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Abstract

This paper considers the problem of stabilization of linear systems for which only the magnitudes of outputs are measured.
It is shown that, if a system is controllable and observable, then one can �nd a stabilizing controller, which is robust with
respect to observation noise (in the ISS sense). c© 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we consider questions regarding the
control of scalar-input scalar-output linear systems for
which only the magnitude of the output is measured.
We show that such systems can be stabilized by dy-
namic sample-and-hold feedback, assuming only con-
trollability and observability. Far more interestingly,
we include the possibility of measurement errors, and
we show that our controller is robust to such distur-
bances, in the precise sense captured by the notion of
input-to-state stability. Thus, we are interested in sys-
tems of the following type:

ẋ=Ax + Bu;

z= |Cx|+ d;
(1)

where states x(t)∈Rn for a suitable n (the dimension
of the system), controls take values u(t)∈R, outputs
z(t)∈R, and the matrices describing the system are of
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the obvious sizes: A∈Rn×n, B∈Rn×1, and C∈R1×n.
We think of the scalar function d=d(·) as a measure-
ment disturbance. A variation of this model is that in
which the noise represented by the function d acts be-
fore taking absolute value of the output, i.e.

ẋ=Ax + Bu;

z= |Cx + d|= |y|:
(2)

We will focus on this second model, using “y(t)” to
denote Cx(t) + d(t). Later, we point out that identi-
cal results for Eq. (1) can be obtained, by a simple
argument, from those for Eq. (2).
We must de�ne the meaning of “robustness with re-

spect to d”. One general approach to de�ning stability
with respect to disturbances is provided by the concept
of ISS (input-to-state stability) [16], and we wish to
use this notion. There are many equivalent de�nitions
of ISS for continuous-time systems, and several of the
equivalences are highly nontrivial, cf. [17]. However,
when applied to a closed-loop system in which the
controller is dynamic (has memory) and operates in a
sample-and-hold mode, as we will do here, the de�-
nitions are not necessarily equivalent anymore. Thus,
we will choose (a linear version of) one of the many
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equivalent de�nitions of ISS to generalize. We use |x|
to denote the Euclidean norm of a vector.

De�nition 1.An ultimately-linear L∞-gain controller
for the system (2) is one such that the following two
properties hold:
1. There is some constant c¿ 0 such that, for each
initial state x(0), and for each real number D, if
|d(t)|6D for all t∈R¿0, then the closed-loop
state satis�es

lim sup
t→∞

|x(t)|6 cD:

2. For each ”¿ 0 there is some �¿ 0 such that, if
|x(0)|6 � and |d(t)|6 � for all t∈R¿0, then the
closed-loop state satis�es

|x(t)|6 ”

for all t¿ 0.

In this paper we use, informally, the term “ISS” to
mean the above-de�ned property.

Remark 1. In order to keep the formalism as simple
as possible, we have chosen not to de�ne precisely
the general meaning of “controller” and “closed-
loop behavior”. One may de�ne these concepts in
general, see, e.g. [15], and it will be clear from
our constructions how one could represent our con-
troller as a dynamic (n-dimensional, in fact) time-
periodic discrete-time system which operates on the
continuous-time system (2) by means of sample and
hold. In terms of such an abstract de�nition, the
closed-loop behavior that we obtain has the property
that all signals in the loop are ultimately bounded,
in a manner similar to the way that the norm of
the state is in the de�nition just given; furthermore,
this property holds irrespective of the initial state
of the controller. Finally, we note that, in order to
keep the presentation as simple as possible and to
focus on the interesting theoretical issues, we re-
stricted attention to single-input single-output sys-
tems, but generalizations to the multi-variable case,
for which the absolute value of each output coor-
dinate is considered, are possible, see the closing
remarks.

Remark 2. Note that if a controller achieves
ultimately-linear L∞-gain, then, in particular, it glob-
ally stabilizes the system in the absence of distur-

bances. Indeed, when D=0, the de�nition reduces to
global attractivity and stability.

The paper is organized as follows. The main con-
troller is described in Section 2. In Section 3, we also
describe an alternative possible approach. An auxiliary
result, needed in Section 3, is proved in the Appendix.

1.1. Motivations

This work is ultimately motivated by the need to
further understand three issues, which are at the core
of current control theory research, namely questions of
stabilization using partial state information, the use of
discontinuous (“hybrid”) feedback, and sensitivity of
discontinuous stabilizers with respect to noise. These
questions, which are well-understood for linear sys-
tems, are extremely di�cult to deal with in a general
nonlinear situation, and it seems reasonable to try to
understand them in particular situations, such as the
class of systems considered here.
In contrast to linear systems, for general nonlinear

systems it is in general not true that controllability
and observability su�ce for the existence of a (dy-
namic) output stabilizer. In [12], necessary and suf-
�cient (but, except for certain special cases, cf. [13],
hard to check) conditions for dynamic output regula-
tion were obtained. The problem is one of great inter-
est; some recent references are [1–3, 9, 18].)
In addition, when stabilizing nonlinear systems, the

e�ect of disturbances on actuators and/or on measure-
ments cannot be disregarded in the design. For lin-
ear systems, small or bounded disturbances produce
small or bounded steady-state errors, if stability of the
undisturbed system holds. Disturbances on actuators
are somewhat easier to handle than those on measure-
ments: while a controller, even a feedback-linearizing
one, can easily become unstable in the presence of
actuator noise, the paper [14] showed how a simple
feedback redesign can render the closed-loop system
ISS. On the other hand, disturbances onmeasurements
can lead to serious instability, and one of the most
interesting open problems in nonlinear control theory
concerns the formulation of output controllers which
are robust, in an ISS sense, with respect to distur-
bances. In a remarkable contribution, Randy Freeman
produced in [4] a counterexample showing that it is in
general impossible to stabilize, using a state feedback,
a simple system with state measurements ẋ=f(x; u),
y= x (h is the identity), if ISS behavior with respect
to disturbances is required, i.e., a feedback law k(·)
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such that ẋ=f(x; k(x + d)) is ISS with respect to
d(·). On the other hand, Freeman showed in [5] that,
for his example, a dynamic (time-varying) controller
can be used to obtain ISS behavior in this sense. The
challenge now is to understand how general this situ-
ation (existence of dynamic controllers providing ISS
with respect to disturbances) is, and to see how ex-
plicit the constructions can be made. As noted in [5],
some of the most important features of the counterex-
ample in [4] are captured by the study of ISS de-
sign for linear systems “with positive noisy outputs”
ẋ=Ax+Bu, y= |Cx + d|, which are the subject of the
present work.
As for related work, we remark that the controllers

presented here are somewhat similar to the stabiliz-
ers designed for linear systems with output saturating
nonlinearity in [7]. They are also closely related to
the time-optimal dead-beat controllers for linear sys-
tems with positive inputs presented in [10, 11]. How-
ever, due to the di�erent nonlinearities, the designs
are notably di�erent and, more importantly, neither
of the cited references investigates the performance
of the designed controllers in the presence of distur-
bances. Finally, we remark that questions of robust-
ness with respect to noise, even for small noise levels
(not ISS behavior, which considers arbitrary magni-
tudes), leads to extremely interesting theoretical ques-
tions; see for instance [8]. Linear systems with posi-
tive outputs are a particular class of “constrained out-
put linear systems” in the sense of [6].

2. Main construction

The controller to be designed is a time-varying
sampled-data scheme which in the absence of dis-
turbances produces a dead-beat response. It acts by
cycling through four basic steps or “modes”, each of
the same duration and proportional to the dimension
n of the system:
1. In the �rst step, one applies a zero control and
uses the measured outputs z(·) to obtain an esti-
mate of the combined magnitude of the state and
disturbances.

2. The second mode drives the state to a region of
the state space in which the sign of y=Cx + d
can be unambiguously determined. To be pre-
cise, it does so provided that the disturbance is
small in comparison to the state; otherwise, if the
observation noise is large, nothing interesting is
accomplished.

3. The third step makes the assumption that the sign
of y is known and reconstructs the state using a
linear �lter. If the disturbance was large, so that
step 2 did not guarantee that the sign was known,
this step does not achieve any useful goals.

4. Finally, the controller in the last stage computes
a control that drives the estimated state to the ori-
gin. If the noise was large in comparison to the
initial state, then the �nal state is not necessar-
ily small, but it is still small with respect to the
magnitude of the disturbance.

We now formalize this procedure.
The design of the ISS controller is based on the

discrete-time model of the system (2) for a �xed sam-
pling period T :

x(k + 1)=Fx(k) + Gu(k);

z(k)= |Cx(k) + d(k)|; (3)

where

F =eAT and G=
∫ T

0
eAsB ds; (4)

and |d(k)|6D, ∀k¿ 0. The sampling period T is
chosen so that the triple (F;G; C) is minimal. Without
loss of generality we also assume below that T =1,
in order to simplify the notation. We base the con-
troller design on the discrete-time plant model (3),
and then analyze the state trajectories for the orig-
inal continuous-time system, when using the piece-
wise constant inputs that arise from the corresponding
discrete-time controls.
The notation Zk2k1 denotes a vector whose entries are

stacked measurements z(i); i= k1; k1 + 1; : : : ; k2.
Similarly, Dk2k1 and U

k2
k1 denote, respectively, vectors

whose entries are the stacked disturbances d(i) and
control inputs u(i) at sample times i= k1; k1+1; : : : ; k2.
Note that |Dk2k1 |6

√
1 + k2 − k1D for all k1; k2. Ob-

servability matrix for a matrix pair (F; C) is denoted
as O(F; c).

Mode 1.We apply the controls u(k+t)= 0; k =0; 1; 2;
: : : ; n − 1, t∈[0; 1[ over the time interval [0; n[, and
take the measurements z(k); k =0; 1; : : : ; n− 1. Note
that we have

±z(k)=CFkx(0) + d(k); k =0; 1; : : : ; n− 1:
For an arbitrary but �xed L¿ 0, we introduce the
notation

B(Zn−10 )= (1 + L)‖O(F; c)−1‖|Zn−10 |: (5)
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The number B(Zn−10 ) can be interpreted as an estimate
for a bound on the norm of the initial state x(0), and is
obtained from the measurements Zn−10 . Similarly, we
introduce

‖Fn‖B(Zn−10 ) (6)

as an estimate for a bound of the norm of the state
x(n). The following lemma shows that the above es-
timates are correct if the norm of the initial state is
large enough.

Lemma 1. Consider the bound (5) with an arbi-
trary L¿ 0. Then, there exists K ¿ 0 such that, if
|x(0)|¿KD; then

|x(0)|6 (1 + L)‖O(F; c)−1‖|Zn−10 |=B(Zn−10 ): (7)

Proof.Consider Eq. (3) with u(k)= 0, k =0; 1; : : : ; n−
1, and suppose that we recorded the following mea-
surements:

z(0)= |Cx(0) + d(0)|;
z(1)= |CFx(0) + d(1)|;
...
z(n− 1)= |CFn−1x(0) + d(n− 1)|:

(8)

Rewrite the set of equations (8) as follows:

O(F; c)x(0) + Dn−10 = ± Zn−10 ; (9)

where the matrices Dn−10 and Zn−10 have the obvious
interpretation. (We use the notation ±X , for a vector
X =(x1; : : : ; xn)T, to denote a vector each of whose
entries is ±xi.) From Eq. (9) we obtain
|x(0)|6 ‖O(F; c)−1‖(|Zn−10 |+√

nD): (10)

Now suppose that

|x(0)|¿ (1 + L)
L

‖O(F; c)−1‖√nD= : KD:

Using Eq. (10), we obtain that
√
nD6L|Zn−10 |, and,

substituting this estimate of D back into Eq. (10), we
obtain Eq. (7), as desired.

Remark 3. With M : = (1 + L)‖O(F; c)−1‖, we can
summarize the above conclusions as: There are con-
stants M and K such that

|x(0)|6max
{
M |Zn−10 |; K |Dn−10 |} :

Mode 2.Before we describeMode 2 in more detail, we
need to construct a cone which plays a central role in

the computation of the controls that are applied to the
system over the time interval [n; 2n[. Let us �rst intro-
duce the cone C0 = {x:CFix¿ 0 | i=0; 1; : : : ; n− 1}.
We note that this cone has a nonempty interior, since
the pair (C; F) is observable. We remark that in order
to stabilize the system in the absence of disturbances,
we could base the controller design on the cone C0.
However, in order to obtain ISS behavior, we must in-
troduce an appropriate subcone of C0, to be denoted
as C1.

For each number D∈[0;∞[, we introduce the fol-
lowing sets:

Hj(D) : = {x: |CFjx|6D}; j∈{0; 1; : : : ; n− 1}:
For any r¿ 0, Br denotes the ball of radius r.

Lemma 2. There exists a cone C1⊆Rn with a non-
empty interior, contained inC0; and there is a positive
number �¿ 0; such that(⋃

j

Hj(D)

)⋂
C1⊆B�D

for everyD∈[0;∞[. In particular, the set (⋃j Hj(D))∩
C1 is bounded, for each D.

Proof.We de�ne C1 as the set of vectors x∈Rn which
satisfy all the following inequalities:

Cx¿ 0;
2Cx¿CFx¿Cx;
...
2CFn−2x¿CFn−1x¿CFn−2x:

(11)

It is clear that C1 is a cone with nonempty interior
contained in C0, and, for all i; j∈{0; : : : ; n− 1} and all
x∈C1,

i¡ j ⇒ CFix6CFjx

and

i¿ j ⇒ CFix6 2i−jCFjx :

Now take any j; D and any x∈Hj(D) ∩ C1. Thus all
CFix¿ 0, and 06CFjx6D. It follows from the
above properties that CFix6 2n−1CFjx6 2n−1D for
all i∈{0; : : : ; n− 1}, so also |x|6 �D, where

� : = ‖O(F; c)‖−1√n2n−1 :
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Now we show how to compute the control sequence
in Mode 2.

Remark 4. The above lemma will be used in its con-
trapositive form, namely the fact that, for the above
C1 and �, we have: if x∈C1 is such that |x|¿�D, then
CFjx¿D for all j∈{0; 1; : : : ; n−1}, and in particular,
if |d(j)|6D for all j,

CFjx + d(j)¿ 0

for all j∈{0; 1; : : : ; n−1}. We can represent the coneC1

by means of some set of M independent inequalities,
as follows:

r1x¿ 0 ; r2x¿ 0 ; : : : ; rM x¿ 0 ;

where the ri, i=1; 2; : : : ; M , are row vectors. We now
choose an arbitrary vector v∈intC1 with unit norm
|v|=1; by de�nition, riv¿ 0 for i=1; : : : ; M . Since
the pair (F;G) is controllable, there exist ai∈Rm,
i=0; 1; : : : ; n− 1, such that

v=
n−1∑
i= 0

Fn−1−iGai : (12)

Assume now that the following control sequence is
applied to the system:

u(k + t)= �ak−n; k = n; n+ 1; : : : ; 2n− 1 ;
t∈[0; 1[ ; (13)

where �¿ 0 is a positive number to be speci�ed be-
low. The state of the system, under the control se-
quence (13) and starting from the state x(nT ), is given
by

x(2n)=Fnx(n) +
n−1∑
i= 0

Fn−1−iG(�ai)=Fnx(n) + �v :

(14)

The particular choice of � which we use in the de-
sign is given by

�(Zn−10 )= max
i= 1;::: ; M

‖F2n‖+ 1
riv

|ri|B(Zn−10 ); (15)

and the control sequence applied in Mode 2 is given
by Eq. (13) with Eqs. (12) and (15).
The following Lemma shows that any “large” initial

state is transferred to the coneC1 at the end of Mode 2:

Lemma 3. Consider the Modes 1 and 2 of the ISS
controller over the time interval [0; 2n[. Suppose

that |x(0)|¿KD; where K satis�es the conditions of
Lemma 1. Then we have that
1. x(2n)∈C1,
2. |x(2n)|¿ |x(0)|.

Proof. If �¿ 0 is chosen so that all the inequalities

r1Fnx(n) + �r1v¿ 0 ;

r2Fnx(n) + �r2v¿ 0 ; : : : ; rMFnx(n) + �rMv¿ 0

(16)

are satis�ed, then x(2n)∈C1. It can be veri�ed that, if

�¿ �∗ : = max
i= 1;::: ; M

|ri|‖F2n‖|x(0)|
riv

;

then all the inequalities are indeed satis�ed. Since for
our choice given in Eq. (15), and for those initial states
so that |x(0)|¿KD we have that B(Zn−10 )¿ |x(0)|, it
follows that �(Zn−10 )¿ �∗ and x(2n)∈C1.
For the second statement, we proceed as fol-

lows. Since |v|=1 and riv¿ 0;∀i, we have that
riv= |riv|6 |ri||v|= |ri|. Together with |x(0)|6
B(Zn−10 ), which follows because |x(0)|¿KD, we have

�(Zn−10 )¿
(‖F2n‖+ 1) B(Zn−10 )

¿
(‖F2n‖+ 1) |x(0)|¿ |F2nx(0)|+ |x(0)|

(17)

and so

|x(2n)| = |�(Zn−10 )v− F2nx(0)|
¿ |�(Zn−10 )v| − |F2nx(0)|¿ |x(0)|

where the last inequality follows from (17) and
|�(Zn−10 )|= �(Zn−10 ).

Mode 3. We apply

u(k + t)= 0 ; k =2n; 2n+ 1; : : : ; 3n− 1 ; t∈[0; 1[ ;
(18)

measure z(k); k =2n; : : : ; 3n−1, and then reconstruct
the state at time step 3n using

x̂(3n)=FnO(F; c)−1Z3n−12n :

The following corollary follows from the construc-
tion of the controller.

Corollary 1. Suppose that x(2n)∈C1 is such that
|x(2n)|¿�D; where � is as in Lemma 2; and let us
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compute the state estimate of x(2n) as follows:

x̂(2n)=O(F; c)−1Z3n−12n (19)

and introduce the notation E : = x̂(2n)−x(2n). Then
we have that the bound on the norm of the state
estimation error E is |E|6 ‖O(F; c)‖−1√nD (which
is independent of x(0)).

Proof. From the construction of C1 in Lemma 2 we
have that if |x(2n)|¿�D, then sign (y(k))= + 1 for
k =2n; : : : ; 3n − 1. So, for all such k, z(k)=y(k)=
CFk−2nx(2n) + d(k), and thus

x̂(2n) = O(F; c)−1Z3n−12n

= O(F; c)−1
[
O(F; c)x(2n) + D3n−12n

]
= x(2n) +O(F; c)−1D3n−12n ;

and the estimate is proved.

Mode 4. In this mode we �x an integerN¿ n and steer
the state of the system estimated at time 3n, which
we take to be x̂(3n), to the origin using the minimum
energy control over the time interval [3n; 3n+N −1[.
For simplicity, we take N = n, so that controls are
computed using:

[u(3n) : : : u(4n− 1)]T = − C (F;G)−1F2nx̂(2n) ;
(20)

where C (F;G) is the nonsingular controllability ma-
trix for the pair (F;G).

2.1. Proof of correctness

The controller then consists of Modes 1–4 which
are cyclically applied to the plant. (Thus, the controller
that we obtain is periodic.) In order to summarize the
control algorithm, we introduce the following vector
(stack of controls):

Uj =




U 4j+n−1
4j

U 4j+2n−1
4j+n

U 4j+3n−1
4j+2n

U 4j+4n−1
4j+3n


 :

The entries of Uj are the control inputs which are
applied (as piecewise constant controls in each sam-
pling interval) to the system over the time interval

[4nj; 4nj+4n[. Then the controller U can be summa-
rized as follows:

U 4j+n−1
4j = U 4j+3n−1

4j+2n =



0
0
...
0


 ;

U 4j+2n−1
4j+n = �(Z4j+n−14j )




a0
a1
...

an−1


 ; j=0; 1; : : :

where the ai’s are de�ned in terms of the vector v by
Eq. (12), and � is computed using formula (15), and

U 4j+4n−1
4j+3n = −C (F;G)−1F2nO(F; c)−1Z4nj+3n−14nj+2n ;

j=0; 1; : : : :

(We “padded” by adding one instant where the control
is 0 during the �rst cycle, so that the formulas are
more elegant, having each of the four parts of the same
length n.) We also write U (j) to denote the input to
the system produced by the controller over the time
interval [4nj; 4nj + 4n[; j=0; 1; : : :. The controller is
summarized below:

U (j)=Uj; j=0; 1; : : : (21)

The following lemmas are instrumental in the proof
of the ISS property for the controller:

Lemma 4. Suppose that the state x(2n) is estimated
with an error E; i.e., x̂(2n)= x(2n) + E. Then, if we
apply the sequence of controls (20); we have the fol-
lowing bound:

|x(4n)|6 ‖F2n‖|E| :

Proof. From x̂(3n)=Fnx̂(2n)=Fnx(2n) + FnE=
x(3n) + FnE, and applying the control u from
Eq. (20), we obtain 0= x(4n) + F2nE.

We denote the evolution of the closed-loop contin-
uous time state of the plant (2) under the controller
(21) by x(t; x(0)).

Corollary 2. There exist positive numbers K1; K2;
such that, if |x(0)|¿K2D; then the closed-loop state
satis�es |x(4n; x(0))|6K1D.
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Proof. Choose K2 = max(K; �), where K is taken
as in Lemma 1 and � is taken from Lemma 2.
From Lemma 3 it follows that if |x(0)|¿K2D, then
|x(2n; x(0))|¿ |x(0)|, since K2¿K . From Corol-
lary 1 it follows that, since |x(2n; x(0))|¿�D,
we have that |E|6 ‖O(F; c)‖−1√nD. Finally,
Lemma 4 guarantees that the corollary holds with
K1 = ‖F2n‖‖O(F; c)‖−1√n.

Lemma 5. There exist positive numbers K3; K4 such
that, for each initial state x(0)∈Rn; we have that

|x(t; x(0))|6K3|x(0)|+ K4D; t∈[0; 4n[ :

Proof. Notice that for all Modes 1–4, the system is a
linear system with di�erent piecewise constant inputs.
The following bound holds in continuous time for an
arbitrary time interval [t1; t2]:

|x(t; x(t1))|6 max
t∈[t1 ; t2]

‖eAt‖|x(t1)|

+
[∫ t2

t1
‖eA(t2−s)‖‖B‖ ds

]
max
t∈[t1 ; t2]

|u(t)| :

(22)

Also, notice that the control input for Modes 1 and 3
is identically equal to zero, whereas for Modes 2 and
4 it is computed based on the measurement vectors
Zn−10 and Z3n−12n respectively. Also, it is easy to see
that we have, for suitable constants Pi:

|Zn−10 |6P1|x(0)|+ P2D ;

|Z3n−12n |6P3|x(2nT )|+ P4D ; (23)

from which one may derive bounds on the control u(t)
over the entire time interval [0; 4n[. Finally, using Eq.
(22), we conclude as desired.

Corollary 3. There exists K5¿ 0 such that given an
arbitrary x(0)∈Rn; we have that |x(4n; x(0))|6K5D.

Proof. From Corollary 2 we have that if |x(0)|¿K2D
then |x(4n; x(0))|6K1D. If on the other hand we
have that |x(0)|6K2D, from Lemma 5 it follows that
|x(4n; x(0))|6 (K3K2+K4)D. The claim follows with
K5 = max {K1; K2K3 + K4}.

Corollary 4. There exists K6¿ 0 such that given an
arbitrary x(0)∈Rn; we have that

|x(t; x(0))|6K6D ; t¿ 4n :

Proof. From Corollary 3 and the fact that Modes
1–4 of controller (21) are applied cyclically, it follows
that |x(4n)|6K5D. Also, note that the bound given
in Lemma 5 can be rewritten as follows:

|x(t; x(4nj))|6K3|x(4nj)|+ K4D ;

t∈[4nj; 4nj + 4n[; ∀ j=0; 1; : : : ;

and the proof follows by induction since we also have
from Corollary 3 that

|x(4nj; x(4nj − 4n))|6K5D ; ∀ j=1; : : : :

So we may use K6 =K3K5 + K4.

Theorem 1. The controller (21) is an ultimately-
linear L∞-gain controller for the system (2).

Proof. Just combine the bounds given in Corollary 4
and Lemma 5.

As remarked earlier, the obtained controller glob-
ally stabilizes (in a dead-beat fashion) the system in
the absence of disturbances.

Corollary 5. The controller de�ned by Eq. (21) glob-
ally stabilizes the plant (2) with d(t)≡ 0.

Proof. First, we prove that the control scheme de-
�ned by Eq. (21) renders the origin of Eq. (2) with
d ≡ 0 an equilibrium. Indeed, if x(0)= 0, then
Un−1
0 =U 3n−1

2n =0, by de�nition, U 2n−1
n =0 because

Zn−10 and �(0)= 0 and then it follows that Z3n−12n =0
which implies U 4n−1

3n =0. Hence x(t; 0)=0; t∈[0; 4n[
and by induction we can show that x(t; 0)=0;∀t. For
x(0) 6= 0, the controller scheme is dead beat in nature
and it yields x(t; x(0))= 0; t¿ 4n for arbitrary x(0).
Hence, the origin of the closed-loop system is globally
attractive. The only thing left to prove is the stability
of the origin. From the Corollary 4 and Lemma 5,
with D=0, we can see that |x(t; x(0))|6K3|x(0)|,
t∈[0; 4n]. Hence, since x(t; x(0)) ≡ 0; t¿ 4n, for any
�¿ 0, there exists �= �=K3 such that if |x(0)|6 �
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then |x(t; x(0))|6 �, t¿ 0, which proves stability in
Lyapunov sense.

The Model 1. The same controller can be used, and
precisely the same result holds, for model (1), i.e.,
if the measured output is z(t)= |Cx(t)| + d(t) with
|d(t)|6D for all t¿ 0. Indeed, we may simply use
our controller by �rst taking the absolute value of the
observed output, |z(t)|. If we introduce for each t the
“virtual disturbance”

d′(t) : =
{
d(t) if Cx(t)¿ 0;
−d(t) if Cx(t)¡ 0;

then d′(t) has the same norm as d(t), and the closed-
loop behavior is the same as before, because:

|z(t)|= ||Cx(t)|+ d(t)|= |Cx(t) + d′(t)|:

3. An alternative approach to stabilization

In this section, we present an alternative approach
to the stabilization (no measurement noise) for

ẋ = Ax + Bu;

z = |Cx|= |y|: (24)

Although the controller to be obtained is somewhat
more complicated, we present it because the construc-
tion is very di�erent, and might be of some interest
in that it appears to result in smaller state excursions.
This better transient behavior is due to the fact that in
this construction we do not force the state away from
the origin in order to estimate its sign. As earlier, the
controller is periodic, so we describe the modes of op-
eration over each cycle (there are now three, rather
than four, basic steps).

3.1. Estimate a state � so that x0 = + � or x0 = − �
(Mode 1)

We apply u(t)= 0; t∈[0; T [. From Corollary A.2
in the Appendix, it follows that there exists a positive
integer K such that, for all x∈Rn, CetAx has at most K
zeroes for t in [0; T ]. It follows that, for each x∈Rn,
there are at least K + 1 intervals of the form[

‘T
2K + 1

;
(‘ + 1)T
2K + 1

]
; ‘=0; : : : ; 2K

where the sign of CetAx is constant (since there are
2K + 1 such intervals, and there can be zeroes in the
interiors of at most K of them).

We now introduce the sampling period

� : =
T

(2K + 1)n

and consider the sampled outputs Cek�Ax, for
k∈{0; : : : ; (2K + 1)n}. It is assumed that the sam-
pling period � is such that the pair of matrices F :
= eA�; G : =

∫ �
0 e
AsB ds is controllable and (F; C) is

observable; if this would not be the case, a smaller
sampling period can be used and the argument is
entirely analogous.
LetJ denote the set of integer intervals of the form

{hn�; : : : ; ((h+ 1)n− 1)�} ; h=0; 1; : : : ; 2K:

The set J consists of 2K + 1 disjoint intervals, each
of them containing n consecutive sampling instants.
We now form the following set of vectors:

�(h)=F−nhO(F; c)−1Z (h+1)n−1hn ; h=0; 1; : : : ; 2K ;

where the vector Z (h+1)n−1hn =(z(hn�) : : : z(((h+1)n−
1)�))T; h=0; 1; : : : ; 2K .
For each state x∈Rn, we say that an interval J∈J is

pure if Cek�Ax has constant sign whenever k�∈J . By
construction, for each x∈Rn there are at least K + 1
pure intervals. The state �(h) equals either x(0) or
−x(0) at the end of each pure interval. Thus, the fol-
lowing algorithm always returns, at time t=T , a state
� which is equal to either x(0) or −x(0):

Observer Algorithm. Run the above observer for
k =0; : : : ; (2K+1)n−1 and �nd �(h); h=0; 1; : : : ; 2K .
At each time of the form hn�, store the vector �(h) or
−�(h), using the (arbitrary) convention that we pick
the one with the property that the sum of its coordi-
nates is nonnegative. At time T , choose, among the
2K + 1 stored vectors, the one that appears at least
K + 1 times. The vector returned is denoted as � and
is used in Mode 2 of the algorithm.

3.2. Estimate the sign of x0 (Mode 2)

For a chosen ”¿ 0, we apply the control
u(t)= ”|�|= ”|x(0)|, t∈[T; 2T [.
Since we assumed that (F; C) is observable and

since G 6= 0, it follows for the SISO system (24) that
∃i∈{0; 1; : : : ; n − 1} such that CFiG 6= 0. Introduce
i∗= mini{i:CFiG 6= 0}. Consider the output of the
system at time T + i∗�:

z(T + i∗�)= |CFn(2K+1)+i∗x(0) + CFi∗G”|�||
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and notice that the sign of x(0) can be reconstructed
using the following procedure.

3.3. Sign observer

If �=0 then we do not need to reconstruct the sign
since x(0)= 0.
Notice that by construction if |�| 6= 0, then

CFi
∗
G”|�| 6= 0. Now we suppose that x(0)= +� and

then we have that if

z(T + i∗�)¿ |CFn(2K+1)+i∗(+�)|

then it must hold that sign (CFn(2K+1)+i
∗
(+�))= sign

(CFi
∗
G). If the signs are the same, this means that

our hypothesis on the sign of x(0) was wrong and
therefore we actually have that x(0)= − �.
If we suppose that x(0)= + � and it happens that

our measurements show

z(T + i∗�)¡ |CFn(2K+1)+i∗(+�)|

then it must hold that sign (CFn(2K+1)+i
∗
(+�))= −

sign (CFi
∗
G). If the signs are opposite, then our hy-

pothesis on the sign of x(0) was wrong and we actu-
ally have that x(0)= − �.

3.4. Steer the state to the origin (Mode 3):

With the reconstructed state x(0) and the known
inputs prior to time 2T , we easily obtain

x(2T )= e2AT x(0) +
(∫ T

0
eA(T−s)B ds

)
”|x(0)| ;

we use now the minimum energy control to transfer
the state x(2t) using piecewise constant control to the
origin at time 3T . The controls used during the next
n sampling instants is given by

−W−1
C (F;G)[F (2K+1)n−1G : : : : : G]TF (2K+1)nx(2T )

where

WC(F;G) = [F (2K+1)n−1G : : : : : G]T

×[F (2K+1)n−1G : : : : : G]

is the nonsingular controllability Grammian for the
pair (F;G).

Finally, just as with our �rst controller, we apply
periodically these control laws using zeroth order hold,
using u(t)= u(i�); t= [i�; (i + 1)�[.
The proof of the following theorem follows the

same lines as that of the �rst controller (for the special
case D=0).

Theorem 2. A controllable and observable system
(24) is stabilized by the controller de�ned in this sec-
tion.

Remark 5. The controller obtained in this section is
not continuous on the observation data, which entails
in principle poor noise robustness (even for small dis-
turbances, much less ISS behavior). This discontinu-
ity is due to two steps taken by the controller in the
phase in which the state x or its negative −x is iden-
ti�ed: (1) the storage of a normalized version that
folds the signs, and (2) the selection, by a majority
vote, of the correct estimate. Clearly this last step can
only work in an unrealistic situation in which there
is no observation noise. At the cost of an increase
in complexity, it is possible, however, to modify our
design in such a way that this discontinuous behav-
ior can be overcome. We sketch the modi�ed proce-
dure next. The �rst modi�cation consists in picking
a sampling period T : = 1=(3K + 1)n (note the 3 in-
stead of 2). In this manner, we are assured that, in
the ideal no-noise case, there will be at least K + 1
estimates of the state which are equal, as opposed
to merely equal up to sign. (Note that it may hap-
pen that there are two sets of estimated states, each
of cardinality at least K + 1, corresponding to the
two estimates x and −x.) The second modi�cation,
to make step (2) continuous on the data, is as fol-
lows. We pick the 3K + 1 estimates, and consider all
possible subsets of K + 1 elements. For each possi-
ble subset of this cardinality, we compute its center
of mass and its dispersion (average distance to cen-
ter). Finally, we pick the centers of those subsets with
minimum dispersion. Note that there are at most two
such minimizers in the noise free case, corresponding
to x and −x, and in the presence of small observation
noise the estimates so obtained can be expected to be
robust.
Obviously, the procedure just described is not

practical, since a combinatorial search is needed
(
all( K+1

3K+1

)
subsets must be considered

)
. Thus, more so-

phisticated clustering techniques would be used in
practice.
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4. Closing remark

Our �rst controller could be modi�ed in a fairly
straightforward manner in order to cope with MIMO
systems, where the output is now the absolute value of
each coordinate of the linear output. The main modi-
�cation needed is in the construction of the cone C1,
which is used in Mode 2 of the controller. Indeed,
since there are more outputs, we chose (any) n lin-
early independent rows of the observability matrix of
(C; F). They are used to construct the cone C0. Cone
C1 is then constructed in the same manner as for the
SISO case. In Modes 1 and 3, we reconstruct, respec-
tively, the states x̂(0) and x̂(2n) using only the outputs
at times that correspond to the rows of the observabil-
ity matrix which are used to construct C1.

Appendix

Lemma A.1. Suppose that the pair (A; C) is observ-
able. Then, there exists some�¿ 0 so that, for each
nonzero state x∈Rn; the function

fx(t)=CetAx

has at most n− 1 zeroes in the interval [0;�].

Proof. Suppose that the result is not true. Then, for
each positive integer ‘ there is some nonzero state x‘
with the property that the function f‘ : =fx‘ has at
least n zeroes in the interval [0; 1=‘]. Dividing x‘ by
its norm, we may assume that |x‘|=1 for all ‘. By
compactness of the unit sphere in Rn, the sequence
{x‘} has a convergent subsequence. We relabel this
subsequence as {x‘}, so we may and will assume from
now on that x‘ → x̂ as ‘ → ∞, for some state x̂ of
norm 1.
We next remark that, for any ‘ and any k∈{0; : : : ; n−

1}, the kth derivative f(k)‘ has at least n− k zeroes in
the interval [0; 1=‘]. Indeed, by induction: for k =0,
there are at least n zeroes by assumption, and, if f(k)‘
has n− k zeroes, then by Rolle’s Theorem f(k+1)‘ has
n− k − 1 zeroes.
Now �x any k∈{0; : : : ; n− 1}. From the above re-

mark it follows that, for each ‘, f(k)‘ has at least one
zero in [0; 1=‘], i.e. there is some t∈[0; 1=‘] such that
f(k)‘ (t‘)= 0. As

0=f(k)‘ (t‘)= CAket‘Ax‘ → CAkx̂

when ‘→∞, it follows that CAkx̂=0 for all
k∈{0; : : : ; n−1}. By observability, this implies x̂=0,
a contradiction.

Corollary A.2. Suppose that the pair (A; C) is observ-
able, and pick any M ¿ 0. Then there is some inte-
ger K with the following property: for each nonzero
state x∈Rn; the function fx(t)=CetAx has at most K
zeroes in the interval [0; M ].

Proof. Pick � as in the lemma, and take any integer
q so that M6 q�. We claim that fx has at most K :
= (n − 1)q zeroes in [0; q�]. For this, it su�ces to
show that this function has at most n−1 zeroes in each
interval of the form [s�; (s+ 1)�], s∈{0; : : : ; q− 1}.
Pick any such s. Then fx(t)=fxs(t− s�), where xs :
= es�Ax. The lemma, applied to the initial state xs,
implies that the function fxs has at most n− 1 zeroes
in [0;�]. This means that fx has the claimed property.
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