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This paper is organized as follows. In Section Il we present

mathematical preliminaries, define the class of systems and the
problem, and provide some motivation. In Section Il we introduce
the notion of switched controllers. In Section IV we propose an
algorithm to test for MP nonaffine nonlinear systems. Finally, we
Minimum Phase Properties for Input summarize our results in the last section.
Nonaffine Nonlinear Systems

Il. PRELIMINARIES

D. Nesic, E. Skafidas, |. M. Y. Mareels, and R. J. Evans . . . . .
In this paper, we consider the following class of nonaffine nonlinear

systems:
Abstract—For input nonaffine nonlinear control systems, the minimum = f(x, u)
phase property of the system in general depends on the control law.
Switching or discontinuous controllers may offer advantages in this y =h(x) 1

context. In particular, there may not exist a continuous control law which " o . .
would keep the output identically equal to zero and for which the zero Wherez € R™, w € R, y € R andf, h € C™. A good discussion

output constrained dynamics are locally stable, whereas a discontinuous 0N the motivation for considering the zero dynamics of (1) can be
controller which achieves this exists. For single-input/single-output input found in [1]. One way of investigating (1) is to introduce an integrator
nonaffine nonlinear systems we give sufficient conditions for existence and at the plant input [9], which transforms it into a control affine system.
present a method for the design of d_|sc0nt|nuous switching controllers However, the new augmented system may have some undesirable
which vyield locally stable zero dynamics. . . .
properties as outlined in [1].
Index Terms—Input nonaffine systems, minimum phase, nonlinear, The Euclidean norm of a vector is denoted adx| and the
switching control. corresponding induced norm of a mattX as || P||. We denote an
open ball with radius! and centered at* € IR" asBq(«") C R".
|. INTRODUCTION Definition 1: A statez™ € IR" is termed an equilibrium for the

The notion of minimum phase (MP) is of great importance for gystem (1) if there exists at least oné € It such that

number of nonlinear control theoretic questions. Loosely speaking, a fla™, u™) =0, h(z")=0. (2

nonlinear system is termed MP if it has locally stable zero OUIpV\tlithout loss of generality it can be assumed that the origlns= 0
constrained dynamics (zero dynamics), which are obtained whlxgnan equilibrium '

the output of the system is kept identically equal to zero [9]. The Definition 2 [1]: A closed setS, S C R", is said to be a viable

notion of MP has found appllcayons_ In a number of nonllneaget of the system (1), if there exists a (continupdisedback control
problems, such as input—output linearization [9], output dead-bqg\;v « = u(x) defined onS such that for anyr, € S there exist
control, stabilizability, output tracking [1], [4], [9], etc. ’

a numberT > 0 (it may be thatT = oco) and a unique solution
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Definition 3: Suppose thaso C h™'(0), So # 0 is a viable set. we propose an MP test based on a switching strategy which can
Any control law,u = u(z), which achieves (3) foSo is called an be used to locally stabilize zero dynamics of nonaffine nonlinear

output zeroing (OZ) controller systems (1). In this case, the switching MP controller is continuous
Definition 4 [1]: Consider the following sets: in z. However, for higher dimensional zero dynamics one usually
1 obtains discontinuous im controllers if the same technique is used
Lo =1h7(0) (see [8]). Hence, the structure of the system (1) may be such that
S ={S. C Lo: S, viable} it is necessaryto use hybrid control ideas (design of discontinuous
M* = Us_.es Sa. (4) controllers) in order to fully understand MP properties of the system.

We note that this paper is concerned with the zero dynamics only
Consider an equilibriume™. If M™ # @ and«™ € M~, then there and we do not consider the relationship of MP and the stabilization
exist zero dynamics for the system (1). problem.
Definition 5: Suppose that there exist zero dynamics for (1) ac-
cording to Definition 4. Then the zero dynamics are stabilizable at M
an equilibriumz™ € M™ if there exists an OZ control law = u(xz)
with the following properties.
1) V= > 0,36 > 0 such that ifeg € M™ N Bs(2™) thenV¢ it
follows thatx(t, xo, u(x)) € M™* N B.(z").
2) 3A > 0 such that if 2o € M* N Ba(z™) then
limi—eo |2(t, 20, u(z)) — 2] = 0 and V¢ we have #(t) = Az + Bu, B#0 )

that = (¢, xo, u(x)) € M. ) ) )
Any control law which satisfies the above given conditions is referréN erex(f) € R" is thestate andu() € R is the control input.
y 9 1) Controlled Switching: Suppose we have a collection of

to as anminimum phase (MP) controller .
linear controllers

. SWITCHED CONTROLLERS DESIGN

In order to tackle the problem of stabilizability of the zero dynamics
of system (1), we use an approach from the design of hybrid
(switched) controllers. We start our investigation by considering linear
switched controllers. Consider the system

If in Definiton 5 we let A{* = IR", we obtain the usual

(unconstrainedy — 6 notions of stability and asymptotic stability wi(t) = Kia(t), ua(t) = Kou(t), -+, urp(t) = Kna(t)

which we also use in the sequel. ®)
Definition 6: System (1) is termed MP at" if its zero dynamics

are stabilizable at:*. where £ = {Ki,---, Ky} is the set of gain matrices, with

Assumption 1: There exists zero dynamics and apriori known K; # I;, Vi, j. The controllers in (8) are called basic controllers.
equilibrium pointz* € M* at which we wish to investigate the MP We will consider the following class of state feedback controllers,
property. introduced in [11]. Letl («(-)) be a function which maps from the set

Our definition of MP differs from the usual definitions found inof state measuremenfs:(-)} to the set{1, 2, ---, N}. We consider
[4] and [9] since we do not require continuity of OZ controllers. the following state feedback controller:

In order to analyze the MP property it is useful to transform (1)
into a normal form [9]. Suppose that the system (1) has a relative
degreer < » at an equilibriumz™ [9, p. 417]. Then, there exists aHence our control strategy is a rule for switching from one basic
locally invertible coordinate transformaticiy”¢*)" = ®(x) such  conroller to anotherI(x(-)) is called a switching function.
that the system (1) is transformed into the following form: Definition 7: The plant in (7) is stabilizable via controlled switch-
ing with the basic controllers (8) if there exists a state feedback
. controller of the form (9) such that the origin of the closed loop
k2 =72 system (7)—(9) is asymptotically stable.

...... We use the usual — 6 stability definition—see Definition 5 and
the remark below the definition.

w(t) = K;x(t)  Vte€0, co) wherei 2 I(z(-)).  (9)

Zr=gn, & u) _— . T 7 T i
§=F(n, & u) Deflnltl_on 8. Let 7y = Zl , Ty = Zy, e Z,_\r = .ZN be given
’ real matrices. The collectio{.Z:, Z,, ---, Zn} is said to be com-
y=z () plete if for anyx € IR™ there exists at least oniec {1, 2, ---, N}
such thate” Z;= < 0. A collection{Z,, Z», -+, Zn} is said to be

wheren = (z; --- z,,)* and¢ € R™". . : 3 .
Example 1: To motivate our work, consider the nonaffine systerﬁ'trICtIy complete if for anyx € " /{0}, there exists at least one

in normal form i € {1,2,---, N} such thateT Z;z < 0.
2) Remark: It can be shown that if there exist constanis >
iy = (z1 + 23 —u)(2f — 23 —u) 0,72 >0.---, 7v > 0, not all zero and such that
T2 =1u T4+ 12l + -+ NN <0 (<0) (10)
y=m (©) then the collection{Z:, Z>, ---, Zn} is complete (strictly com-
It is easy to see that the following controllers (with(0) = 0) Plete). This condition is necessary and sufficient fér < 2 and
wi(z) = x2; us(z) = —x2 are both OZ controllers for the systemonly sufficient forV > 2 (see [11] and references therein). Consider
(6). However, neither of them is an MP controller. Notice, howevédhe plant (7) as a switched linear system where controller switching
that if one uses the following switching strategy: occurs when the plant reaches some specified point in the state space.
) The following theorem was presented in [11].
o (z) = { g, w2 <0 Theorem 1: Consider the system (7) with the basic controllers (8).
—23, 22 >0 If there exists a real matri® = PT > 0 such that the set of matrices

A T . -
this globally stabilizes the zero dynamids = «*(x). The phe- Z; =(A+ BK;) P+ P(A+ BK;), i={l---, N}
nomenon we described is at the heart of the present paper. Indeed, (12)
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is strictly complete, then the system (7) is stabilizable using controll¢ite so-called strong stability properties in the sense of [3], which
switching with basic controllers (8). coincides with our definition of stability.

Below we present an alternative proof to that presented in [11].We now state a theorem which easily follows from [3], [10] for
The proof is constructive in that it specifies the switching controllatifferentiable Lyapunov functions.
which achieves stability. A controller of the following form is used Theorem 2: Consider the system (7) with € C[f](0). Suppose

in the proof: that there exists a positive definite and radially unbounded function
" V(z) and a classC function w(:) with the propert
I'(z) = argmin ' [(A+ BK;))'P (@) ) property
ic{1,2,--, N} o OV(m)
() = s ——y < —w(|z
+ P(A+ BE,)]e Vie)= sup e vSwlaD
v (z) = Kooy (12)

then the origin of the system (13) is asymptotically stable. Notice

Notice that the above controller specifies a switching functior). ~ that in [10] discontinuous Lyapunov functions were considered and
We say that the switching functiodi*(x) is single-valued for a consequently Dini derivatives were needed. However, with minor
statex if I*(x) is a singleton. It is multivalued at if I*(z) = modifications and with the Filippov definition of solution [3], one
{(k1, -+, ki), ki € {1,2,---, N}, 1 < N. In order to precisely ¢an arive at the above given statement.

. ; N — TPy
specify the properties of the closed loop system (7) and (12), the Proof of Theorem 1:The Lyapunov functionl’ () = " Pz
following lemma is useful. that we are using in the proof is positive definite, differentiable, and

Lemma 1: Let I*(x) be the switching function defined by (12)_radially unbounded. System (7) with the controller (12) has solutions
I*(x) is multivalued on a se$,, C IR", which is a nondense subsetfor Which

of the state space. i € C[Az + Bu™(2)).
Proof: The switching function/™(x) is multivalued only for
thosex for which there exisg, k € {1, ---, N}, j # k such that We use the notation
+'[(A+ BK;)" P4+ P(A + BK)|x Vi =22"((A+ BK,)" P+ P(A+ BK)))z. (16)
_ T 4 e T / o
= [(A+ BEy)" P+ P(A+ BKy)la. The upper derivative of the functioli (z) is
This implies that the sef., is the union of sets of the form - AV (x)
Vix) = sup 5 Y
20" PB(K; — Kp)r =0, j,ke{l,2, -, N}, j#k vECAz+Bus(2)])  9F
The set of points for which this relationship holds belongs to a re%t:lonSlder now the following function:
variety defined by the above given equation. This variety is dense in wi(|z]) == sup V*(y),

R™ if and only if the polynomial which describes it is identically v, lyl>]x]
equal to zero [2]. Since by definitio® is positive definite and Since V}(O) = 0,Vi, we have thatw;(0) = 0. The function

K; # Ky, j # k, this can happen only iB = 0 (the zero vector), : ) . o N .
erliz; contra?jéicts the definiti(?rfof theysystem (g) Q é Dw1(|;z¢|) is continuous since its discontinuity would imply that some
) .~ ~of the functionsV; (16) is discontinuous in:, which is not true
Therefore, we can conclude that Lemma 1 tells us that in general = - . . . .
since V; are quadratic polynomial functions in. Because of the
r

the closed-loop system (7) an_d (12) has a discontinuous .”ght_h? ict completeness condition and the choice of the controller (12),
side and the theory developed in [3] can be used to analyze its stabi ) . . ", .
functionw () is strictly positive for anyxz # 0. Indeed, if

roperties. We state several definitions and results from [3] which are : .
Esepc)i in the sequel. Consider the system 3] Weé assume that there exisis # 0 such thatw,(|&]) = 0, we

necessarily have that;(#) = 0, Vi, which contradicts the strict

&= f(x) (13) completeness conditionw: (|z]) is monotonically nondecreasing,
positive and zero only at zero. It is now easy to construct a
wheref: R" — IR" is measurable and essentially locally boundedstrictly increasing and continuous (classfunction)w(|«|) such that
Definition 9 (Filippov): A vector functionz(-) is called a solution wi(|z]) > w(|z]), ¥ 2. From the construction af(|z|) it follows that

of (13) onl[to, t1] if x(-) is absolutely continuous do, ¢:] and for  ¥*(z) < —w,(|z|) < —w(|z|) and hence the origin of the closed

almost allt € [to. t] loop system is asymptotically stable. Q.E.D.

We now extend the results of [11] to nonlinear systems.

# € Clf]() (14) Theorem 3: Consider a nonlinear system (1) with the basic con-
where trollers
Clflmy= () ) @f(B(x. 6)=N) (15) w; = Ki(z), Ki(0)=0,Vi={l---, N} 17)
§>0 pN=0

and (0, K;(0)) = 0,Vi. Suppose that the vector functions
wherecof(x) denotes the convex closure ¢fat «. Also, (,y—, f(x, Ki(x)) are at least once differentiable and that
denotes the intersection over all séf{sof Lebesgue measure zero.

P Of (v, Ki(x))

Definition 10: The upper derivative of” “along” the differential z+ gi(z) = Fix + gi(x)

inclusion (14) is defined as dw 2=0
. AV (x) wherey;(x) denotes higher order terms satisfying
Viz) = sup. 5 Y )
y€C[f1(x) : ‘li‘nl % =0, Vi={1,2,---, N}. (18)
x|—0 xr

Notice that the differential inclusion (14) defines a regular o.d.e. on
the regionR" — S,, and the upper derivative becomés = V; =  System (1) is locally stabilizable by switching with the basic con-
27 (AT P + PA))x. The above given definition is used to proverollers (17) if there exists a matri? = P” > 0 and positive
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numbersr; > 0, >, 7 > 0 such that Step 4: Check whether the conditions of Theorem 3 are satisfied,
T T that is whether there exist a set of positive numbers 0, >, >
Z n(F; P+ PF)=-Q, Q=0 >0 (19) ¢ and matrixP = PT > 0 such that the collection of matrices
Proof: The proof is very similar to the standard linearization
result [5]. Suppose the conditions of theorem are satisfied. We use
the following notation:V; = 247 Pf(x, K;(x)). Using ideas in
the proof of Theorem 1, it is not difficult to see that ¥z €  4iisfies the condition (19). If so, (5) is MP at.

B:(0),r > 0.3i € {1, 2,---, N} = Vi <0, then the nonlinear  comment 1: We emphasize that we are not advocating the use of
system is stabilizable by switching with the basic controllers. fiscontinuous switching controllers in the cases when a continuous
sufficient condition for this to hold is that there exists a set Qfip controller exists. However, if no continuous controller exists,
nuranerstiTz 0, 3, ti > 0 such that the following holdsV(+) = there may exist a discontinuous switching controller which can
2=y 2tiz’ Pf(x, Ki(x)) < 0, V[z| < 7. In other words, the giapilize the zero dynamics (see for instance [8]). Hence, our results

function V() is negative definite. The linearizatiod$ produce a gpjarge the class of systems that can be termed MP. On the other
set of matrices satisfying condition (19). Consider the maktiand 514 note that even if a continuous MP controller exists but we

the vr_:llueSn: for which thg linearizationd"; yield the condition (19). nave more than one OZ controller, by switching we may still obtain
Consider now the functio®(z) faster convergence.
N B B Comment 2: The above given test is a sufficient condition used to
V)= [:cl Pf(x, Ki(x))+ f' (. K(r))P:ﬂ] check local asymptotic stability of the origin of the zero dynamics.
i=1 However, for nonlinear systems for which there exists a nonempty
N - . subset of the set of OZ controllet¢,, C U such thatu;(¢) are
= Z 7 [T (F; P+ PF)x+2x Pflri(f)]- (20)  linear in ¢ and alsof = F(0, &, u) = F¢ + gu, the test can be
=1 used to check global asymptotic stability of zero dynamics, if they
Since (18) holds, we have that for any > 0, there exists; > 0 are well defined. We can see that a real challenge is to consider
such thalg;(z)| < ~i|z|, Vi, Vo € B,,(0). We denoter = min r,.  stabilizability of switched nonlinear systems since this could lead
Due to (19), we havg_, “(FFP+ PF) =-Q,Q = QT > 0. to global results (global asymptotic stability of the zero dynamics).
We can write (20) as follows: Also, an interesting question is to show a relationship between MP
N in our sense and stabilizability of the system (5).
V(z) = ' Qz+2 Z 77 || P| ). Va € B.(0). (21) Comment 3: The procedure for testing the MP property as outlined
pa— in the test verifies the existence of an MP controller based on
the linearization. Suppose that such a controller exists and we

N_otlce tlhatm Qx Zh.)"k‘“"‘(Q”Tl ' V\.'there)‘"““éQ) _|I_shthefm|n|mum used the quadratic Lyapunov functidi(¢) = ¢7 P¢ to prove the
elgenv:':l ue of, which a real positive num Er- erefore, we cafl, 5 stability result based on the linearizations. Denbté&f) =
write V() < —[Amin(Q) — 23, 7ive) [|P||]|=]°, Y= € B, (0). By

5T h
choosing~; so that2 3. v < (Amin(Q))/||P||, we obtain that 25 PE(0, &, “'l(i)) [se_e (24)] The controller Of t_he form (E). N
the functionV(z) is neéativev/r € B.(0), which completes the Ui (o(&) whereI™(£) = arg minicqs,», .., vy Vil€) may achieve
’ RS a much larger basin of attraction than that obtained by applying the
proof. Q.E.D. linear MP controller computed for the linearizations.
Comment 4: Our method can be in principle used for testing MP
IV. THE MINIMUM PHASE TEST of multi-input/multi-output (MIMO) systems. However, the strict
In order to analyze the MP property it is useful to transform theompleteness condition is more difficult to check in this case since
system into the normal form (5). Consider a system in the norméE may have that the linearizations of zero dynamics are of the form
form (5). If want to keep the output identically equal to zero, wé;x + g;vi, i = 1,2,---, N, wherewv; is arbitrary. Even if we
necessarily have that(0) = 0. The set of controllers must satisfy choosev; = L;x, we need to check the strict completeness condition
of the form: does there exigt; and P such that(F; + ¢;L;)" P +

F'P+PF, i=1{1,2---,N}

9(0. & w) = 0. @2 pr o+ giL;) is strictly complete, which is much harder to check,
All of these controllers are OZ controllers. Assume that thereMare Since L: introduce new parameters. Hence, testing MP for MIMO
real solutions to the above given equation: nonaffine systems motivates the investigation of switched controlled
systems, which is an interesting hybrid control problem: given a set
U= {ui (&), uz(8), -+, un(&)} (23)  of controlled systems: = fi(x, v:),i = 1,2, ---, N, what are
the conditions for the existence of controllers = v;(z) so that

which are defined on a neighborhood of the equilibriuth =
31(y", €*). In order to use the results that we have presented &6= f+(*: vi@))
far to test for MP atr™, we proceed as follows.
Step 1: Find the set (23). Assume that the set of controligrs
(23) is not empty.
Step 2: Consider the following set of systems obtained from (5) We considered the local property of MP at a specific equilibrium
with (23): for the class of nonaffine nonlinear systems. We investigated both
. continuous and discontinuous switched controllers as the class of
{=F(0,& ui(€), =12 N (24)  admissible control laws. We have also presented a MP test and a
pdesign method for switched controllers which can be used to stabilize
zero dynamics. Our results enlarge the class of nonaffine nonlinear
systems that can be termed MP. Moreover, our results open several
. (25) avenues for further research, such as MIMO cases and relations
éx between MP and stabilizability for nonaffine systems.

,i=1,2,---, N can be stabilized by switching?

V. SUMMARY

Step 3: Find all linearizations for zero dynamics which are o
tained with admissible candidate controllers:
aF(0~ ET ui(E))

F;, = o€
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Single Sample Path-Based Sensitivity Analysis is a discrete-time Markov chain which is independent of Poisson
of Markov Processes Using Uniformization process{N(¢)} and has the same stationary distributionzagsee
[11], [14], and [15]). Hordijket al. [11] use the Markov property of
Z' in the simulation ofZ. In particular, they simulat&Z’ and use
the estimator for its stationary distribution as the estimators for the
: o . . )
Abstract—Using the notion of perturbation realization factor, Cao and Statlonf’:lry distribution ofZ. .I.n .thls paper, we simulaté” and use
Chen [2] provide sensitivity formulas of discrete-time Markov chains and the estimators for the sensitivity of the performance measu ¢
uniformizable Markov processes. In this paper, the estimators of the €valuate that of. Itis proved that estimators obtained frafi have

realization factors of a uniformizable Markov process are provided by smaller variances than those from the original Markov process
its uniformized Markov chain. It is proved that estimators given by the

uniformized Markov chain have smaller variances than those provided

by the original Markov process, which are increasing functions of the II. MAIN RESULTS

uniformization parameter and thus have minimum. Let {X..t+ € T} be an irreducible and aperiodic Markov

Zikuan Liu and Fengsheng Tu

Index Terms—Markov process, sensitivity analysis, uniformization. chain (T = {0,1,---,n,---}) or irreducible Markov process
(I' = [0,0¢)) with state spaceS = {1,2,---} and transition
probability matrix P = (p;;).i,7 € S or infinitesimal generator

|. INTRODUCTION

A = (aij),i,j € S, wherea;; > 0.i # j,a; <0, satisfying
Markov processes have been widely used to analyze the perfaip{—a.i,i € S} <oc, and T2, a;; = 0, for all i € S. Let
mance and reliability of a variety of systems. Sensitivity (derivativej(x): S — R be a real function andr = (w1, m2,---) be the
with respect to model parameters plays an important role in modghtionary distribution of X;,t € T}. Then, under the assumption
optimization, in studying the effect of uncertainties in parametel.(|f|) = 2, m|f(i)]< oo, the steady-state performance
values, and in reduction of model complexity by aiding furthemeasure is defined by
abstraction of the model if it is relatively insensitive to certain
parameters. Sensitivity analysis of discrete-events dynamic system n=FE.(f)= Z i f(3). (1)
(DEDS) based on a single sample path is one of the most active P

research fields at present. Several sensitivity analysis teChnin%?6>0 be a small enough real number aGd= (q:,),7,j € S
= {qi5):% ]
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