
Changing supply functions in input to state stable systems:

the discrete-time case

D.Nešić∗
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Abstract

We characterize possible supply rates for input-to-state stable discrete-time systems and
provide results that allow some freedom in modifying the supply rates. In particular, we show
that the results reported in [7] for continuous-time systems are achievable for discrete-time
systems.
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1 Introduction

The notion of input-to-state stability (ISS) provides a very useful framework for L∞ stability analysis

of nonlinear systems as illustrated by its numerous applications to important nonlinear control

problems (see, for instance, the paper where ISS was introduced [6], Sections 10.4, 10.5, 10.6 and

11.4 in [4] and Sections 2.4, 5.2, 5.3, 6.1, 6.7, 9.1 and 9.8 in [5]).

A very useful application of ISS is in investigation of stability of cascaded systems [4, 5] where

it can be shown that a series connection of two ISS systems is ISS. Cascaded systems often arise

in recursive controller designs, such as backstepping [4, 5]. In this context, it is often important to

determine a Lyapunov function for a composite system from Lyapunov functions for its subsystems.

A particularly easy choice is when one is able to use the sum of the Lyapunov functions for subsystems

as a Lyapunov function for the overall system. While this is not possible to do always, it may be

possible to change the supply rates (by modifying the Lyapunov functions for subsystems) in order

to achieve this. Results on changing supply rates for continuous-time systems were first considered
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in [7]. These results are very useful since they provide a construction which shows how Lyapunov

functions can be modified to achieve any feasible supply pair (see also Section 10.5 of [4]). Another

case when changing supply rates may be useful is when one wants to use an input-output dissipation

inequality with a detectability condition to conclude about ISS (see, for example [1]).

This paper is concerned with proving the discrete-time counterpart of the results in [7]. In

particular, we show that the results reported in [7] for continuous-time systems are achievable for

discrete-time systems. These results have the same important utility as the continuous-time results.

The proof technique is quite similar to that used in the continuous-time case with the notable

exception being in the proof of Lemma 1 where a judicious use of the mean value theorem is

required.

2 Main results

SN denotes the class of all smooth nondecreasing functions q : [0,∞) → [0,∞), which satisfy

q(t) > 0 for t > 0. A function γ : R≥0 → R≥0 is of class-K∞ (γ ∈ K∞) if it is continuous,

strictly increasing, zero at zero and unbounded. Functions of class-K∞ are invertible. Given any

two scalar functions α1, α2, we use the notation α1 ◦ α2(s) and α1(s) · α2(s) to denote, respectively,

the composition (when it makes sense) and product of the functions.

We consider a parameterized family of discrete-time systems:

xk+1 = FT (xk, uk) , (1)

where x ∈ Rn, u ∈ Rm are, respectively, the state and input of the system and T > 0 is a parameter

(perhaps the sampling period). We are motivated to consider the parameterized systems (1) as they

arise when an approximate discrete-time model is used to design a digital controller for a nonlinear

sampled-data system [3]. Our results apply directly to non-parameterized systems xk+1 = F (xk, uk)

by fixing T > 0 (without loss of generality setting T = 1) in (1) and in (2) and (3) to follow.

Following the lead of [6] and further motivated by results in [3] and [2], the system (1) is said to

be ISS if there exist α1, α2, α, γ ∈ K∞, T ∗ > 0 and for all T ∈ (0, T ∗) there exists a smooth function

VT : Rn → R≥0 such that:

α1(|x|) ≤ VT (x) ≤ α2(|x|) (2)

VT (FT (x, u))− VT (x) ≤ Tγ(|u|)− Tα(|x|) , (3)
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for all x ∈ Rn, u ∈ Rm.

Definition 1 A pair of class-K∞ functions (γ, α) is a supply pair for system (1) if there is some

α1, α2 ∈ K∞, T ∗ > 0 and for all T ∈ (0, T ∗) a smooth function VT so that (2) and (3) hold. ¥

As shown in [7], it is of interest to characterize all possible supply pairs. The following theorems

specify the constraints under which we can achieve certain supply pairs for the system (1). The

proofs in the next section contain the Lyapunov function modifications to achieve the results stated

in the theorems.

Theorem 1 Assume that (γ, α) is a supply pair. Suppose that γ̃ is a K∞ function such that γ(r) =

O[γ̃(r)] as r →∞. Then, there exists α̃ ∈ K∞ such that (γ̃, α̃) is a supply pair. ¥

Theorem 2 Assume that (γ, α) is a supply pair. Suppose that α̃ is a K∞ function such that α(s) =

O[α̃(s)] as s → 0+. Then, there exists γ̃ ∈ K∞ such that (γ̃, α̃) is a supply pair. ¥

A direct consequence of Theorems 1 and 2 is the following result whose proof is identical to the

proof of Corollary 1 in [7].

Corollary 1 Let two ISS systems be given. Then there are K∞ functions γ̃, α̃1 and α̃2 such that

[ 12 α̃2, α̃1] is a supply pair for the first system and [γ̃, α̃2] is a supply pair for the second system. ¥

Corollary 1 is now used to give a Lyapunov proof of ISS for cascade discrete-time ISS systems:

xk+1 = fT (xk, zk) (4)

zk+1 = gT (zk, uk) . (5)

Using Corollary 1, we conclude that there exist Lyapunov functions UT (x) and WT (z) so that

UT (fT (x, z)) − UT (x) ≤ −T α̃1(|x|) + T
2 α̃2(|z|) and WT (gT (z, u)) −WT (z) ≤ −T α̃2(|z|) + T γ̃(|u|).

Hence, in this case the Lyapunov function for the overall system can be taken to be VT (x, z) =

UT (x) + WT (z) and its first difference satisfies VT (fT (x, z), gT (z, u)) − VT (x, z) ≤ −T α̃1(|x|) −
T
2 α̃2(|z|) + T γ̃(|u|) and the overall system is ISS since (γ̃, α̃) is a supply pair for the overall system,

where α̃ := min{α̃1,
1
2 α̃2}.

3 Proofs

In this section we provide proofs of all main results. The proofs are similar to the proofs presented

in [7]. The Lyapunov function modification that we use is the same as the one used in [7]. Given

3



an arbitrary q ∈ SN , we introduce:

ρ(s) :=
∫ s

0

q(τ)dτ , (6)

where it is easy to see that ρ ∈ K∞ and ρ is smooth. Then we consider a new Lyapunov function

WT (x) := ρ(VT (x)). The next lemma is the discrete-time counterpart of results in [7]. The proof

of this result is the main location where the discrete-time result requires techniques different than

those used in the continuous-time case.

Lemma 1 Let α1, α2, α and γ all belong to class-K∞, let T ∗ > 0 and suppose that for all x and

u and all T ∈ (0, T ∗) we have that (2) and (3) hold. Let ρ ∈ K∞ be such that q(s) := dρ
ds (s) is

well-defined and nondecreasing. Then we have

ρ(VT (FT (x, u)))− ρ(VT (x)) ≤ T

2

[
2 · q ◦ θT (|u|) · γ(|u|)− q ◦ 1

2
α1(|x|) · α(|x|)

]
(7)

for all x and u and all T ∈ (0, T ∗), where

θT (s) := α2 ◦ α−1 ◦ 2γ(s) + Tγ(s) . (8)

¥

Proof. In what follows we will use the shorthand notation VT (FT ) := VT (FT (x, u)) and VT := VT (x).

We also will rely on the mean value theorem and the fact that dρ
ds (·), i.e., q(·), is nondecreasing. These

two items yield

ρ(a)− ρ(b) ≤ q(a)[a− b] ∀a ≥ 0 , b ≥ 0 . (9)

Finally, we will use

VT ≥ max {α1(|x|), Tα(|x|)} (10)

VT (FT ) ≤ α2(|x|) + Tγ(|u|) (11)

which both come from the combination of (2) and (3).

Let T ∈ (0, T ∗). We cover all possible values of x and u with three cases:

Case 1: VT (FT ) ≤ 1
2VT .

Using, in succession, ρ ∈ K∞, inequality (9), q(·) nondecreasing, and inequality (10), we have

ρ(VT (FT ))− ρ(VT ) ≤ ρ
(

1
2VT

)− ρ(VT )

≤ q
(

1
2VT

) [− 1
2VT

]

≤ −T
2 q ◦ 1

2α1(|x|) · α(|x|) .

(12)
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So the bound (7) holds in this case.

Case 2: VT (FT ) ≥ 1
2VT and γ(|u|) ≤ 1

2α(|x|),

Using, in succession, inequalities (9) and (3), the condition γ(|u|) ≤ 1
2α(|x|), q(·) nondecreasing, and

(10), we have

ρ(VT (FT ))− ρ(VT ) ≤ q(VT (FT ))T [γ(|u|)− α(|x|)]
≤ q(VT (FT ))

[−T
2 α(|x|)]

≤ q
(

1
2VT

) [−T
2 α(|x|)]

≤ −T
2 q ◦ 1

2α1(|x|) · α(|x|) .

(13)

So the bound (7) holds in this case.

Case 3: VT (FT ) ≥ 1
2VT and γ(|u|) ≥ 1

2α(|x|).

Using, in succession, inequalities (9) and (3), q(·) nondecreasing, and inequalities (10) and (11), we

have

ρ(VT (FT ))− ρ(VT ) ≤ q(VT (FT ))T [γ(|u|)− α(|x|)]
≤ T · q ◦ θT (|u|) · γ(|u|)− Tq

(
1
2VT

) · α(|x|)
≤ T · q ◦ θT (|u|) · γ(|u|)− T

2 q ◦ 1
2α1(|x|) · α(|x|) .

(14)

So the bound (7) holds in this case. ¥

In order to prove Theorems 1 and 2 we need the following two results which follow directly from

the results proved in [7]:

Lemma 2 Assume that the functions γ, γ̃, θ ∈ K∞ are given and γ, γ̃ are such that γ(r) = O[γ̃(r)]

as r → +∞. Then there exists a function q ∈ SN so that q ◦ θ(r) · γ(r) ≤ γ̃(r) ∀r ≥ 0. ¥

Lemma 3 Assume that the functions α, α1, α̃,∈ K∞ are given and α, α̃ are such that α(s) = O[α̃(s)]

as s → 0+. Then there exists a function q ∈ SN so that 1
2q ◦ 1

2α1(s) · α(s) ≥ α̃(s) ∀s ≥ 0. ¥

Proof of Theorem 1: Let the supply pair (α, γ) and γ̃ be given. Using Lemma 1 we can see

that we need to show that there exists α̃ and ρ ∈ K∞, with q = dρ
ds (s) ∈ SN , so that:

Tq ◦ θT (r) · γ(r)− T
1
2
q ◦ 1

2
α1(s) · α(s) ≤ T γ̃(r)− T α̃(s) ∀r, s ≥ 0 T ∈ (0, T ∗). (15)

Define θ = θT∗ and note that q ◦ θT (r) · γ(r) ≤ q ◦ θ(r) · γ(r). Using Lemma 2 we conclude that we

can always find ρ with the desired properties so that (15) holds with α̃(s) := 1
2q ◦ 1

2α1(s) · α(s) and

α̃ ∈ K∞ since q ∈ SN and α, α1 ∈ K∞. ¥
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Proof of Theorem 2: Let the supply pair (α, γ) and α̃ be given. Using Lemma 1 we can see

that we need to show that there exists γ̃ and ρ ∈ K∞, with q = dρ
ds (s) ∈ SN , so that (15) holds.

Using Lemma 3 we conclude that we can always find ρ with the desired properties so that (15) holds

with γ̃(r) := q ◦ θT∗(r) · γ(r) and γ̃ ∈ K∞ since q ∈ SN and θT∗ , γ ∈ K∞. ¥
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