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Minimum Phase Properties for Input
Nonaffine Nonlinear Systems

D. Něsić, E. Skafidas, I. M. Y. Mareels, and R. J. Evans

Abstract—For input nonaffine nonlinear control systems, the minimum
phase property of the system in general depends on the control law.
Switching or discontinuous controllers may offer advantages in this
context. In particular, there may not exist a continuous control law which
would keep the output identically equal to zero and for which the zero
output constrained dynamics are locally stable, whereas a discontinuous
controller which achieves this exists. For single-input/single-output input
nonaffine nonlinear systems we give sufficient conditions for existence and
present a method for the design of discontinuous switching controllers
which yield locally stable zero dynamics.

Index Terms—Input nonaffine systems, minimum phase, nonlinear,
switching control.

I. INTRODUCTION

The notion of minimum phase (MP) is of great importance for a
number of nonlinear control theoretic questions. Loosely speaking, a
nonlinear system is termed MP if it has locally stable zero output
constrained dynamics (zero dynamics), which are obtained when
the output of the system is kept identically equal to zero [9]. The
notion of MP has found applications in a number of nonlinear
problems, such as input–output linearization [9], output dead-beat
control, stabilizability, output tracking [1], [4], [9], etc.
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An important difference between affine and nonaffine nonlinear
systems is that in the latter case the zero dynamics are not always
well defined. Indeed, the algorithm of Byrnes and Ho in [1] typically
produces a finite number of continuous control laws, all of which
have the property of ensuring that the output remains identically at
zero. It is obvious that different choices of the continuous control law
may yield either stable or unstable zero dynamics.

Moreover, by partitioning the state space and applying a (different)
continuous control law at each subset, we may design an infinite
number of discontinuous controllers which keep the output of the
system at zero. In a conference version of this paper [8] we presented
an example of a nonaffine system for which there does not exist
a continuous control law which yields stable zero dynamics but a
discontinuous control law which achieves stability of zero dynamics
does exist. The example motivates the consideration of discontinuous
(or switched) controllers in the investigation of MP property for
nonaffine nonlinear systems. In this paper we use ideas from [11]
where switched linear controllers were investigated to construct lo-
cally stable zero dynamics. By considering discontinuous controllers,
we enlarge the class of nonaffine nonlinear systems that can be termed
MP.

This paper is organized as follows. In Section II we present
mathematical preliminaries, define the class of systems and the
problem, and provide some motivation. In Section III we introduce
the notion of switched controllers. In Section IV we propose an
algorithm to test for MP nonaffine nonlinear systems. Finally, we
summarize our results in the last section.

II. PRELIMINARIES

In this paper, we consider the following class of nonaffine nonlinear
systems:

_x = f(x; u)

y =h(x) (1)

wherex 2 IRn; u 2 IR; y 2 IR andf; h 2 C1. A good discussion
on the motivation for considering the zero dynamics of (1) can be
found in [1]. One way of investigating (1) is to introduce an integrator
at the plant input [9], which transforms it into a control affine system.
However, the new augmented system may have some undesirable
properties as outlined in [1].

The Euclidean norm of a vectorx is denoted asjxj and the
corresponding induced norm of a matrixP as kPk. We denote an
open ball with radiusd and centered atx� 2 IRn asBd(x

�) � IRn.
Definition 1: A statex� 2 IRn is termed an equilibrium for the

system (1) if there exists at least oneu� 2 IR such that

f(x�; u�) = 0; h(x�) = 0: (2)

Without loss of generality it can be assumed that the origin,x� = 0,
is an equilibrium.

Definition 2 [1]: A closed setS, S � IRn, is said to be a viable
set of the system (1), if there exists a (continuous1) feedback control
law u = u(x) defined onS such that for anyx0 2 S there exist
a numberT > 0 (it may be thatT = 1) and a unique solution
x(t; x0; u(�)) of the system_x = f(x; u(x)) that satisfies

x(t; x0; u(�)) 2 S; 8 t: 0 � t < T: (3)
1Definitions 2 and 4 are taken from [1], where continuity of the output

zeroing (OZ) controllers is required. We do not use this assumption in the
sequel. However, in the cases when we use results of [1] the continuity of
control laws in the definitions is assumed.
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Definition 3: Suppose thatSO � h�1(0); SO 6= ; is a viable set.
Any control law,u = u(x), which achieves (3) forSO is called an
output zeroing (OZ) controller.

Definition 4 [1]: Consider the following sets:

L0 =h�1(0)

S = fS� � L0: S� viableg

M� = [S 2S S�: (4)

Consider an equilibriumx�. If M� 6= ; and x� 2 M�, then there
exist zero dynamics for the system (1).

Definition 5: Suppose that there exist zero dynamics for (1) ac-
cording to Definition 4. Then the zero dynamics are stabilizable at
an equilibriumx� 2M� if there exists an OZ control lawu = u(x)
with the following properties.

1) 8 " > 0; 9 � > 0 such that ifx0 2 M� \ B�(x
�) then8 t it

follows thatx(t; x0; u(x)) 2 M� \ B"(x
�).

2) 9� > 0 such that if x0 2 M� \ B�(x
�) then

limt!1 jx(t; x0; u(x)) � x�j = 0 and 8 t we have
that x(t; x0; u(x)) 2 M�.

Any control law which satisfies the above given conditions is referred
to as anminimum phase (MP) controller.

If in Definition 5 we let M� = IRn, we obtain the usual
(unconstrained)" � � notions of stability and asymptotic stability
which we also use in the sequel.

Definition 6: System (1) is termed MP atx� if its zero dynamics
are stabilizable atx�.

Assumption 1:There exists zero dynamics and ana priori known
equilibrium pointx� 2M� at which we wish to investigate the MP
property.

Our definition of MP differs from the usual definitions found in
[4] and [9] since we do not require continuity of OZ controllers.

In order to analyze the MP property it is useful to transform (1)
into a normal form [9]. Suppose that the system (1) has a relative
degreer < n at an equilibriumx� [9, p. 417]. Then, there exists a
locally invertible coordinate transformation(�T �T )T = �(x) such
that the system (1) is transformed into the following form:

_z1 = z2

_z2 = z3

. . . . . .

_zr = g(�; �; u)

_� =F (�; �; u)

y = z1 (5)

where� = (z1 � � � zr)
T and � 2 IRn�r.

Example 1: To motivate our work, consider the nonaffine system
in normal form

_x1 =(x1 + x22 � u)(x31 � x22 � u)

_x2 =u

y =x1: (6)

It is easy to see that the following controllers (withx1(0) = 0)
u1(x) = x22; u2(x) = �x22 are both OZ controllers for the system
(6). However, neither of them is an MP controller. Notice, however
that if one uses the following switching strategy:

u�(x) =
x22; x2 � 0

�x22; x2 > 0

this globally stabilizes the zero dynamics_x2 = u�(x). The phe-
nomenon we described is at the heart of the present paper. Indeed,

we propose an MP test based on a switching strategy which can
be used to locally stabilize zero dynamics of nonaffine nonlinear
systems (1). In this case, the switching MP controller is continuous
in x. However, for higher dimensional zero dynamics one usually
obtains discontinuous inx controllers if the same technique is used
(see [8]). Hence, the structure of the system (1) may be such that
it is necessaryto use hybrid control ideas (design of discontinuous
controllers) in order to fully understand MP properties of the system.

We note that this paper is concerned with the zero dynamics only
and we do not consider the relationship of MP and the stabilization
problem.

III. SWITCHED CONTROLLERS DESIGN

In order to tackle the problem of stabilizability of the zero dynamics
of system (1), we use an approach from the design of hybrid
(switched) controllers. We start our investigation by considering linear
switched controllers. Consider the system

_x(t) = Ax +Bu; B 6= 0 (7)

wherex(t) 2 IRn is thestate andu(t) 2 IR is thecontrol input.
1) Controlled Switching:Suppose we have a collection ofN

linear controllers

u1(t) = K1x(t); u2(t) = K2x(t); � � � ; uk(t) = KNx(t)

(8)

where L = fK1; � � � ; KNg is the set of gain matrices, with
Kj 6= Ki; 8i; j. The controllers in (8) are called basic controllers.
We will consider the following class of state feedback controllers,
introduced in [11]. LetI(x(�)) be a function which maps from the set
of state measurementsfx(�)g to the setf1; 2; � � � ; Ng. We consider
the following state feedback controller:

u(t) = Kix(t) 8 t 2 [0; 1) wherei
�
= I(x(�)): (9)

Hence our control strategy is a rule for switching from one basic
controller to another.I(x(�)) is called a switching function.

Definition 7: The plant in (7) is stabilizable via controlled switch-
ing with the basic controllers (8) if there exists a state feedback
controller of the form (9) such that the origin of the closed loop
system (7)–(9) is asymptotically stable.

We use the usual" � � stability definition—see Definition 5 and
the remark below the definition.

Definition 8: Let Z1 = ZT
1 ; Z2 = ZT

2 ; � � � ; ZN = ZT
N be given

real matrices. The collectionfZ1; Z2; � � � ; ZNg is said to be com-
plete if for anyx 2 IRn there exists at least onei 2 f1; 2; � � � ; Ng
such thatxTZix � 0. A collectionfZ1; Z2; � � � ; ZNg is said to be
strictly complete if for anyx 2 IRn=f0g, there exists at least one
i 2 f1; 2; � � � ; Ng such thatxTZix < 0.

2) Remark: It can be shown that if there exist constants�1 �
0; �2 � 0; � � � ; �N � 0, not all zero and such that

�1Z1 + �2Z2 + � � �+ �NZN � 0 (<0) (10)

then the collectionfZ1; Z2; � � � ; ZNg is complete (strictly com-
plete). This condition is necessary and sufficient forN � 2 and
only sufficient forN > 2 (see [11] and references therein). Consider
the plant (7) as a switched linear system where controller switching
occurs when the plant reaches some specified point in the state space.
The following theorem was presented in [11].

Theorem 1: Consider the system (7) with the basic controllers (8).
If there exists a real matrixP = P T > 0 such that the set of matrices

Zi
�
= (A+BKi)

TP + P (A+BKi); i = f1; � � � ; Ng

(11)
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is strictly complete, then the system (7) is stabilizable using controlled
switching with basic controllers (8).

Below we present an alternative proof to that presented in [11].
The proof is constructive in that it specifies the switching controller
which achieves stability. A controller of the following form is used
in the proof:

I
�(x) = argmin

i2f1; 2; ���;Ng

x
T [(A+BKi)

T
P

+ P (A+BKi)]x

u
�(x) =KI (x)x: (12)

Notice that the above controller specifies a switching functionI�(x).
We say that the switching functionI�(x) is single-valued for a
statex if I�(x) is a singleton. It is multivalued atx if I�(x) =
fk1; � � � ; klg; ki 2 f1; 2; � � � ; Ng; l � N . In order to precisely
specify the properties of the closed loop system (7) and (12), the
following lemma is useful.

Lemma 1: Let I�(x) be the switching function defined by (12).
I�(x) is multivalued on a setSw � IRn, which is a nondense subset
of the state space.

Proof: The switching functionI�(x) is multivalued only for
thosex for which there existj; k 2 f1; � � � ; Ng; j 6= k such that

x
T [(A+BKj)

T
P + P (A+BKj)]x

= x
T [(A+BKk)

T
P + P (A+BKk)]x:

This implies that the setSw is the union of sets of the form

2xTPB(Kj �Kk)x = 0; j; k 2 f1; 2; � � � ; Ng; j 6= k:

The set of points for which this relationship holds belongs to a real
variety defined by the above given equation. This variety is dense in
IRn if and only if the polynomial which describes it is identically
equal to zero [2]. Since by definitionP is positive definite and
Kj 6= Kk; j 6= k, this can happen only ifB = 0 (the zero vector),
which contradicts the definition of the system (7). Q.E.D.

Therefore, we can conclude that Lemma 1 tells us that in general
the closed-loop system (7) and (12) has a discontinuous right-hand
side and the theory developed in [3] can be used to analyze its stability
properties. We state several definitions and results from [3] which are
used in the sequel. Consider the system

_x = f(x) (13)

wheref : IRn ! IRn is measurable and essentially locally bounded.
Definition 9 (Filippov): A vector functionx(�) is called a solution

of (13) on [t0; t1] if x(�) is absolutely continuous on[t0; t1] and for
almost all t 2 [t0; t1]

_x 2 C[f ](x) (14)

where

C[f ](x) �
�>0 �N=0

cof(B(x; �)�N) (15)

wherecof(x) denotes the convex closure off at x. Also,
�N=0

denotes the intersection over all setsN of Lebesgue measure zero.
Definition 10: The upper derivative ofV “along” the differential

inclusion (14) is defined as

_V �(x) = sup
y2C[f](x)

@V (x)

@x
y:

Notice that the differential inclusion (14) defines a regular o.d.e. on
the regionIRn � Sw and the upper derivative becomes_V � = _Vi =
xT (AT

i P + PAi)x. The above given definition is used to prove

the so-called strong stability properties in the sense of [3], which
coincides with our definition of stability.

We now state a theorem which easily follows from [3], [10] for
differentiable Lyapunov functions.

Theorem 2: Consider the system (7) with0 2 C[f ](0). Suppose
that there exists a positive definite and radially unbounded function
V (x) and a classK function !(�) with the property

_V �(x) = sup
y2C[f ](x)

@V (x)

@x
y � �!(jxj)

then the origin of the system (13) is asymptotically stable. Notice
that in [10] discontinuous Lyapunov functions were considered and
consequently Dini derivatives were needed. However, with minor
modifications and with the Filippov definition of solution [3], one
can arrive at the above given statement.

Proof of Theorem 1:The Lyapunov functionV (x) = xTPx

that we are using in the proof is positive definite, differentiable, and
radially unbounded. System (7) with the controller (12) has solutions
for which

_x 2 C[Ax+Bu
�(x)]:

We use the notation

_Vi = 2xT ((A+BKi)
T
P + P (A+BKi))x: (16)

The upper derivative of the functionV (x) is

_V �(x) = sup
y2C[Ax+Bu (x)])

@V (x)

@x
y:

Consider now the following function:

!1(jxj) = � sup
y; jyj�jxj

_V �(y):

Since _Vi(0) = 0; 8 i, we have that!1(0) = 0. The function
!1(jxj) is continuous since its discontinuity would imply that some
of the functions _Vi (16) is discontinuous inx, which is not true
since _Vi are quadratic polynomial functions inx. Because of the
strict completeness condition and the choice of the controller (12),
the function!1(jxj) is strictly positive for anyx 6= 0. Indeed, if
we assume that there existŝx 6= 0 such that!1(jx̂j) = 0, we
necessarily have that_Vi(x̂) = 0; 8 i, which contradicts the strict
completeness condition.!1(jxj) is monotonically nondecreasing,
positive and zero only at zero. It is now easy to construct a
strictly increasing and continuous (classK function)!(jxj) such that
!1(jxj) � !(jxj); 8x. From the construction of!(jxj) it follows that
_V �(x) � �!1(jxj) � �!(jxj) and hence the origin of the closed
loop system is asymptotically stable. Q.E.D.

We now extend the results of [11] to nonlinear systems.
Theorem 3: Consider a nonlinear system (1) with the basic con-

trollers

ui = Ki(x); Ki(0) = 0; 8 i = f1; � � � ; Ng (17)

and f(0; Ki(0)) = 0; 8 i. Suppose that the vector functions
f(x; Ki(x)) are at least once differentiable and that

_x =
@f(x; Ki(x))

@x
x=0

x+ gi(x) = Fix + gi(x)

wheregi(x) denotes higher order terms satisfying

lim
jxj!0

jgi(x)j

jxj
= 0; 8 i = f1; 2; � � � ; Ng: (18)

System (1) is locally stabilizable by switching with the basic con-
trollers (17) if there exists a matrixP = P T > 0 and positive
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numbers�i � 0;
i
�i > 0 such that

i

�i(F
T
i P + PFi) = �Q; Q = QT > 0: (19)

Proof: The proof is very similar to the standard linearization
result [5]. Suppose the conditions of theorem are satisfied. We use
the following notation: _Vi = 2xTPf(x; Ki(x)). Using ideas in
the proof of Theorem 1, it is not difficult to see that if8x 2
Br(0); r > 0; 9 i 2 f1; 2; � � � ; Ng ) _Vi < 0, then the nonlinear
system is stabilizable by switching with the basic controllers. A
sufficient condition for this to hold is that there exists a set of
numbersti � 0;

i
ti > 0 such that the following holds:V(x) =

N

i=1 2tix
TPf(x; Ki(x)) < 0; 8 jxj < r. In other words, the

function V(x) is negative definite. The linearizationsFi produce a
set of matrices satisfying condition (19). Consider the matrixP and
the values�i for which the linearizationsFi yield the condition (19).
Consider now the functionV(x)

V(x) =

N

i=1

�i xTPf(x; Ki(x)) + fT (x; K(x))Px

=

N

i=1

�i xT (FT
i P + PFi)x+ 2xTPgi(x) : (20)

Since (18) holds, we have that for any
i > 0, there existsri > 0
such thatjgi(x)j < 
ijxj; 8 i; 8x 2 Br (0). We denoter = min ri.
Due to (19), we have

i
�i(F

T
i P + PFi) = �Q; Q = QT > 0:

We can write (20) as follows:

V(x) = �xTQx+ 2

N

i=1

�i
ikPk jxj
2; 8x 2 Br(0): (21)

Notice thatxTQx � �min(Q)jxj2, where�min(Q) is the minimum
eigenvalue ofQ, which a real positive number. Therefore, we can
write V(x) < �[�min(Q)� 2(

i
�i
i) jjP jj]jxj

2; 8x 2 Br(0). By
choosing
i so that2

i
�i
i < (�min(Q))=kPk, we obtain that

the functionV(x) is negative8x 2 Br(0), which completes the
proof. Q.E.D.

IV. THE MINIMUM PHASE TEST

In order to analyze the MP property it is useful to transform the
system into the normal form (5). Consider a system in the normal
form (5). If want to keep the output identically equal to zero, we
necessarily have that�(0) = 0. The set of controllersu must satisfy

g(0; �; u) = 0: (22)

All of these controllers are OZ controllers. Assume that there areN
real solutions to the above given equation:

U = fu1(�); u2(�); � � � ; uN(�)g (23)

which are defined on a neighborhood of the equilibriumx� =
��1(��; ��). In order to use the results that we have presented so
far to test for MP atx�, we proceed as follows.

Step 1: Find the set (23). Assume that the set of controllersU
(23) is not empty.

Step 2: Consider the following set of systems obtained from (5)
with (23):

_� = F (0; �; ui(�)); i = 1; 2; � � � ; N: (24)

Step 3: Find all linearizations for zero dynamics which are ob-
tained with admissible candidate controllers:

Fi =
@F (0; �; ui(�))

@�
�

: (25)

Step 4: Check whether the conditions of Theorem 3 are satisfied,
that is whether there exist a set of positive numbers�i � 0;

i
�i >

0 and matrixP = P T > 0 such that the collection of matrices

F T
i P + PFi; i = f1; 2; � � � ; Ng

satisfies the condition (19). If so, (5) is MP atx�.
Comment 1: We emphasize that we are not advocating the use of

discontinuous switching controllers in the cases when a continuous
MP controller exists. However, if no continuous controller exists,
there may exist a discontinuous switching controller which can
stabilize the zero dynamics (see for instance [8]). Hence, our results
enlarge the class of systems that can be termed MP. On the other
hand, note that even if a continuous MP controller exists but we
have more than one OZ controller, by switching we may still obtain
faster convergence.

Comment 2: The above given test is a sufficient condition used to
check local asymptotic stability of the origin of the zero dynamics.
However, for nonlinear systems for which there exists a nonempty
subset of the set of OZ controllersUL � U such thatui(�) are
linear in � and also _� = F (0; �; u) = F� + gu, the test can be
used to check global asymptotic stability of zero dynamics, if they
are well defined. We can see that a real challenge is to consider
stabilizability of switched nonlinear systems since this could lead
to global results (global asymptotic stability of the zero dynamics).
Also, an interesting question is to show a relationship between MP
in our sense and stabilizability of the system (5).

Comment 3: The procedure for testing the MP property as outlined
in the test verifies the existence of an MP controller based on
the linearization. Suppose that such a controller exists and we
used the quadratic Lyapunov functionV (�) = �TP� to prove the
local stability result based on the linearizations. Denote_Vi(�) =
2�TPF (0; �; ui(�)) [see (24)]. The controller of the formu�(�) =
uI (�)(�) whereI�(�) = arg mini2f1; 2; ���;Ng

_Vi(�) may achieve
a much larger basin of attraction than that obtained by applying the
linear MP controller computed for the linearizations.

Comment 4: Our method can be in principle used for testing MP
of multi-input/multi-output (MIMO) systems. However, the strict
completeness condition is more difficult to check in this case since
we may have that the linearizations of zero dynamics are of the form
Fix + givi; i = 1; 2; � � � ; N , where vi is arbitrary. Even if we
choosevi = Lix, we need to check the strict completeness condition
of the form: does there existLi andP such that(Fi + giLi)

TP +
P (Fi + giLi) is strictly complete, which is much harder to check,
sinceLi introduce new parameters. Hence, testing MP for MIMO
nonaffine systems motivates the investigation of switched controlled
systems, which is an interesting hybrid control problem: given a set
of controlled systems_x = fi(x; vi); i = 1; 2; � � � ; N , what are
the conditions for the existence of controllersvi = vi(x) so that
_x = fi(x; vi(x)); i = 1; 2; � � � ; N can be stabilized by switching?

V. SUMMARY

We considered the local property of MP at a specific equilibrium
for the class of nonaffine nonlinear systems. We investigated both
continuous and discontinuous switched controllers as the class of
admissible control laws. We have also presented a MP test and a
design method for switched controllers which can be used to stabilize
zero dynamics. Our results enlarge the class of nonaffine nonlinear
systems that can be termed MP. Moreover, our results open several
avenues for further research, such as MIMO cases and relations
between MP and stabilizability for nonaffine systems.
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Single Sample Path-Based Sensitivity Analysis
of Markov Processes Using Uniformization

Zikuan Liu and Fengsheng Tu

Abstract—Using the notion of perturbation realization factor, Cao and
Chen [2] provide sensitivity formulas of discrete-time Markov chains and
uniformizable Markov processes. In this paper, the estimators of the
realization factors of a uniformizable Markov process are provided by
its uniformized Markov chain. It is proved that estimators given by the
uniformized Markov chain have smaller variances than those provided
by the original Markov process, which are increasing functions of the
uniformization parameter and thus have minimum.

Index Terms—Markov process, sensitivity analysis, uniformization.

I. INTRODUCTION

Markov processes have been widely used to analyze the perfor-
mance and reliability of a variety of systems. Sensitivity (derivative)
with respect to model parameters plays an important role in model
optimization, in studying the effect of uncertainties in parameter
values, and in reduction of model complexity by aiding further
abstraction of the model if it is relatively insensitive to certain
parameters. Sensitivity analysis of discrete-events dynamic system
(DEDS) based on a single sample path is one of the most active
research fields at present. Several sensitivity analysis techniques
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have been developed, among which infinitesimal perturbation analysis
(IPA), when applicable, is the most efficient one available. However,
it fails for a broad class of parameters, e.g., the transition probabilities
of Markov chain. Various extensions (cf., [2], [6], and references
cited therein) of IPA have been developed. Infinitesimal perturbation
of the transition probability of a Markov chain yields finite change
in the sample path. Due to this discontinuity, the sensitivity analysis
of the Markov process is challenging for a long period. Caoet al.
[1], Dai [4], [5], and Fu and Hu [7] study the single sample path-
based sensitivity analysis of Markov chains. Recently, Cao and Chen
[2] have developed a new technique to evaluate the performance
sensitivity of a denumerable Markov process with respect to linear
perturbation of its infinitesimal generator.

Uniformization is a modification of an idea introduced by Jensen
[12] and used by Heidelberger and Goyal [10], Hordijket al. [11],
Keilson [13], Shanthikumar [14], Sonderman [15], and a lot of other
authors. The basic idea of the uniformization of a continuous time
stochastic processZ = fZ(t); t 2 [0;1)g is that under certain
conditionsZ can be represented as the composition of a discrete
time stochastic processZ 0 = fZ 0

n; n � 0g and a Poisson process
fN(t); t 2 [0;1)g; i.e., Z(t) = Z 0

N(t): Sonderman [15] illustrates
how a semi-Markov process could be uniformized. Shanthikumar [14]
uses uniformization to develop hybrid simulation/analytical models
of renewal process and shows that the estimators for the number of
renewals in a time interval[0; t) obtained from the hybrid models
have lower variances than those from the traditional simulation
models. WhenZ is a uniformizable Markov process, thenZ 0 itself
is a discrete-time Markov chain which is independent of Poisson
processfN(t)g and has the same stationary distribution asZ (see
[11], [14], and [15]). Hordijket al. [11] use the Markov property of
Z 0 in the simulation ofZ: In particular, they simulateZ 0 and use
the estimator for its stationary distribution as the estimators for the
stationary distribution ofZ: In this paper, we simulateZ 0 and use
the estimators for the sensitivity of the performance measure ofZ 0 to
evaluate that ofZ: It is proved that estimators obtained fromZ 0 have
smaller variances than those from the original Markov processZ:

II. M AIN RESULTS

Let fXt; t 2 Tg be an irreducible and aperiodic Markov
chain (T = f0; 1; � � � ; n; � � �g) or irreducible Markov process
(T = [0;1)) with state spaceS = f1; 2; � � �g and transition
probability matrix P = (pij); i; j 2 S or infinitesimal generator
A = (aij); i; j 2 S; where aij � 0; i 6= j; aii< 0; satisfying
supf�aii; i 2 Sg<1; and �1j=1 aij = 0; for all i 2 S: Let
f(x): S ! R be a real function and� = (�1; �2; � � �) be the
stationary distribution offXt; t 2 Tg: Then, under the assumption
E�(jf j) = �1i=1 �ijf(i)j<1; the steady-state performance
measure is defined by

� = E�(f) =

1

i=1

�if(i): (1)

Let � > 0 be a small enough real number andQ = (qij); i; j 2 S

be an infinite matrix withQe = 0; where e = (1; 1; � � �)T and T

denotes the transpose operator of a matrix. Then the sensitivity of
�; with respect toP (T = f0; 1; � � �g) or A(T = [0;1)); in the
direction ofQ is defined by

@�

@QP

or
@�

@QA

= lim
�!0

�0 � �

�
(2)
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