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Abstract

A version of Matrosov’s theorem for parameterized discrete-time time-varying systems is presented. The theorem is a discrete-
time version of the continuous-time result in [2]. Our result facilitates controller design for sampled-data nonlinear systems via
their approximate discrete-time models. An application of the theorem to establishing uniform asymptotic stability of systems
controlled by model reference adaptive controllers designed via approximate discrete-time plant models is presented.
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1 Introduction

The prevalence of computer controlled systems and the
fact that the nonlinearities in the plant model can of-
ten not be neglected strongly motivate consideration of
the class of nonlinear sampled-data models. One of the
main difficulties in dealing with this class of models is
that it is not clear what is the model one should use
when designing the controller. For example, the exact
discrete-time model of this class of systems is typically
not available for the controller design and one can only
use an approximate model for this purpose. However, it
was shown in [4,13] that controllers that stabilize an ap-
proximate discrete-time model of the system may desta-
bilize the exact discrete-time model for all sampling pe-
riods. Hence, a careful analysis and design are needed
if one is using an approximate discrete-time model for
controller design.

This has motivated us to present checkable conditions
[4,13] on the controller, approximate model and the
continuous-time plant model that guarantee that if
the controller stabilizes the approximate model then it
would also stabilize the exact discrete-time model in an
appropriate sense (semiglobal-practical) for sufficiently
small sampling periods. These results provide a frame-
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work for controller design for sampled-data nonlinear
systems via their approximate discrete-time models.
In particular, [4, Theorem 2] gives Lyapunov like con-
ditions on the approximate model to provide such a
framework. It is the purpose of this paper to extend
the results in [4,13] in the following way. We prove a
version of Matrosov’s theorem for establishing uniform
asymptotic stability using several Lyapunov like func-
tions that typically have negative semi-definite first
difference (in [4] and [13] we required a negative definite
first difference of the Lyapunov function; moreover in
[4] we considered only time-invariant systems).

Our results are important for the following reasons.
Time-varying systems arise in a range of control appli-
cations, such as tracking control, adaptive control or
when time-varying controllers are used (such as, stabi-
lization of non-holonomic systems). Matrosov’s theorem
generalizes, in an appropriate sense, La Salle’s theorem
to time-varying systems and it is very important in
situations when we have a negative semi-definite deriva-
tive of the Lyapunov function along the trajectories of
the system dynamics (such as, when we use the storage
function for the passivity property to establish stabil-
ity). The classical Matrosov theorem establishes UGAS
via two Lyapunov like functions (see [9], [15, Theorem
5.5], [12, Theorem 2.5] and [14, Appendix]). Certain
extensions of Matrosov theorem can be found in [3] and
more recently in [2] where it was shown how it is pos-
sible to combine an arbitrary number of Lyapunov like
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functions to test UGAS of time-varying continuous-time
systems. Our main result extends the main result from
[2] to parameterized families of time-varying discrete-
time systems that naturally arise when an approximate
discrete-time model is used to design a controller for
a sample-data system. While our proofs follow similar
steps as in the continuous-time case [2], they are compli-
cated by the fact that we also require certain uniformity
of the stability property with respect to the parameter,
which is crucial for sampled-data applications. An appli-
cation to systems for which a model reference adaptive
controller is designed via an approximate discrete-time
model is presented (a continuous-time analogue of this
result can be found in [1]).

The paper is organized as follows. First, we present pre-
liminaries and definitions in Section 2. The main re-
sult is presented and proved in Section 3. Section 4 ex-
plains how our results can be used for controller design of
sampled-data nonlinear systems via their approximate
discrete-time models. Finally, in Section 5 we show how
our result can be used to analyze systems controlled by
model reference adaptive controllers that are designed
via their approximate discrete-time plant models.

2 Preliminaries

We denote sets of real and integer numbers respectively
as R and Z. A function a : R>g — R>¢ is said to be of
class K (a € K), if it is continuous, strictly increasing
and zero at zero; a € K if, in addition, it is unbounded.
A function /B : RZO X Rzo — RZO is of class KL if for
allt > 0, B(-,t) € K, for all s > 0, (s,-) is decreasing
to zero. We denote by |-| the Euclidean norm of vectors.
Given arbitrary L > 0 and T" > 0 we use the following
notation: £y, = |%| = max{z€Z:2 < &}. Also,
we denote Ba := {z : || < A} and H(4,A) = {=z :
0 < |z| < A}. Consider the class of parameterized time-
varying discrete-time systems:

z(k+1) = Fr(k,z(k)) . (1)

These systems arise naturally when an approximate
discrete-time model of a sampled-data plant is used to
design a controller (see Section 4 and [4,13] for more
details). The trajectory of the system (1) at a time k
starting at an initial time k, and emanating from the
initial state x, is denoted ¢r(k, ko, o). Often ko, and
Z, are clear from the context and we use the shorthand
notation ¢r (k). T > 0 is a parameter that can be ar-
bitrarily assigned (most of the time T represents the
sampling period). The following definitions will be used
in the sequel.

Definition 1 The system (1) is uniformly semiglobally
practically asymptotically stable (USPAS) if there exists
v € Ko such that for each pair of strictly positive real
numbers (r,€) there exists L = L(r,€) > 0 and for each

strictly positive (A,v) there exists T* = T*(A,v) > 0
such that for all ko > 0, z(ko) = zo, T € (0,T*) and
r < A we have

|zo| < A= |¢pr (k)

| <A(lwo) +v,  VEZE  (2)
70| <7 =>[o7(K)|

e+, Vk >k, +ZL,T- (3)

IAIA

The system (1) is uniformly semiglobally asymptotically
stable (USAS) if for each A > 0 there exists T* =
T*(A) > 0 such that ko > 0, (ko) = z,, T € (0,T%)
and r < A the inequalities (2) and (8) hold with v = 0.
The system (1) is uniformly globally asymptotically sta-
ble (UGAS) if there exists T* > 0 such that for all ks > 0,
z(ko) = o, T € (0,T*) the inequality (2) holds for all
o € R with v =0 and (8) holds for all r > 0 and with
v=20.

The stability definitions in Definition 1 are suitable for
the purposes of our paper. However, in [4,13] we have
used definitions that make use of KL functions. These
are presented next. As Proposition 1 below points out,
the properties in Definitions 1 and 2 are equivalent.

Definition 2 The system (1) is S-uniformly semiglob-
ally practically asymptotically stable (3-USPAS) if there
exists § € KL such that for each strictly positive (A, v)
there exists T* = T*(A,v) > 0 such that for all k, > 0,
z(ko) = o, with |xo| < A and T € (0,T*) we have

60 (8)| < B(aol, (k= ko)T) +v,  VE>ke (4
The system (1) is B-uniformly semiglobally asymptoti-
cally stable (B-USAS) if for each A > 0 there exists T* =
T*(A) > 0 such that for all ke > 0, z(ko) = zo, with
|zo] < A and T € (0,T*) the inequality (4) holds with
v = 0. The system (1) is B-uniformly globally asymptot-
ically stable (B-UGAS) if there exists T* > 0 such that
forallke >0, z(ko) = To, withzo € R” and T € (0,T*)
the inequality (4) holds with v = 0.

The proof of the following result follows very similar
steps to the proof of [17, Proposition 1] and is omitted.

Proposition 1 The system (1) is:

(1) UGAS iff there exists a continuous 8 € KL such that
the system (1) is B-UGAS;

(2) USAS iff there exists a continuous 3 € KL such that
the system (1) is B-USAS;

(8) USPAS iff there exists a continuous B € KL such
that the system (1) is 8-USPAS;

We also need the following definition for the statement
of our main result.

Definition 3 The system (1) is said to be semiglobally
bounded on compact time intervals (SB) if there exist
v, € Koo such that for each triple of strictly positive
real numbers (A, L, §) there exists T* = T*(A,L,8) > 0



such that for all ko > 0, z(ks) = zo with |zo| < A and
T € (0,T*) we have that trajectories of (1) satisfy:

o7 (F)| < (|20 ) + o (6T (k — ko)), (5)

for all k € [ko, ko + £r,7]. If for each A > O there exists
T* = T*(A) > 0 such that for all ks > 0, z(ko) = =
with |z.]| < A and T € (0,T*) the bound (5) holds with
6 = 0 and for all k > k., then the system is uniformly
semiglobally stable (USS). If there exists T* > 0 such that
for all ko >0, x(ko) = 2o with zo € R® and T € (0,T*)
the bound (5) holds, with § = 0, then the system (1) is
uniformly globally stable (UGS).

3 A type of Matrosov Theorem

The following theorem is an adaptation of the Matrosov
Theorem given in [2] to parameterized discrete-time
time-varying systems that naturally arise when one uses
an approximate discrete-time model of the sampled-
data plant to design a discrete-time controller. A com-
parison between the statement of this theorem and the
statement of Corollary 2, the latter of which is essen-
tially a translation of the result in [2] to discrete-time,
indicates the complications that arise from considering
parameterized systems.

Theorem 1 The system (1) is USPAS if the following
conditions hold:

1. The system (1) is SB.

2. There exist integers j,m > 0 and a real number T > 0
such that for eachT € (0,T) andi € {1,2,...,7} there
exist functions Vi : R xR* = R, xr : Rx R* - R™
and continuous functions Y; : R® x R™ — R and for
each A > 0 there exists p > 0 such that

(a) for allT € (0,T), |z| <A and k € Z:

ma,x{|V7’~(k,x)| alXT(kax)l} <p. (6)
(b) For each integer k € {1,...,j} we have that

(2,€) € Ba x By,
Y,(z,§)=0,
Vie{l,...,k—1}

(c) We have that

(Z,f) € Ba X BLH
Y;'(Z,é.):(],
Vie{l,...,j}

= 2=0. (8)

3. For each pair of strictly positive real numbers (A,v)
there exists T* > 0 such that for all T € (0,T*),
ie€{l,...,j}, |z| < A and k € Z we have that:

AV
TT <Yi(z,xr(k,2)) + v, 9)

where AVr := Vi(k + 1, Pr(k,x)) — Vi(k,z).

Note that Condition 2 of Theorem 1 concerns only the
properties of the functions V., xr and Y; whereas Con-
ditions 1 and 3 also involve the system (1). The signif-
icance of Condition 2 is the consequence given in the
next proposition. (The proof is the same as that for
continuous-time systems, as in [2], and thus is omit-
ted.) This consequence is typically much more difficult
to check than Condition 2 (see Example 1 which follows
the proposition, and also the discussion in [2]):

Proposition 2 Let A > 0 be given and let it gen-
erate > 0 via Condition 2 of Theorem 1. Then,
for each § € (0,A) there exist « > 0 and num-
bers K; > 0,i = 1,...,5 — 1 such that the function
Z(z,€) = Zf:_ll K;Yi(2,€) + Yj(2,6) satisfies for all
(2,€) € H(5,A) x By, the following Z(z,§) < — 5.

Example 1 The following functions Y; will arise in the
analysis of the model reference adaptive control problem:

Yi(2,€) = —as(z1) (10)
Ya(z,€) = |z1lps(|2]) + [p1 (|21 ]) + p2(21))] p5(I2])
—l&f® (11)

Y3(2,€) = [€] + exp(1)ps(|z[)p1 (|21]) — %G(I@I) (12)

where p; : R>g — Ry are continuous, nondecreasing,
pi(0) = 0 fori = 1,2, and az,a are continuous, pos-
itive definite. We note that, from the properties of as,
Yi(z,€) < 0. Moreover, Yi(z,£§) = 0 implies z, = 0.
Thus, from the properties of p1 and p2, Y1(z,€) =0 im-
plies Y(2,€) = —|€ < 0. In turn, Vi (2, €) = Ya(2,€) =
0 imply z1 = 0 and £ = 0 and thus imply Y3(2,£) =
—%a(z2) < 0. Thus Condition 2(b) of the Theorem is
satisfied. Finally, from the properties of a, Y1(2,£) =
Ya(2,8) = Ys(2,&) = 0 imply z = 0. So Condition 2(c) of
the Theorem is satisfied. On the other hand, it is a non-
trivial task to solve for the numbers K; > 0 and a > 0
indicated in the Proposition.

The following results are corollaries of the proof used to
establish Theorem 1.

Corollary 1 The system (1) is USAS if:

(1) The system (1) is USS.

(2) Condition 2 of Theorem 1 holds.

(8) For each A > 0 there exists T* = T*(A) > 0

that for oll T € (0,7*),i € {1,...,5}, |[z| < A and



k € Z the bound in Condition 8 of Theorem 1 holds with
v=0.

The following corollary is applicable to non-parameterized
discrete-time time-varying systems. Indeed, we can write
any non-parameterized system z(k + 1) = f(k,z(k))
as a particular system obtained from a parameterized
family of systems (1) with a fixed value of T, such as
T = 1. If all conditions of the below given theorem hold
for the non-parameterized system then we can conclude
its UGAS. We are not aware of a reference that presents
Matrosov theorem for non-parameterized systems.
This result is interesting in situations when the exact
discrete-time model of the system is known. Hence, the
following result can be also regarded as a discrete-time
(non-parameterized) version of the continuous-time
result [2, Theorem 1].

Corollary 2 The system (1) is UGAS if:

(1) The system (1) is UGS.

(2) Condition 2 of Theorem 1 holds.

(8) There exists T* > 0 such that for oll T € (0,T*),
i€{l,...,j},z € R" andk € Z the bound in Condition
3 of Theorem 1 holds with v = 0.

Proof of Theorem 1: We will establish the character-
ization of USPAS given in Definition 1. Namely, we will
construct v € Ko (in fact it comes directly from Condi-
tion 1 of Theorem 1), and for each pair of strictly posi-
tive real numbers (r, €) we will construct L > 0 and for
each pair of strictly positive numbers (A, v) we will con-
struct T* > 0 so that (2)-(3) hold. While the construc-
tion of L > 0 and T™* > 0 is somewhat technical (see the
calculations below) the main idea is this: We use Condi-
tion 1 of Theorem 1 to derive a bound like (2) on finite
time intervals, and we use Conditions 2 and 3 of Theo-
rem 1 (and their consequence in Proposition 2) to estab-
lish that trajectories converge to a small neighborhood
of the origin at the end of the finite horizon. After this,
an induction argument can be used to derive the bounds
(2)-(3) for all appropriate time steps.

Let «y come from Condition 1 of Theorem 1. For arbitrary
a > b > 0 we define:

(a) 6(b) := 1/2y~1(b/2); 7(a) := v(a) + 1. Note that since
v(s) > s, we have that §(b) < b/4, Vb > 0;
(b) Let 7(a ) generate ji(a) via Condition 2 of Theorem
1, with A = #(a). Let 7#(a),i(a) and 6(b) generate
Ki(a,b) > 0 and a(a, b) via Propos1t10n 2;

(© Let 7(a,b) = fab) (14 S8 Rata b))
(d) Let L(a,b) be such that L(a,b) > Zoi@b 4 1.

a(a,b)

Note: For any positive numbers satisfying 0 < b1 <

by < az < a; we have that H(bs, as) C H(b1,a1) and we
can choose the above given numbers so that:

a(az,b2); fi(a1,b1) > 7(az,b2)

<
- - (13)
L(al,bl) 2 &(az,bz) .

Using the above given functions we generate all the num-
bers needed in the proof.

(i) Let (r,€) be strictly positive given numbers and with-
out loss of generality assume r > €;

(i) Let &y := S(e); ry = 7(r), p = p(r), a1 = é(r,e),

K} := Ki(r,€), m := 7i(r,€) and Ly := L(r,¢);

(iii) Let (A, v) be given and let vy 1= v/2;

(iv) Let &y := (v 1); A = F(A) o = p(A), as =
a(A, ), K? := Ki(A,11), 02 := (A, 1) and Ly :=
E(A,ul)

(v) Define 7 := min{az/27,11/2,1};
(vi) Let (A, 7) generate Ty > 0 via Condition 3 of the

theorem;

(vii) Let L := Ly + 1 and #; be such that iy < ¢~ 1(9)/L,

where ¢ comes from Condition 1 of the theorem;

(viii) Let (A, L,,) generate Ty > 0 via Condition 1 of the

theorem;

(ix) Let T* := min{T},Ty,T,1}, where T comes from

Condition 2 of the theorem.

Before we proceed with the proof, note that if |z,| <
0 +062 <A, T € (0,T*) and k € [ko, ko + £1,7] the
following holds:

[pr (k)| <v(|2o]) +7 < (01 + d2) +
<7 (%7_1(6/2) + %7_1(1/1/2 )

§+V13

2 (g

where the last inequality follows from the weak triangle
inequality for the class K function 7, i.e. y(a + b) <
~v(2a) 4+ v(2b),Va,b > 0.

As in Definition 1, A > r, T € (0,T*), ko > 0, 2(ko) =
xo with |z,] < r and the corresponding trajectory is
denoted as ¢ (k). We consider cases € > v1 and € < vy.

Case 1: € > v;. We consider two sub cases |z,| < 61 + 02
and z, € H (81 + 2, 7).

Case 1a: |zo| < 01 + 02

From Condition 1 and the definitions (a), (ii), (iv) and
(v) and the inequality (14) we can write for all k €
ko, ko + L1, 7]:

lor(k)| <e/2+m <e+v. (15)



Case 1b: o € H (61 + 02,7)
From r < A, Condition 1 of the theorem, (vii) and (viii),
we have for all k € [ko, ko + 4L 1]:

I (k)| <v(|zo]) + (1 T(k = ko)) < Y(|2ol) + (1 L)
<ylze)) + 7 < ’y(|wo|)+min{%,1} . (16)

which together with (iv), (v) and (vi) implies that
¢T(k) € Brl,Vk € [ko,ko +£L,T]-

We claim there exists k} € [ko + 1, ko + £1,,,7] such that
|¢r (k)| < 61+ 02 . (17)

To prove this define the function Wr(k,z) :=

Y97 K}V (k, ) + Vi (k, ). From Condition 2 and (ii)
we have that for all (k,z) € Z x By, that the following
holds |Wr(k,z)| < w1 (1 + Z’ ! Kl) = 11. Moreover,
since 0 <vp <e<r< A, we have that H(d1,71) C
H(d2, A) and we can always pick ay, @2, L1, Ly such that
a1 > ag and Ly > Ly (see (13) and the preceding text).
Hence, for all (k,x) € Z xH (01 + d2,71) C Z X H(d1,71)
we have Z(z, x1(k,z)) <

WT(k + ]-aFT(kax)) —
T
< -

Wr(k, z) < Z(z,xr(k,z)) +

o
2i- 1+2—]§—2—] (18)

Suppose for the purpose of showing contradiction to (17)
that for all k € [ko, ko + £1,,7] we have |¢pr (k)| > 61 +
d2 > 61. Then using (18) along the trajectories of the sys-
tem we can write Y2+l ¢T(k+1)) Wr(kdr(k) « -5+

forall k € [ko, ko+{L, 1] Addlng both sides of the above
inequality for k € [ko, ko + £r,, 7 — 1] and rearranging it
we obtain TS+, v < Wr(ko +4r, 1, ¢7(ko +4L,,T)) —

Wr(ko, o) g 21,. From our choice T* < 1 and defini-
tion of £, 7 we have that L; —1 < T4y, r and hence we
obtain 2+(L; — 1) < 21, which contradicts our choice

of Ly in”(ii) with (d).

Now the proof of (3) for € > vy is completed using in-
duction. We let for all initial states with |zo| < §1 + 2
that k7 = 0. There are two possibilities, either ¢ (k)| <
01+02 < €/4+wvy/4for all k > k7 or there exists ko > kf
such that |¢T ]_{:2 | > 01 + 2. For definiteness assume
that ky is minimum such 1nteger Hence, we have that
|¢T( )| < (51+(52,Vk‘ € [kf,k‘g and |¢T kg | > 01+0o.
Then there exists k% € [ks + 1 kg + £1,,,7] such that the
following hold:

¢ (K)| 57(61 +82) +
<3 — Vk € [ka, k2 + Cr,,7] (19)
|pr(k3)| < 61 + 62 - (20)

Indeed, (19) is proved using the same calculations as in
Case 1a starting at the initial state ¢ (k2 — 1) and the
fact that the bound in (15) holds on intervals of length
L1, 7 (note also that since L = Ly +1 > L; + 1 and
T* < 1, we have that ¢y > fr, 7 + 1). Inequality
(20) is proved using the same calculations as in Case 1b
starting from the initial state ¢ (k2). One can generate
a sequence of such intervals and by induction we prove
that:

T, € By,
k>ko+lr,T

which shows that (3) holds since kf < £p, ¢ and L;
depends only on (r,€).

} = [¢r(k)| <€/2+1n <e+v (21)

Since (21) holds for all € > v4 and r < A, it holds in
particular for r = A and € = v;. Hence, for this choice
we have from v; < v and previous calculations that:

|zo| < A
= o7 (k)| < 7(|lzo|) + v
ke [ko, ko + ELQ,T]
|Zo| <Ak > ko + lr,r = [¢r (k)| <201 = v,
which implies that (2) holds.

Case 2: € < v;1. Again since the above calculations hold
for all € > vy, they hold, in particular, for € = v;. Let
L3 := L(r,v1). Then, since € < vy we can write using
(14) that for all k > ko + €1, 7 we have |¢7 (k)| < e/2 +
1 < 1/2+ v < 2y = v. Note that the time £f 7
needed for ¢ (k) to converge to the ball B, . is smaller
than the time /1, T needed to converge to the ball By,, =
B,,. This completes the proof of (3).

4 Sampled-data systems

In this section we state an extension of [4, Theorem
2] that can be used to deal with time-varying systems
using Matrosov functions (time-invariant systems using
Lyapunov functions were considered in [4, Theorem 2]).
This result motivates the stability definitions that we
use. Consider the class of time-varying systems:

&(t) = f(t, x(t), u(t)) (22)

wherexz € R andu € R™ are respectively the state and
control input. Using the assumption of sampler and zero
order hold (the control signal is piecewise constant), we
can write the exact discrete-time model of (22) whenever
the solutions are well defined:

(k+1)T

sk +1) = z(k) + /k O fra@a®y(23)
=:Ff(k,z(k),u(k)) ,



where we denoted by z(t) the solution of the initial value
problem (22) at time ¢ with given t, = kT, zg = z(k)
and u(k). We emphasize that F% is not known in most
cases. Indeed, in order to compute Ff we have to solve
the initial value problem (22) analytically and this is
usually impossible since f in (22) is nonlinear. Hence,
we will use an approximate discrete-time model of the
plant to design a discrete-time controller for the orig-
inal plant (22). Approximate discrete-time models can
be obtained using different methods, such as a classi-
cal Runge-Kutta numerical integration scheme for the
initial value problem (22) (for time-varying systems see
[8,7] and for time-invariant systems see [10,11,16]. Ap-
proximate discrete-time models are denoted as

a(k+1) = Fp(k, a(k), u(k)) . (24)

For instance, if f is locally Lipschitz in ¢ and z,
the FEuler approximate model can be defined as
z(k +1) = x(k) + Tf(kT,z(k),u(k)) and it can be
shown to be an O(T?) approximation of the exact
discrete-time model. On the other hand, if f is mea-
surable in ¢, then a modified “Euler” model that is
O(T?) approximation of the exact model is given by

o(k+1) = z(k) + [EDT f(r, 2(k),u(k))dr (see [8]). Tn
our work, the sampling period T is assumed to be a de-
sign parameter which can be arbitrarily assigned. Since
we are dealing with a family of approximate discrete-
time models Fj, parameterized by T, in order to achieve
a certain objective we need in general to obtain a family
of controllers, parameterized by T'. We consider a family

of dynamic feedback controllers
z(k +1) = Gr(k, z(k), 2(k)); u(k) = ur(k, z(k), 2(k)) (25)

where z € R":. We also denote & = (z7 27)T € R,
where 7 = ny, +n,.

We emphasize that if the controller (25) stabilizes the
approximate model (24) for all small T, this does not
guarantee that the same controller would approximately
stabilize the exact model (23) for all small T'. Several
examples that illustrate this phenomenon can be found
in [4]. Two different results were presented in [4] for
time-invariant systems that can be used to deduce about
stability of the exact discrete-time model from the cor-
responding properties of the approximate discrete-time
model. The following property that has been adapted
from the numerical analysis literature, such as [16], plays
a crucial role in our next result:

Definition 4 We say that F7. is one-step consistent with
E¢ if for any pair of strictly positive numbers (Agz, Ay)
there exist T* > 0 and p € K such that for all k > 0,
|z| < Ag, Ju] <Ay and T € (0,T*) we have:

\F7 (K, 2, u) — F(k, 2, u)] <Tp(T) . (26)

We emphasize that the one-step consistency property
can be checked by using only the approximate model
(the function FZ(k, z, u)) and the continuous-time plant
model (the function f(t,z,u)) and hence it is a check-
able property, although we typically can not compute
Ft(k, z,u)—see, [4] for a sufficient condition for one-step
consistency of time-invariant systems; it is straightfor-
ward to change these conditions to cover also the time-
varying systems that we consider by using results in [8,7].

The following result can be regarded as an ex-
tension of the Lyapunov result [4, Theorem 2] to
time varying systems via Matrosov Theorem 1. In
the sequel we use the notation AW} := Wy(k +
]-,F;"(k,.'E,UT(.'E,Z)),GT(k,Z',Z)) - WT(k,.T,Z), where
* € {a,e}.

Corollary 3 Suppose that the following are true:

(1) There exist a1,0as € Koo such that the following is
true: for any (A,0) there exists T* > 0, M > 0 and
L > 0 such that for any T € (0,T*) there exists Wr :
Z xR™ = R>q so that for all (z, 2), (z1, 2), (z2, 2) € Ba,
k>0 andT € (0,T*) the following hold:

a1(|($7z)|) < WT(k,ZL’,Z) SO[Q('(%,Z)D
AWE < TS (27)
|Wr(k,x1,2) = Wr(k,z2,2)| < L|xg — 22|
lur(k,z,2)| <M .

(2) Conditions of Theorem 1 hold for the approz-
imate closed loop system (24), (25) with the func-
tions V}(k,z,2), xr(k,x,z) and continuous functions
Yi(z,2,£) and for any A > 0 there exist T* > 0 and
L > 0 such that for all (x1,2),(x2,2) € Ba, k> 0 and
T € (0,T*) we have:

|V7i"(ka$1,z) - Vﬂi(kam2;z)| <Lz —xf . (28)
(8) F% is one-step consistent with F2.

Then, the exact discrete-time closed-loop system (23),
(25) satisfies all conditions of Theorem 1 and in partic-
ular (23), (25) is USPAS.

Sketch of the proof: Conditions 1 and 3 of the corollary
are used to show that the following holds for approximate
model in a semiglobal practical sense AW < T'4. This
in turn implies SB for the exact closed loop system and
hence Condition 1 of Theorem 1 holds. Conditions 2 and
3 and boundedness of ur(k,z,z) are used in a similar
way to show that Conditions 2 and 3 of Theorem 1 hold.

Remark 1 We note that our results imply under weak
conditions (such as the weak Lipschitzness of (22) uni-
formly int) that if the the exact discrete-time closed-loop
system (23), (25) is USPAS then the sampled-data closed
loop system is also USPAS (see [5] for more details).



Remark 2 Notice that if the approximate model sat-
isfies the Matrosov conditions that would guarantee its
UGAS or USAS (see Corollaries 1 and 2), we can only
conclude from Corollary 3 that the exact model is US-
PAS. This is because: (i) the Matrosov conditions may
be too weak in general to guarantee preservation of the
UGAS or USAS property for the exact model if the ap-
prozimate model has the corresponding stability property;
(i) our definition of one-step consistency is too weak to
guarantee in general the stronger properties of UGAS or
USAS for the exact model if the corresponding property
holds for the approximate model. Hence, in order to state
UGAS and USAS properties for the exact model we would
have to strengthen the conditions of Theorem 1, as well
as strengthen the one-step consistency property in Defi-
nition 4. While this is possible to do, the conditions un-
der which these results hold are normally more restrictive
and we have not pursued this avenue in the current paper.

5 MRAC via approximate models

We consider the problem of sampled-data, adaptive
tracking control (sometimes called model reference
adaptive control or MRAC for nonlinear systems in the
form

£=1()+9©) [u+hE)Te] . (29)

The parameter vector 8 is unknown. The functions f,g
and h are supposed to be locally Lipschitz. We will
assume we can find a family of certainty equivalence
discrete-time, tracking feedback laws for the Euler ap-
proximation of the system (29):

§(k+1)=¢(k )+Tf(5(k)) (30)

+Tg(é(k)) [u(k) + h(E(K)) O] .
In other words, we will assume:

Assumption 1 For a given family of uniformly bounded
reference state trajectories & 1 satisfying

&k +1) =&r(k) + Ts(&rr(k), k,T) (31)

for some function s, there exists a family of feedbacks
(&, &1, T) such that, with the definition,

FT(k‘, 6) = _Ts(é-r,T(k)a kJT) +e+ Tf(e + ST,T(k))
—|—Tg(€ + gr,T(k))a(e + é-r,T(k)a é-r,T(k)a T)

there exist a1,0s,04 € Koo and a continuous positive
definite az : R™ — Ry such that for every pair of

strictly positive real numbers (5, U, 1) there exists T* > 0
and for each T € (0,T*) there exists Wr : Z X R™ such

that the following hold:

ar(le]) < Wr(k,e) <as(le]) (32)
WT(k + 1,FT(k,€)) — WT(k,e)
T

<-az(e)+v  (33)
[VeWr(k,e)| <au(lel]) + 5,  (34)
for allT € (0,T%), k >0, |e] < A.

Under this assumption, we will implement the following
discrete-time controller

u(k) =u(¢(k), & (k) —
O(k +1)=0(k)

h(&(k)) T O(k) (35)
— Th(E(K)g(E(k) TV Wr(k),  (36)

where V. Wr (k) := V. Wr(k, Fr(k,&(k)— &7 (k))). For
the purposes of obtaining USPAS, we will assume the
following persistency of excitation condition:

Assumption 2 There exists T* > 0, L > 0 and yu > 0
such that, for allk € Z and T € (0,T*), we have

k+lr,T

TZ 9(&1(i)

h(&rr (i) Taa| > plza| . (37)

Under Assumptions 1 and 2, and with the definitions
==&, T2 =0 — 0,z := [z =17

A=AT, k,z) = W

B: —B(T k,x) := g(z1 + & 1(k)h(z1 + &7 (k) T 22
B := B,(T, k,x2) := B(T, k, %) 2,0

C:=C(T,k,x) = —hT( Yg(k) TV W] (k+ 1, Fr(k,z
Bf :=BX(T,k,x5) := B (T,k+1,m2+TC(T,k,w)),

where h(k) := h(z1 + &1 (F)), 9(k) == g(z1 + & 1 (K)),
the Euler approximation of the closed-loop system con-
sisting of (30), (31), (35) and (36) in (z1,x2) coordinates
has the form

z1(k +1) =21 (k) + T[A(T, k, (k) + B(T k, z(k))]
zo(k 4+ 1) =22 (k) + TC(T, k, z(k)) (38)

and the following three properties hold:

Property 1 There exist a1, as € Koo and a continuous
positive definite az : R™ — R>q such that for every pair
of strictly positive real numbers (A, v) there exists T* > 0
and for each T € (0,T*) there exists Vr : Z x R™ such
that the following hold:

ar(|z]) < Vr(k,z) < ax(|z]) (39)
VT(k+17FT(k7x))_
T

<—az(z) +v, (40)



forallT € (0,T%), k >0, |z| < A.

Property 2 There exist continuous nondecreasing
functions p; : R>o — R>o,i = 1,2,3 such that
pi(0) = 0,i = 1,2 and for any strictly positive numbers
Uy, Ua, 3 there exists T > 0 such that for all T € (0,T),
k>0 and z € R" we have:

Bf — B, ~
e { 3] 5 PPl < a4
B,(T,k,zo +TC) — B, -
Bells b2 £TOV = Bel ¢ (e () + 5

|B — Ba| < ps(lal)pr (|1 ]) + B (41)
max{|A|,|CI} < pa(lal)pa(los]) + 7% -

Property 3 There exists a continuous, positive definite
function o : R>g = Rxo, and T > 0 such that for all
z2 € R"2 T € (0,T) and k > 0 we have:

TS =0T [By(T,i,z)| > allasl) . (42)
i=k

The reason why we introduce Properties 1-3 is because
the main result of this section (Theorem 2 given below)
applies to more general problems than the MRAC prob-
lem we introduced in the begining of this section. More-
over, it is obvious that Assumption 2 implies Property
3 and we can further prove the following:

Proposition 3 If Assumption 1 holds with Wr
such that V .Wr s locally Lipschitz, uniformly in
small T. Then Property 1 holds for the system (30),
(81), (85) and (36) (in (x1,x2) coordinates) with
Vr(k,z) = Wr(k,z1) + 1ad2,.

Proposition 4 If Assumption 1 holds with Wr such
that VWt is locally Lipschitz, uniformly in small T.
Then Property 2 holds for the system (30), (81), (35)
and (36) (in (z1,x2) coordinates).

Remark 3 The condition stated in Property 3 is like
the so called uniform & persistency of excitation (ud-PE)
that was introduced in [6] (see also [2,1] for more recent
developments using this notion).

We can now establish the following result which covers
the solution to the MRAC problem:

Theorem 2 Suppose that Properties 1, 2 and 3 hold.
Then the system (38) satisfies all conditions of Theorem
1 and hence it is USPAS.

Proof of Theorem 2: We define xr(k,z) := B;
Vi(k,z) == Vr(k,z); VE(k,x) := —2T Bs;
Vi(k, @) = =T 3222, %7 |Bo (T, 4, 22)];

Yi(z, x7(k, ) := —az(z1);

Ya(z, x7(k, x)) := |21] pa(|z])+[o1 (|21 ) +p2 (|21 )] p3 (|2]) —
|Bo|*;

Ys(z,xr(k,2)) = |Bo| + exp(L)ps(|z])p1(|z1]) —
sa(|za|).

Condition 1 of Theorem 1 follows from Property 1. It is
not hard to see that Condition 2 of Theorem 1 also holds
from the properties of the functions that we have chosen.

The only thing left to prove is Condition 3 of Theo-
rem 1. Let arbitrary strictly positive (A,v) be given.
Let 71,72, v3 be such that the following holds: max{2 -
[A;l + 2§1p1 (A)p:;(A) + ﬁgpg(A) + 51;3 +~§2p3(A) +
5152], exp (1);2} S v. Let ;1, 7]2, ;3 generate T > 0 come
from Property 2. Let T > 0 come from Property 3. Let
(A, v) generate T} > 0 via Property 1. We define T :=

o et T > 0 be such that 3 < Le? VT €
3 1

(0,T%). Define T* := min{1, T, T, Ty, Ty, T }. Let |z| <
A, k>0and T € (0,T*). We now show that the bound
in Condition 3 of Theorem 1 holds for Vi, V2 and V3.
Actually, it follows directly from Property 1 that

AVE AV
TT: TTS—ag(xl)+1/. (43)

Using (41) we can write:

AV?  —(z1+TA+TB)'Bf +z| B,

T T
_ _7”{(30;_ Bo) _ 4Tp+_pTB*
(B - B,
_ _% —ATBf —(B-B.) B}
~BJ (Bf - B,) - Bl B,
B — B,
<for) BBl 4y 1B+ 1B - Bu| B

T
+|Bo| B - Bo| - |Bo|”

< a1l [ps(|2]) + o1] + [ps(|z]) + 1] -
[ps(|z])p2 (|21 ) + 73]
+los(|z)pr(l21) + 2] - [ps(|2]) + 1]
+T[ps(|2|) + 21]* — | Bo|?

<l|a1| ps(|z]) + p3(|z)pa(|z1]) + p3(|2) o1 (|21])
—|Bo|” + ADy + 25191 (A) p3(A)
+03p3(A) + 1 U3 + Uaps(A) + 11
+T[ps3(A) + n]?

= Y2($5XT(kax)) +v,

where the last step follows from the fact that Ar; +
201p1(A)p3(A) +v3p3(A) + 11 V3 + ap3(A) + 12 < §
and T'[ps(A) +71]* < 4. This completes the proof of the
bound in Condition 3 for V2.



Since dependence of B, and BY on i is important in
the calculations below, we slightly change the notation
B (i) := Bo(T,i,xs + TC) and B, (i) := Bo(T,i, ).
Also, in the calculations below we use the following fact:

T Z (k=i)T SekT/

i=k+1 kT

o0

etdt=1.

Using the above fact, our choice of T* and (41) we show
next that the appropriate bound holds for the function
VTI’::

AV = (b 1—i)T | (s = (k)T ;
—L==>"e IBF i)+ e | Bo ()]

T ) 4
1=k+1 i=k
=|Bo(k)| = Y "I IBE(G)
i=k+1
+€_T Z e(k+1_i)T|Bo(i)|
i=k+1
=|Bo(k)| = Y e®H T (|BY (i) - |Bo(i)])
i=k+1
= Y EFITB(i)] (44)
i=k+1
el 3o TG
i=k+1
<|Bo (k)| + Tlps(|a)p (jas]) + Bale” 3 eh=dT
i=k+1

~(1—eT) i =T | B, (i)
i=k+1
< |Bo(k)| + €T [pa(|z])pr (|z1]) + )

1—e T

T
<|Bo (k)| + exp ()[ps(|z])p1 (21 ]) + 72] — %04(|332|)
Z}/E;(JI,XT(]?,Z')) +v,

a(|z2|)

which completes the proof.

6 Conclusions

We presented a Matrosov theorem for parameterized
discrete-time time-varying models that facilitates con-
troller design for sampled-data nonlinear systems via
their approximate discrete-time models. Our main the-
orem is an analogue of the continuous-time result in
[2] that generalized the classical Matrosov theorem for
continuous-time systems. We have also related stability
conditions needed on an approximate model to the sta-
bility properties of the exact discrete-time model and for

this we used the notion of one-step consistency that is
adapted from the numerical analysis literature. We pre-
sented an application of our results to a class of models
that arise when an approximate discrete-time model of
the plant is used to design a model reference adaptive
controller.
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7 Appendix

Proof of Proposition 3: Consider the Lyapunov func-
tion: Vp(k,x1,x2) := Wr(k,z1) + %w;xg To simplify
notation below, we omit the arguments of all functions
unless they are really needed in the proof. Notice that
21 +TA+TB = Fr+TB.Let (A,v) be given. Let As-
sumption 1 with (A, v/2) generate T} > 0. Let L > 0 be
the Lipschitz constant for V. Wy on the set |21 < A+1.
Hence, if |z1] < A and T < m, then we have

max{|Fr|,|Fr + TB|} < A + 1. Define

T*—min{ v 1 }
2 2L|B|+|C|?’ |A| +|B] | ’

and finally T* = min{T},T5}. Consider arbitrary
[(z1,22)] < A and T € (0,T*). Using the Mean Value
Theorem, we can write along the solutions of the closed
loop system:

AVy Wik + 1,21 + TA+ TB) — Wr(k, 1)

T T
(2 + TC) " (22 + TC) — w5 7
+
2T
k+1,Fr) - T
:WT( + ,;) WT($1)+CT$2+5|C|2
+WT(/<:+1,FT+TB)_WT(k+1’FT)
T
1,Fr) —
_ Wr(k+1, sz Wr (k, 21) = VWr(k + 1, Fr)ghz,

T
+VWr(k+1,Fr + ¢ TB)ghzs + 5|C|2 :

where ¢; € (0,1). Since V. Wr is locally Lipschitz uni-
formly in small 7', there exists L > 0 such that:

|—V6WT(I<J +1LFr)+VWyr(k+1,Fr+ ClTB)| < TL|B| .

Hence, we can write:

v T
—7— <—ou(@1) + 5+ TLIB| + 5|(J|2
<-—ai(r)+v. (45)

10



