x0))| ≤ max{β(|(ξ0, x0)|, t), δ}.
(28)

It should be noted that no assumption on the cost-to-
go F is made here, implying that asymptotic stability
does indeed hold for arbitrary terminal costs provided
M ≥ M∗. However, the choice of F affects the constant
M∗. In particular, under suitable Lyapunov function li-
ke conditions M∗ is typically smaller than in the general
case, cf. [7, 24]. Furthermore, note that our stability re-
sult does not require ξ0 = x0, although this is of course
a natural choice.

Beyond stability, the main motivation of the MPC setup
is to ensure closeness of the trajectories in the averaged
sense of minimising the functional J . While within the
MPC approach one cannot expect uT to be optimal for
J , under a Lyapunov function like condition on F it is
possible to show that uT is inversely optimal, i.e., op-
timal for a suitably modified infinite horizon functional
J , see [24, Theorem 4.3]. Alternatively, one may use ap-
propriate controllability assumptions in order to prove
suboptimality of uT with respect to the original cost
functional J even for F ≡ 0, see [13].

Compared to a direct MPC stabilisation of the
sampled-data system, our redesign approach using the
continuous-time trajectory as reference has certain per-
formance advantages. For instance, our discrete ti-
me controller inherits the transient behaviour of the
continuous-time system, while in standard MPC sche-
mes the transient behaviour can only be influenced in-
directly through the choice of the cost functional. Alt-
hough the design of a suitable continuous-time control-
ler requires a considerable amount of a priori work, this
may be rewarded by a better performance of the re-
sulting sampled-data closed-loop. Furthermore, several

examples show that the numerical optimisation becomes
easier when a good reference trajectory is available. We
have used a direct discretisation approach followed by
the solution of the resulting finite dimensional problem
using an SQP method, see [10, 11] for details. With this
approach it turns out that for optimising the distance to
the continuous-time reference one or two SQP iterations
already yield a satisfactory performance.

Finally, concerning the sampling time, we would like to
emphasise that whenever the problem is feasible (i.e.,
whenever the sampled-data system can be held close
to the reference for a given lower bound Tmin on the
sampling time), then the MPC approach will yield a
good solution. We consider this as the main advantage of
the MPC approach over the other approaches presented
in this paper.

5 Examples

In this section we demonstrate how the methods pre-
sented in this paper complement each other. For this
purpose we describe three different situations which can
be categorised by the sampling period T , or equivalent-
ly, by the bandwidth of the communications channel.
If a large bandwidth is available, then small sampling
periods T can be used and the analytical redesign may
be the method of choice. Note that in this case the eva-
luation of the redesigned feedback law is fast since the
feedback is given by an analytical formula which will be
calculated in advance.

In order to illustrate the improvement of the analyti-
cal redesign over the straightforward implementation of
the continuous time feedback, we first present a simple
academic example

(
ẋ1

ẋ2

)
=

(
x1

x2

)
+

(
x2

2

2x2
1

)
u (29)

with u0(x) = −x1 − 1. For this system one computes
[g0, g1] = g1(x) 6= 0, which implies that (14) holds on
every compact set K with α(x) = x3

1 +x2
1−x1. Therefo-

re we can calculate the feedback laws from Theorem 3.2
(i), (ii) and (iii), i.e., for order p = 2, 3 and 4. The resul-
ting x1-component of the trajectories for x0 = (−1, 1)T

for the sampling rate T = 0.1 can be seen in Figure 1.

These numerical results confirm the theoretically expec-
ted approximation order, see [12].

The main drawback of this method is the fact that for
practical problems the existence of a feedback of order
p > 3 can not be expected in general. To show this our
next example is a second order version of the Moore-
Greitzer jet engine model

(
ẋ1

ẋ2

)
=

(
−x2 − 3x2

1/2 − x3
1/2

0

)
−

(
0
1

)
u (30)
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Bild 1: x1(t) for example (29). Continuous-time solution (- -);
sampled-data solutions for uT = u0 (♦) and uT from Theorem
3.2 (ii) (◦) and (iii) (�), T = 0.1

with the continuous-time stabilising backstepping feed-
back law u0(x) = −7x1 + 5x2 derived in [18, Secti-
on 2.4.3]. Here condition (14) shows that no admissi-
ble sampled-data feedback uT satisfies ∆φ(T, x, uT ) ≤
O(T 4), cf., [12, Section 4]. Hence, although analytically
redesigned feedback laws can work well, cf. [23], due to
the fundamental order limitations of the asymptotic ap-
proximation, they typically do so only in a rather small
region of sampling periods. Thus, if the bandwidth of
the network does not support the use of the necessary
large sampling rate, they may exhibit poor performan-
ce. In this case optimisation based techniques typically
perform better, as shown in Figure 2 for x0 = (22, 21)T

and T = 0.2. Here the standard Matlab implementation
of the Gauss-Newton method was used.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−5

0

5

10

15

20

25

30

t

x 1

Bild 2: x1(t) for example (30). Continuous-time solution (- -);
sampled-data solutions for uT = u0 (×) and uT from one-step
optimisation with 1 (♦) and 2 (�) Gauss-Newton iterations,
T = 0.2

The third situation we examine in this section is the case

of rather large T , i.e., when only very low bandwidth
for the communication between controller and plant is
available. In order to compare the one-step and the MPC
optimisation we consider the arm/rotor/platform model

ẋ1 = x2 + x6x3

ẋ2 = −
k1

M
x1 −

b1

M
x2 + x6x4 −

mrb1

M2
x6

ẋ3 = −x6x1 + x4

ẋ4 = −x6x2 −
k1

M
x3 −

b1

M
x4 +

mrk1

M2

ẋ5 = x6

ẋ6 = −a1x5 − a2x6 + a1x7 + a3x8 − p1x1 − p2x2

ẋ7 = x8

ẋ8 = a4x5 + a5x6 − a4x7 − (a5 + a6)x8 +
1

J
u

(31)

and a continuous-time full-state feedback u0 which was
designed for this system via backstepping such that the
output

ζ(t) := x5 −
a3

a1 − a2a3
[x6 − a3x7]

is close to x5 and tracks a given reference signal ζref,
see [6, Chapter 7.3.2] for details on the backstepping
design and the specification of the parameters. To ge-
nerate the results given in Figure 3 for the reference
function ζref(t) := sin(t) we used the SQP based optimi-
sation software NUDOCCCS for both approaches and
performed 3 SQP iterations for each optimisation.

0 2 4 6 8 10 12 14 16 18 20
−80

−60

−40

−20

0

20

40

 

 

t

x 5

Bild 3: x5(t) for example (31). Continuous-time solution
(- -); sampled-data solutions for uT = u0 (solid line without
markers), uT from one-step optimisation (×) and MPC (◦),
T = 0.3 using M = 4

Here one observes that the sampled-data implementati-
on of the continuous-time controller (solid line without
markers) leads to immediate instability while both one-
step and MPC optimisation stabilise the system with
the MPC approach showing a better performance due
to its ability to take a longer horizon into account. Mo-
reover, due to the fact that a prediction of the system’s
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future states is inherently available in the MPC scheme,
this provides a natural way to reconstruct missing infor-
mation in case of data loss during broadcast. The design
and stability analysis of algorithms which use this fact
in order to create mechanisms coping with this situation
are currently under investigation. Still, we want to em-
phasize that — in particular if long prediction horizons
are used — MPC is computationally more demanding
than the other methods, which means that the price we
have to pay for the ability to cope with small bandwidth
and package dropouts is a higher computational effort
in the controller.

6 Conclusion and outlook

In this paper we have presented analytical and numeri-
cal sampled-data redesign techniques for nonlinear sy-
stems. In particular, we have discussed and illustrated
the main advantages and disadvantages of these approa-
ches: while the analytical techniques provide theoretical
insight and explicit formulas which are easy to imple-
ment and fast to evaluate they have a somewhat limited
applicability and performance. On the other hand, the
numerical techniques typically show very good perfor-
mance and allow to explicitly include the sampling time
as a design parameter but require fast online optimisati-
on algorithms in order to be implementable in practice.

Current research is focused on two areas: On the theore-
tical side we want to generalise our results to cover more
general NCS instead of sampled-data systems, which are
just a particular special case. On the numerical side, we
aim at increasing the efficiency of the algorithms, e.g.,
by trying to combine the conceptual and numerical sim-
plicity of the one-step approach and the generality and
flexibility of the MPC approach.
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[10] L.Grüne, D.Nešić, J.Pannek, ”Model predictive
sampled-data redesign for nonlinear systems”, Proc.
44th IEEE CDC and ECC2005, Sevilla, Spain, pp.
36–41, 2005.
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