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Abstract

Controllability for a class of simple Wiener–Hammerstein systems is considered. Necessary and su�cient conditions for
dead-beat and complete controllability for these systems are presented. The controllability tests consist of two easy-to-check
tests for the subsystems. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Controllability is one of the fundamental notions
in control theory because of its strong connection to
a number of important properties of control systems,
such as stabilizability. It is a well-known fact that test-
ing controllability of non-linear systems is a compu-
tationally hard problem and few non-linear systems
allow for an easy-to-check global controllability test.
Hence, it is very important to characterize classes of
nonlinear systems which allow for simple controlla-
bility tests.
One such class of models are of Wiener–

Hammerstein type, whose detailed classi�cation is
given in [7, 8]. These models arise in black-box iden-
ti�cation of non-linear systems and they consist of
series and=or parallel connections of linear dynamical
blocks (L) and static polynomial non-linearities (N ).
For example, simple Hammerstein models consist of a
linear block which is fed through a non-linearity, that
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is we have the N -L con�guration. If several simple
Hammerstein systems of the formNi-Li; i=1; 2; : : : ; r,
are connected in parallel, we obtain an URYSON
model, etc. Some examples of practical applications of
Wiener–Hammerstein models can be found in [1, 10].
Wiener–Hammerstein systems that we consider

can be regarded as a subclass of a larger class of
discrete-time polynomial systems. Several controlla-
bility results for classes of polynomial systems can be
found in [4–6,13,14]. Results of this paper are closely
related to [11] where controllability properties for a
class of generalized Hammerstein systems (a parallel
connection of a linear and a simple Hammerstein sys-
tem) was investigated and [12] where we considered
controllability for a class of URYSON models (a
multiple parallel connection of simple Hammerstein
systems). In [11, 12] we showed how the parallel
connections of these special classes of polynomial
systems can be used to simplify the controllability
tests. In this paper we show that a series connec-
tion, which normally arises in Wiener–Hammerstein
systems, can also be used to simplify the controlla-
bility tests. Together with results in [11, 12], results
of this paper settle the controllability question for
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Fig. 1. Simple Wiener–Hammerstein model.

basic parallel and series connections which normally
arise in Wiener–Hammerstein models. Using our
method, however, generalizations to more compli-
cated Wiener–Hammerstein models are possible.
The class of systems that we consider consists of

two linear blocks between which we have a static
nonlinearity of the form N (·)= (·)q; q∈N; q¿1 (see
Fig. 1). The standard structure of simple Wiener–
Hammerstein systems is therefore L-N -L. If we de-
note the �rst linear subsystem as S1 and the series
connection of nonlinearity and the second linear sub-
systems as S2 (see Fig. 1), the main result of this
paper states that the overall system is dead-beat con-
trollable if and only if both S1 and S2 are dead-beat
controllable. Notice that if q=1, that is the purely lin-
ear case, dead-beat controllability of subsystems does
not always imply dead-beat controllability of the se-
ries connection. We identify the phenomenon, which
shows the di�erence between the linear (q=1) and
non-linear (q¿1) cases. For complete controllability
we need an extra requirement which is similar to the
one arising in purely linear series connections [9].
The paper is organized as follows. We �rst present

preliminary results and notation. Main results and two
examples are presented in Section 3. Summary is given
in the last section.

2. Preliminaries

Sets of real, natural and complex numbers are re-
spectively denoted as R;N and C. We consider sim-
ple Wiener–Hammerstein discrete-time systems of the
following form:

S1 : x1(k + 1)=Ax1(k) + bu(k);

S2 : x2(k + 1)=Fx2(k) + g(cx1(k))q;

y(k)= hx2(k); (1)

where xi ∈Rni ; i=1; 2; n1 + n2 = n; u∈R; q∈N;
q¿1 and matrices A∈Rn1×n1 ; F ∈Rn2 × n2 ; b∈Rn1 × 1;
g∈Rn2 × 1; c∈R1× n1 ; h∈R1× n2 .

This class of systems can be represented by the
block diagram given in Fig. 1. The system consists of
a series connection of two linear dynamical blocks

W1(z) =
y1(z)
u1(z)

= c(zI − A)−1b= b1(z)
a1(z)

;

W2(z) =
y2(z)
u2(z)

= h(zI − F)−1g= b2(z)
a2(z)

(2)

interconnected via the static nonlinearity u2(k)=
(y1(k))q. We also have that the input of the overall
system u(k)= u1(k) and output of the overall system
y(k)=y2(k). Roots of polynomials ai(z) and bi(z)
are respectively poles and zeros ofWi(z). For simplic-
ity, we assume without loss of generality that there are
no feed-through terms for transfer functions Wi(z).
In the sequel, we often refer to the following de-

composition of the simple Wiener–Hammerstein sys-
tem. We say that the linear dynamical block W1(z) is
the subsystem S1 and that the series connection of the
static nonlinearity (·)q and the linear block W2(z) is
the system S2 (see Fig. 1).
We denote a sequence of controls {u(0); u(1); : : :}

asU where u(i)∈R and its truncation of lengthN , that
is {u(0); : : : ; u(N−1)}, as UN . The state of the system
(1) at time step N , which is obtained when a sequence
UN is applied to the system and which emanates from
the initial state x(0), is denoted as x(N; x(0); UN ). We
give below the de�nitions that are used in the sequel:

De�nition 1. The system (1) is dead-beat control-
lable if for any initial state x(0)∈Rn there exists
an integer N and a control sequence UN such that
x(N; x(0); UN )= 0.

De�nition 2. If in De�nition 1 there exists a �xed
integer �N ∈N such that ∀x(0)∈Rn it holds that
N (x(0))¡ �N , then we say that there exists a uniform
bound on the dead-beat time.

De�nition 3. The system (1) is completely control-
lable if ∀x(0); x∗ ∈Rn there exists a positive integer
N =N (x(0); x∗) andUN such that x(N; x(0); UN )= x∗.

The characteristic polynomial of a matrix F is de-
noted as PF(�)= det(�I − F). Given a polynomial
P(�)= �t + at−1�t−1 + · · ·+ a1�+ a0;
we introduce a new polynomial Pq(�) which is ob-
tained from P(�) when all the coe�cients ai are taken
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with a power q¿0; q∈N, that is we write
Pq(�)= �t + aqt−1�

t−1 + · · ·+ aq1�+ aq0:
Also, if we are given a polynomialH = �s+hs−1�s−1+
· · ·+ h1�+ h0, we use the notation

(P ·H)q(�) = �t+s + (hs−1 + at−1)q�t+s−1

+ : : :+ (h1a0 + h0a1)q�+ (a0h0)q:

Since q∈N, we can use repeatedly the bino-
mial formula (a + b)q=

∑q
i=0

(q
j

)
aq−jb j, where(q

j

)
= q!=j!(q − j)!, to �nd the coe�cients of

(P ·H)q(�). Hence, the polynomial (P ·H)q(�) is
obtained when we �rst multiply the polynomials
P and H and then take qth powers of all the co-
e�cients of the product polynomial. Notice that
(P ·H)q(�)= (H ·P)q(�).

De�nition 4 (Cox et al. [2]). A greatest common di-
visor of polynomials p1; p2 is a polynomial G such
that: G divides p1 and p2; if p is another polynomial
which divides p1 and p2, then p divides G. When G
has these properties we write G=GCD(p1; p2).

De�nition 5. Given a monic polynomialp1 with roots
{�1; : : : ; �n1} and monic polynomial p2 with roots
{�1; : : : ; �n2}, their resultant is denoted as Res(p1; p2)
and is de�ned as

Res(p1; p2)=
∏
i; j

(�i − �j):

Two polynomials have a common root if and only if
their resultant is equal to zero. Resultant of two poly-
nomials can be obtained as a function of coe�cient of
the polynomials by using the Sylvester matrix [2].
Given a set of vectors Bi ∈Rn× 1; i=1; 2; : : : ; f,

the cone generated by the vectors is denoted as

C(B1; : : : ; Bf)=

{
x : x=

f∑
i=1

Bi�i; �i¿ 0

}
:

Negative cone C− of a cone C =(Bf; : : : ; B1) is given
by C−=C(−Bf; : : : ;−B1). The span of vectors Bi is
denoted as sp{B1; : : : ; Bf}.
The following theorem is needed in the sequel:

Theorem 1 (Evans and Murthy [4]; Ne�si�c [11]). Con-
sider the linear system with positive controls u¿ 0:

x(k + 1)=Ax(k) + bu(k): (3)

The system is completely (dead-beat) controllable if
and only if
1. rank[�I − A : b] = n;∀�∈C
(rank[�I − A : b] = n;∀�∈C− {0}).

2. A has no real positive or zero eigenvalues (A has
no real strictly positive eigenvalues).

Notice that conditions for complete controllability
are stronger than that for dead-beat controllability.

Theorem 2 (Evans and Murthy [4]; Evans [3]). Sup-
pose that a matrix A has no zero or positive
real eigenvalues. Then there exists a polynomial
c(�)=

∑N
i= 0 ci�

i; ci¿0 such that c(A)= 0.

Theorem 3 (Evans and Murthy [4]). Consider a set
of vectors Aib; i=0; : : : ; r. If there exist �i¿0 such
that the following condition is satis�ed:

r∑
i=0

�iAib=0 (4)

then C(Arb; : : : ; Ab; b)= sp{Arb; : : : ; Ab; b}.

Comment 1. A special form of Theorem 3 can be in-
terpreted in a geometric way, which is more suitable
for our purposes. In Theorem 3 suppose that r¿n
and that the �rst n vectors Aib∈Rn; i=0; 1; : : : ; n−1
are linearly independent. Then obviously a positive
linear combination of the r − n remaining vectors
Aib; i= n; : : : ; r must be in the interior of the negative
cone C−=C(−An−1b; : : : ;−b) in order for the con-
dition (4) to hold.
This holds in general and we can state the fol-

lowing: Consider n linearly independent vectors
Akn−1b; : : : ; Ak1b; Ak0b∈Rn with ki+1¿ki. Consider
the cone C =C(Akn−1b; : : : ; Ak1b; Ak0b). The cone C
has a non-empty interior in Rn. If there exist vec-
tors Aknb; : : : ; AkN−1b and positive numbers �i such
that the vector

∑N−1
i= n �iA

kib belongs to the inte-

rior of the negative cone
◦
C−, then we have that

C(AkN−1b; AkN−2b; : : : ; Ak1b; Ak0b)=Rn. This implies
that there exist positive numbers �i such that

N−1∑
i= 0

�iAkib=0; ki+1¿ki; ki ∈N: (5)
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3. Main results

In this section we present and prove the main re-
sult of the paper. The proof is based on similar ideas
to [11, 12] where parallel connections of simple Ham-
merstein systems were considered. For simplicity, we
assume below that (A; b; c) and (F; g; h) are in con-
trollability canonical form.
The main result is summarized below.

Theorem 4. Consider the system (1); with q¿1. The
system is dead-beat controllable if and only if both
subsystems S1 and S2 are dead-beat controllable.

Hence, we have the following controllability test
for systems (1). Consider the conditions:
1. rank[�I − A : b] = n1;∀�∈C− {0}.
2. rank[�I − F : g] = n2;∀�∈C− {0}.
3. F has no real strictly positive eigenvalues.
The system (1) dead-beat controllable if and only if:
1. (for odd q¿1) Conditions 1 and 2 hold,
2. (for even q¿1) Conditions 1–3 hold.
In order to prove the main result we need several

lemmas.

Lemma 1. Suppose that a pair of matrices A∈Rn× n

and b∈Rn× 1 is controllable and A is non-singular.
Then, given any positive integer T ∈N; there exist a
sequence of positive integers of the form

k0 = 0;

ki+1¿ ki + T; i=0; 1; : : : ; n− 1; (6)

such that

sp[Akn−1b :Akn−2b : : : : : Ak1b : b] =Rn: (7)

In other words, there exist integers of the form (6)
such that rank[Akn−1b : Akn−2b : : : : : Ak1b : b] = n.

Proof of Lemma 1.Because of controllability of (A; b)
and non-singularity of A we can write

rank Ak [An−1b : : : : : b] = n; ∀k ∈N: (8)

Pick an integer s1¿T . If As1b and b are linearly inde-
pendent, let k1 = s1. Suppose that the vectors As1b and
b are linearly dependent. Hence, there exists e1 ∈R
such that As1b= e1b. Consider now the vector As1+1b
and b and suppose that they are linearly dependent.
That implies that As1b and As1+1b are also linearly de-
pendent, which contradicts Eq. (8). Hence, we can

let k1 = s1 + 1. The construction of the remaining ki
is carried out in the same manner by considering the
linearly independent vectors Aki−1b; : : : ; b and a new
vector Asib with si¿ ki−1 + T , which proves Lemma
1.

Lemma 2. Suppose that a pair of matrices (A; b)
is controllable, A is non-singular and A has no real
strictly positive eigenvalues. Then, given any positive
integer T ∈N; there exist an integer P and a sequence
of positive integers of the form

m0¿T;

mi+1¿mi + T; i=0; 1; : : : ; P − 1; (9)

such that

C(AmPb; AmP−2b; : : : ; Am1b; Am0b)=Rn: (10)

Proof. The lemma is proved by contradiction.
Since A has no positive real eigenvalues, it satis�es

a polynomial equation with positive coe�cients (see
Theorem 2)

AN + �N−1AN−1 + · · ·+ �1A+ �0I =0; �i¿0

and according to Theorem 3 the vectors Aib; i=
0; 1; : : : ; N , span the whole state space since Aib; i=
0; 1; : : : ; n − 1, are linearly independent. Also,
since A is non-singular, it follows that given any
k ∈N there does not exist a separating hyper-plane
H := {x : hx=0} for the vectors Ak+Nb; : : : ; Akb, such
that Ak+ib∈H+ := {x : hx¿ 0};∀i=0; 1; 2; : : : ; N .
FromLemma 1we construct a sequence k2; : : : ; kn+1,

satisfying Eq. (9) and k2¿3(T + N ), such that
Akib; i=2; : : : ; n+1, are linearly independent. Hence,
C(Akn+1b; : : : ; Ak2b) has a non-empty interior in Rn.
Given any T , we can �nd kn+2 ∈{kn+1 +T; : : : ; kn+1 +
N + T} such that Akn+2b 6∈C(Akn+1b; : : : ; Ak2b; Ak1b),
where k1 ∈{2(T + N ); : : : ; 3(T + N )}. To shorten
notation we write

Ci=C(Akib; : : : ; Ak2b; Ak1b):

If there is i∗ ∈{0; 1; : : : ; N} such that Akn+1+i∗+T b∈
C−
n+1, then we let kn+2 = kn+1 + i∗ + T and have
Cn+2 =Rn If this is not true, choose kn+2 for which
Cn+1⊂Cn+2. By this construction we can see that at
each step we enlarge the cone generated by the vec-
tors Akib; i=1; 2; 3 : : : . We can show by contradiction
that we have

∃H+; H+⊆ lim
i→∞

C(Akib; : : : ; Ak1b) : (11)
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Indeed, suppose that using the construction that we
described above we have that Eq. (11) is not satis-
�ed. This implies that there exists a half-space H+
such that limi→∞ C(Akib; : : : ; Ak1b)⊂H+. This also
implies that limi→∞ C(Akib; : : : ; Ak2b)⊂H+. How-
ever, under the conditions of Theorem, given any H+
there exists k1 ∈{2(T + N ); : : : ; 3(T + N )} such that
Ak1b 6∈H+, a contradiction.
If we have that H+ is a proper subset of

limi→∞ C(Akib; : : : ; Ak1b) then we actually have that
limi→∞ C(Akib; : : : ; Ak1b)=Rn and this would su�ce
for the proof.
Otherwise, we have H+ = limi→∞ C(Akib; : : : ;

Ak1b) and we proceed as follows. Suppose that there
does not exist m0 ∈{T; T + 1; : : : ; T + N} and vec-
tors Amib; mi ∈{k1; k2; : : :}; i=1; 2; : : : ; P such that
C(AmPb; : : : ; Am1b; Am0b)=Rn. This contradicts the
fact that, H+ is generated by Akib; i=1; 2; : : : . Indeed,
since A has no positive real eigenvalues, there exists
m0 ∈{T; T + 1; : : : ; T + N} such that Am0b 6∈H+. If
there are no Amib; mi ∈{k1; k2; : : : ; }; i=1; 2; : : : ; P,
such that Am0b is in the negative cone generated by
Akib, then H+ is not generated by Akib. It follows
that there exist Amib; mi ∈{k1; k2; : : : ; }; i=1; 2; : : : ; P
such that Am0b is in the (non-empty) interior of
−C(AmPb; : : : ; Am1b). Therefore, we can always
choose mi so that C(AmPb; : : : ; Am1b; Am0b)=Rn.

Lemma 3. Consider polynomials

p1(�) = �n1 + bn1−1�
n1−1 + · · ·+ b1�+ b0;

bi ∈R; b0 6=0;
p2(�) = �n2 + an2−1�

n2−1 + · · ·+ a1�+ a0;
ai ∈R; a0 6=0: (12)

Suppose that p1(�) and the polynomial p
q
2(�); q∈N;

16 q have common roots. There exists a polynomial
H (�) with real coe�cients of the degree at most n2
such that the polynomialsp1(�) and (p2 ·H)q(�) have
no common roots if and only if q¿1.

Proof. Necessity: Suppose that q=1. Obviously,
pq2(�)=p2(�). Then, if GCD(p1; p2) 6=1 we have
for any polynomial H that GCD(p1; Hp2)6=1,
which proves necessity.
Su�ciency: Suppose that q¿1. Denote the set of

roots of the polynomial p1(�) as �= {�1; �2; : : : ; �n1}.

Notice that the resultant of p1 and p
q
2 can be written

as

Res(p1; p
q
2)=

n1∏
i= 1

pq2(�i): (13)

The polynomials p1 and p
q
2 have a common root if

and only if the resultant (13) vanishes. The lemma
is proved if we �nd a polynomial H with real coe�-
cients such that ∀�i ∈�, the polynomials (H ·p2)q(�i)
is a nontrivial polynomial in the coe�cients of H . In-
deed, then we can choose coe�cients of H so that
Res(p1; (H ·p2)q) is not equal to zero and the lemma
holds.
Assume that pq2(�j)= 0 for some �j, a root of

p1(�). Notice that if �j =0, then p
q
2(�j) 6=0 because

a0 6=0. Introduce the polynomial H = �n1 + h and
consider

(p2 ·H)q(�)= �2n1 + aqn1−1�2n1−1 + · · ·+ aq1�n1+1
+(a0 + h)q�n1 + hq(a

q
n1−1�

n1−1 + · · ·+ aq0):
(14)

If we consider now the roots �i of p1(�) for which
pq2(�i) 6=0 we obtain
(p2 ·H)q(�i)=pq2(�i)hq + · · ·
which is a non-trivial polynomial in h. If, on the
other hand, we consider a root �j of p1(�) for which
pq2(�j)= 0, we obtain

(p2 ·H)q(�j)=
(q−1∑
i= 1

(
q
j

)
aq−j0 hj

)
�n1j : (15)

Since a0 6=0 and b0 6=0 implies �j 6=0, it follows that
the polynomial (15) is a non-trivial polynomial in h if
only if q¿1. Indeed, the sum on the right-hand side
of Eq. (15) is de�ned only if q − 1¿0. On the other
hand, if q − 1¿0, then the polynomial is non-trivial
in h. Hence, the resultant

Res(p1; (p2 · H)q)=
n1∏
i=1

(p2 · H)q(�i)

is a non-trivial polynomial in h and we can always
chose h∈R so that the resultant does not vanish.

Proof of Theorem 4. Necessity part of the proof is
obvious. Suppose now that conditions of the theorem
are satis�ed.
We �rst notice that there is no loss of generality

if we concentrate on the case when the matrix F is
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non-singular. Indeed, if F has some zero eigenvalues,
supposing that x1(0)= 0 (because system S1 is dead-
beat controllable), we can see that by simply applying
zero input sequence the zero modes of S2 converge
to the origin in �nite time. The same applies to zero
modes of S1.
Hence, we suppose that A and F are non-singular.

For simplicity, suppose also that (A; b; c) and (F; g; h)
are in controllability canonical form. There is no loss
of generality if we introduce a non-singular feedback
transformation u(k)=Kx1(k)+ v(k), where Kx1(k) is
a minimum time dead-beat controller for the subsys-
tem S1 and v(k) is a new control variable. With the
transformation, the system (1) becomes

x1(k + 1) = Jx1(k) + bv(k);

x2(k + 1) = Fx2(k) + g(cx1(k))q; (16)

where

J =



0 1 0 : : : 0
0 0 1 : : : 0

...
...

0 0 0 : : : 1
0 0 0 : : : 0


 ; b=



0
0
...
0
1


 ;

c=
(
b10 b11 b12 : : : b1n1−1

)
and b1i ∈R are coe�cients of the polynomial b1(z) in
(2). Notice that cJ ib= b1n1−1−i ; ∀i=0; 1; : : : ; n1 − 1.
By applying the following control sequence:

v(i1)= 0; 06 i16 k0 − 1; k0¿n1;
v(k0)=w(0);

v(i2)= 0; k0 + 16 i26 k1 − 1; k1¿k0 + n1;
v(k1)=w(1);
...
...

v(kT−1)=w(T − 1);
v(iT )= 0; kT−1 + 16 iT 6P − 1;

P¿kT−1 + n1 + 1; (17)

we obtain that the state of the system at time step P is

x1(P) = 0; (18)

x2(P) =f(x1(0); x2(0))

+bq1(F)[F
m0g :Fm1g : : : : :FmT−2g :FmT−1g]

[wq(0) wq(1) : : : wq(T − 1)]T;

where mi=P − 1 − ki − n1; i=0; 1; : : : ; T and
f(x1(0); x2(0)) is a (non-linear) function of initial
states of the system. Suppose that q is odd. We let
T = n2. If b

q
1(F) and [F

m0g : : : : : Fmn2−1g] are non-
singular matrices, the system is dead-beat control-
lable. From Lemma 1 it follows that we can always
chose mi so that [Fm0g : : : : : Fmn2−1g] is non-singular.
Similarly, if q is even, using Lemma 2, we can

always �nd mi so that C(Fm0g : : : : : FmT−2g :
FmT−1g)=Rn. If bq1(F) is singular, from Lemma 3 it
follows we can �nd a transfer function

W ∗(z)=
zl1 + h

zl1 + dl1−1zl1−1 + · · ·+ d0 ; l16 n1;

such that the numerator �b1(z)= (zl1 + h)b1(z) of the
augmented transfer function �W =W ∗(z)W1(z) satis-
�es

Res( �b
q
1(z); pF(z)) 6=0:

Moreover, it is easy to see that a possible pole -
zero cancelations can easily be avoided in the trans-
fer function �W (z) with appropriate choices of the
coe�cients of W ∗(z). In other words, we can always
choose W ∗(z) so that the augmented subsystem �W (z)
is controllable and at the same time �b

q
1(F) is non-

singular. Now we can apply a similar control sequence
to Eq. (19) to the system (1) which is augmented with
W ∗(z) to complete the proof.

Comment 2. The control sequence (17) may be mod-
i�ed in many ways and we may be able to prove the
controllability result. Indeed, it is easy to see that if the
degree of the polynomial b1(z) is h16 n1, then instead
of having ki+1¿n1+ki, we can have ki+1¿ki+h1 and
we can still use the same arguments. This situation is
illustrated in Example 2. However, the sequence (17)
works always since the degree of b1(z) is at most n1.

If the transfer function W1(z) has no zeros, that is,
b1(z)= const., the matrix b

q
1(F) in Eq. (19) is equal

to an identity matrix for any F . From the proof of
Theorem 4 it follows that there exists a uniform bound
on the dead-beat time if the system (1) is dead-beat
controllable.
A very similar statement can be derived for com-

plete controllability of Wiener–Hammerstein systems,
which is given below without proof. In this case, the
only critical common roots of bq1(z) and a2(z), which
are not allowed, are equal to zero (at the origin). We
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introduce the sets Z1 := {z ∈C : b1(z)= 0}; P2 :=
{z ∈C : a2(z)= 0}.

Theorem 5. The system (1) is completely control-
lable if and only if both subsystems S1 and S2 are
completely controllable and 0 6∈Z1 ∩P2.

We do not prove Theorem 5 since the proof
is carried out along the same lines as that of
Theorem 4. However, we show why b1(0)= a1(0)= 0
leads to loss of complete controllability. Consider
the state equations (16). We assume, without loss of
generality that F has all eigenvalues equal to zero.
Denote the entries of vectors x1(k) and x2(k), respec-
tively, as �j(k) and �i(k). Since b1(0)= 0 we have
that the matrix c=(0 0 : : : b1l b

1
l+1 : : : b

1
n1−1)

T. It is
not di�cult to calculate that

�n2 (k) = (b
1
l �l(k) + b

1
l+1�l+1(k)

+ · · ·+ bn1−1�n1−1(k))q; ∀k ∈N:
Hence, the algebraic variety,

V={x : �n2=(b1l �l + b1l+1�l+1 + · · ·+ bn1−1�n1−1)q}
is invariant under control. The variety is non-empty
in Rn and hence no initial state in the variety can be
mapped outside of it by means of controls. The system
is not completely controllable.
Theorems 4 and 5 di�er from the linear series

connection case [9]. Indeed, when q=1 in (1), con-
trollability of the series connection is (dead-beat)
controllable if and only if b1(�) and a2(�) have no
common (non-zero) roots. Lemma 3 can be used to
see how the non-linear polynomial interconnection
breaks this relationship. In a certain sense, we can
say that by non-linearizing the interconnection we
can recover certain controllability properties, which
is exactly the same interpretation that we obtained for
the parallel interconnections in [11, 12].
We illustrate our approach by two examples.

Example 1. To illustrate the claims of Theorems 4 and
5 consider the following simple Wiener–Hammerstein
system:

x1(k + 1) = x1(k) + u(k);

x2(k + 1) = (x1(k) + u(k))q; (19)

with q an odd integer. In this case, the subsystem S1 is
given by its transfer functionW1(z)= z=(z+1) and the

subsystem S2 consists of the static non-linearity (·)q
and the linear block W2(z)= 1=z. Notice that there is
a feed-through term for W1, but our results still apply.
Both subsystems are completely and therefore dead-
beat controllable.
Notice that W1 has a zero and W2 has a pole at the

origin. According to Theorems 4 and 5, the overall sys-
tem is dead-beat controllable but it is not completely
controllable. Indeed, by applying u(0)= − x1(0), we
can see that x1(1)= 0; x2(0)= 0, and the system is
one-step dead-beat controllable.
On the other hand, it is easily checked that the va-

riety V = {x : x2 − xq1 = 0} is control invariant, that is
if an initial state is in the variety x0 ∈V , then we have
that ∀N;∀UN ; x(N; x0; UN )∈V and the system is not
completely controllable. Notice that the control invari-
ant variety V has similar meaning for the uncontrol-
lable system (19) as control invariant linear subspaces
of linear uncontrollable systems [9].
We illustrate in the next example our method and

in particular the use of Lemma 3 in constructing a
control sequence which is used in the proof of the
main result.

Example 2. Consider the system (1) with q=3, for
which

A=
(
0 1
−1 −1

)
; b= g=

(
0
1

)
;

F =
(
0 1
−1 2

)
; c=

(−1 1 ) :
It is easily veri�ed that the above matrices with
(1) are a state space realization of the Wiener-
Hammerstein system with the transfer functions
W1(z)= (z−1)=(z2+z+1); W2(z)= (1)=(z2−2z+1).
Both subsystems are dead-beat controllable, accord-

ing to Theorem 4, since q=3 is odd and (F; g) and
(A; b) are controllable pairs.
Suppose that we apply a non-singular input trans-

formation of the form u(k)=
(
1 1

)
x1(k)+v(k). One

sequence that can be used to prove dead-beat control-
lability is

v(0)= 0; v(1)=w(0); v(2)= 0;

v(3)=w(1); v(4)= v(5)= 0:

The state of the system at time step 6 is

x1(6) = J 6x1(0) +
5∑
i=0

J 5−ibv(i)= 0;
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x2(6) = F6x2(0) + F5g(cx1(0))3 + F4g(cJx1(0))3

+ (F − I2)︸ ︷︷ ︸
b31(F)

[F2g : g][w3(0) w3(1)]T:

(20)

Since the matrix b31(F)=F − I2 is singular, we can
not use w(0); w(1) to prove dead-beat controllabil-
ity. Notice, however, that in the �rst subsystem the
state x(6)= 0 irrespective of the applied controls
w(0); w(1).
Let us use Lemma 3 so that we augment the �rst

subsystem and then prove controllability for the aug-
mented system. Introduce polynomial H (z)= z + h
and consider the polynomial

(b1 ·H)3(z) = z2 + (h− 1)3z + h3
= z(z − 1) + (−3h2 + 3h)z + h3(z − 1):

Since both eigenvalues of F are equal to 1, we have
that

Res(pF(z); (b1 · H)3(z))= (3h2 − 3h)2 6≡ 0:

Hence, if we chose for instance h=2, we have that
Res(pF(z); (b1 · H)3(z))= 36 6=0. We augment the
�rst subsystem with a linear block so that we can use
our method for the augmented system. For example the
transfer functionW ∗(z)= (z+2)=(z+1) is of desired
form since there are no pole-zero cancelations in the
transfer function �W (z)=W ∗(z)W1(z). Let us denote
the numerator of the transfer function �W (z) as �b1(z).
F and g matrices are the same for the second sub-

system after the augmentation. However, for the �rst
subsystem we have

�A=


 0 1 0
0 0 1
1 −2 −2


 ; �b=


 00
1


 ; �c=

(−2 1 1 )

and �J and �x1 are, respectively, the Jordan matrix of
the same dimension as the augmented system and the
state of the augmented �rst subsystem.We again intro-
duce the input transformation u(k)= (−1 2 2)T �x1(k)+
v(k) and apply, for example, the following control se-
quence:

v(0)= v(1)= v(2)= 0; v(3)=w(0); v(4)= v(5)= 0;

v(6)=w(1); v(7)= v(8)= v(9)= v(10)= 0:

The state of the system at time step 12 with the given
control sequence is

�x1(11) = 0;

x2(11) = F11x2(0) + F10g( �c �x1(0))3

+F9g( �c �J �b �x1(0))3 + F8g( �c �J
2 �b �x1(0))3

+ (F2 + F − 8I2)︸ ︷︷ ︸
�b31(F)-non-singular

[F4g :Fg]︸ ︷︷ ︸
non-singular

[w3(0)w3(1)]T

(21)

Since both matrices �b
3
1(F) and [F

4g : Fg] are non-
singular, the state of the second subsystem can be
arbitrarily assigned while keeping the state of the aug-
mented subsystem at zero. Hence, the system is dead-
beat controllable.

4. Conclusion

We presented necessary and su�cient conditions
for dead-beat and complete controllability of simple
Wiener–Hammerstein systems. Together with control-
lability results in [11, 12], the results of this paper
provide controllability results for basic system struc-
tures (blocks) arising in identi�cation of block ori-
ented models. We believe that similar statements can
be obtained for more general polynomial intercon-
nected systems.
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