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Abstract 

Necessary and sufficient conditions for dead-beat and complete controllability for a class of generalised Hammerstein 
systems are presented. Since the system's structure is very close to linear, only linear algebra is used for the controllability 
test. The test is very simple and easy to use. A closed-loop minimum-time dead-beat controller can be designed for a subclass 
of generalised Hammerstein systems using the Grfbner basis method. 
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1. Introduction 

Generalised Hammerstein systems may arise from 
identification techniques of  the so-called block ori- 
ented models [6, 7]. They represent a subclass of  the 
class of  input-output polynomial systems, very often 
referred to as NARMAX (nonlinear ARMAX) [6, 7]. 
Generalised Hammerstein systems can be regarded as 
a parallel connection of a simple Hammerstein system 
whose input nonlinearity is quadratic and a linear sys- 
tem, see Fig. 1. The output connection may be more 
complicated than the one presented in the figure but 
this is not crucial for our developments. 

Although the structure of  this class of models is 
very simple, it turns out to be adequate to model the 
dynamics of  some practically important plants. For 
example, in [8] the model of  a cement mill is identi- 
fied as a generalised Hiammerstein system. In the same 
paper, the author claims that his method can be used to 
identify models for some other milling processes. An- 
other application of generalised Hammerstein models 
(multi-input) can be fbund in [1] where the model for 
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Fig. 1. Block diagram of a generalised Hammerstein system. 

the cooling water circulation of a thermal power plant 
was identified in this form. 

Roughly speaking, the property of  dead-beat con- 
trollability shows our ability to achieve a desired 
operating regime of a system in finite time by means 
of actuators. Hence, dead-beat controllability is one 
of the most important properties of  a controlled sys- 
tem, since it uncovers some fundamental limitations 
to the systems' performance. Therefore, dead-beat 
controllability tests are important tools in the analysis 
of control systems. The controller that transfers any 
initial state to the origin in minimum time is called 
a minimum-time dead-beat controller. It represents 
very often a simple and easy-to-use design option for 
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a control engineer. The main disadvantage of dead- 
beat controllers is that they are not robust and may 
not perform well if the plant model is not correct. 

Dead-beat control problems for linear systems have 
been studied thoroughly in the last 40 years [ 11 ] and 
a plethora of  results have been reported. However, 
nonlinear dead-beat control has not received as much 
attention. There are several results in the literature 
that can be used to tackle the dead-beat problem for 
classes of  NARMAX models. An interesting con- 
trollability test for discrete-time linear systems with 
positive controls was found in [5]. This result can 
be used to test controllability properties of  simple 
Hammerstein systems [10], which are a subclass of  
NARMAX models. These systems are characterised 
by a series of  a static nonlinearity and a linear dynamic 
block. Dead-beat controllers for simple Hammerstein 
systems were investigated in [10, 12]. 

In this paper, we present necessary and sufficient 
conditions for dead-beat controllability of generalised 
Hammerstein systems. We exploit the result on con- 
trollability of  linear systems with positive controls [5] 
in the proof of  our main result. The obtained dead- 
beat controllability test is very easy to use. Moreover, 
a complete controllability test easily follows from our 
method. We then present a closed-loop minimum- 
time dead-beat controller for a subclass of  generalised 
Hammerstein systems which can be designed using 
the Grrbner basis method (Maple, Mathematica, etc.). 

The paper is organised as follows. In Section 2 we 
present definitions, the class of  systems that we con- 
sider and some results that are needed in the sequel. 
The main result is stated and proved in Section 3. 
Section 4 contains a design procedure for a closed- 
loop minimum-time dead-beat controller of a class 
of  generalised Hammerstein systems. The ideas and 
results are illustrated by some examples given in 
Section 5. 

(Xl(k) x 
y (k )  = (c T c~) \x2(k)  J 

+do + dlu(k ) + d2u2(k ), (1) 

where x(k)  = (Xl (k)  x 2 ( k ) )  T E ~n is a state of the 
system at time k and u(k) E ~ is the control at time k. 
We also have F1 E ~ [~nl ×nl, F2 E ~n2 ×n2 ~1 E ~ nl X 1, #2 E 
~n2×1, x l (k)E A n' and x2(k) E ~n2. 

We denote a control sequence as q/t = {u(0), u(1 ), 
. . . .  u(t - 1)}, u(k) E ItL The state that is reached 
from x(0) at time t by applying the control sequence 
q/t is denoted as x(t,x(O), qlt). We need the following 
definitions: 

Definition 1. The system (1) is dead-beat control- 
lable if  Vx(0) E A n there exist finite t = t(x(O)) and 
a control sequence q/t such that x(t,x(O),qlt) = O. 

Definition 2. The system (1) is completely control- 
lable if Vx(0), x* E A n there exist an integer H = 
H(x(O),x*) and a finite control sequence q//4 = 
{u(0),u(1) . . . . .  u ( H -  1)} such that the system 
is transferred from the state x(0) to the state 
x* under the action of the sequence q/H, that is 
x(H,x(O ), qlt4 ) = x*. 

The following theorems play a crucial role for 
dead-beat controllability of generalised Hammerstein 
systems. 

Theorem 1 (Evans and Murthy [5]). The system 

x(k + 1) = Ax(k) + bu(k) (2) 

with u E [0, + ~ [  is completely controllable on ff~" i f  
and only i f  

I. rank[b Ab .. .  An-lb] = n, 
2. the matrix A has no real positive or zero eigen- 

values. 

2. Preliminaries 

We consider generalised Hammerstein systems of 
the form [6, 7]: 

Xl(k+ 1) 0 
x2(k..[_ 1) )  = ( O  1 F2) (xl(k)~kx2(k)) 

"}- (%1) u(k)-]- (gO2) u2(k), 

By slightly modifying Theorem 1, we obtain con- 
ditions for dead-beat controllability [10]. 

Theorem 2. The system (2) with u E [0, +c~[ / s  dead- 
beat controllable on •n i f  and only i f  

1. rank[21 - A  : b] = n, V2 ~ O, 2 E C, 
2. the matrix A has no real positive eigenvalues. 

Notice that the conditions of Theorem 1 are 
stronger than the conditions of  Theorem 2. Indeed, 
in Theorem 2 the matrix A is allowed to have zero 
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eigenvalues (condition 2) and moreover zero modes 
do not have to be controllable (condition 1 ). 

The following theorem is a consequence of 
Theorem 1. Its proof' is contained in the proof of  
Theorem 1 in [5]. 

second and third conditions of  Theorem 4 represent 
necessary and sufficient conditions for dead-beat con- 
trollability of the subsystem (4). It is obvious that 
dead-beat controllability does not require zero modes 
to be controllable. 

Theorem 3. I f  the second condition o f  Theorem 1 
is satisfied, there exists a polynomial C(~) = 
~N=oci~i=O, CN= I with Ci>~O, Vi = 0 , 1 , . . . , N  - 1 
such that 

C ( A )  = O. 

Linear systems (2) with positive controls have 
an interesting proper:y: / f  the system (2) is com- 
pletely controllable, there exists a uniform bound 
on the length o f  the control sequence in Defini- 
tion 2. That is, there exists a number H* such that 
H(x(O),x*)<~H*, Vx(0), x* C ~". The same holds 
for dead-beat controllability of  (2). We will see that 
the class of generalised Hammerstein systems (1) has 
the same property. 

3. Main result 

In this section we present necessary and sufficient 
conditions for dead-beat and complete controllability 
of  generalised Hammerstein systems. It is shown that 
the system (1) is dead-beat (completely) controllable 
if and only if its subsystems 

xl(k + 1) = Flxl(k) -t- glu(k) (3) 

and 

x2 (k  -'}- 1 ) = F2x2(k ) -~- g 2 u 2 ( k )  (4) 

are dead-beat (completely) controllable. 
The proof of  the controllability result is based on 

the construction of a periodic open-loop controller. 
The obtained open-loop controller is theoretically 
important but it has all negative aspects of  open-loop 
control schemes. Hence, a closed-loop controller is de- 
signed in the next section for a subclass of  generalised 
Hammerstein systems. 

Theorem 4. The system (1) is dead-beat controllable 
i f  and only i f  the following conditions are satisfied: 

1. rank[ I2 -F l  :91] = n b  V 2 ¢ 0 ,  2EC,  
2. rank[I2 - F2 : 02] = n2, V2 ¢ 0, )~ E C, 
3. F2 has no positive real eigenvalues. 

Comment 1. The first condition of Theorem 4 means 
that the subsystem (3) is dead-beat controllable. The 

Comment 2. Notice that if  there are some zero eigen- 
values of  FL or F2, we can find a nonsingular transfor- 
mation T such that 

( ) P , = r - ' F ; r =  Dh 0 , 
0 D~2 

9 i = T - l g i ,  i =  1,2 

and D~2 is a nilpotent matrix. Assume that the degree 
of nilpotency of D~2 is di. Consider the state at step 
k +  l>~di: 

k--' -k--l--1 
x i (k+l )=~.kx i (O)+~-~Fz:  Oiu(l), i = 1,2. 

/=0 

I f  we apply u(l) ---- O, l = k - d i ,  k - d i +  1 . . . . .  k, we 
have that xi(k q- 1 ) = (x T 0) T, i = 1,2 irrespective 
of  the control sequence u(l), l = O, 1 . . . . .  k - di - 1. 
Thus, there is no loss of  generality if we concentrate 
just on situations when 

r a n k [ F / - 1 2 : g i ] = n i ,  V2EC, i =  1,2. 

In other words, we assume that 
1. rank[g1 : Flga : " -  : Fln'-lgl] = nl. 

2. rank[gz :F292 : . . -  : F2~2-192] = n2.  

3. F2 has no zero or positive real eigenvalues. 

Proof  of Theorem 4. Necessity: Suppose that at least 
one of the conditions of  Theorem 4 is violated. This 
implies that at least one of the subsystems (3) or (4) is 
not dead-beat controllable. Without loss of  generality 
suppose that the subsystem (3) is not dead-beat con- 
trollable. From the definition of dead-beat controlla- 
bility it follows that there exists an initial state x~' (0) E 
Sn, for the subsystem (3) that cannot be driven to the 
origin in finite time. This implies that any initial states 
of the overall system (1) which is given by (x*(0)) T = 
((x~'(0)) T zT)T,z E R n2 cannot be driven to the origin 
in finite time. Consequently, the overall system (1) is 
not dead-beat controllable by definition. 

Sufficiency: In order to prove sufficiency we will 
consider special sequences of  controls which can 
transfer any initial state of (1) to the origin if the 
conditions of  theorem are satisfied. 

Since the last two of the conditions in Comment 2 
guarantee that the subsystems (4) are completely 
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controllable, it is possible to find a sequence o f  
controls °k'e = {u(0), u(1 ) . . . . .  u(P - 1 )} which yields 
x2(P) = 0 and Xl(P) E ~n,. As a result, we assume 
without loss o f  generality that x(0) = (x~(0) 0) T. 

Since F2 has no positive or zero eigenvalues (see 
Comment 2), according to Theorem 3 the matrix 
F2 satisfies a polynomial equation with real positive 
coefficients: 

i=N 
C(F:) = ~ ciF2' = O, 

i=0 

ci >t O, Vi = O, 1 . . . . .  N. (5) 

Consider now the following sequence o f  controls: 

u(0) = + v ~ v ( 0 ) ,  

u(1) = ± cv,'b--ff_-~_lv(0), 

u(2) = ± cX/UNN_5_2V(0), 

u(N)  = ±V'~ov(O), 

u(N + 1) = ±v'~NV(1), 

(6) 

u((N + 1)nl - 1) = ±x/~ov(n! - 1). 

It is obvious that because o f  (5) the state of  the subsys- 
tem (4) x2(k) is zeroed every N + 1 steps irrespective 
of  the values v ( k )E  ~, k = 0, 1 . . . . .  nl - 1. That is, 
Vv(k)E ~ we have that x2(N + 1) = xz(2(N + 1)) = 
. . . .  x 2 ( n l ( N +  1)) = 0. 

Hence, we now consider if it is possible to zero 
the state o f  the subsystem (3) x l (n l (N  + 1)) by using 
v(k), k = 0, 1 . . . . .  nl - 1 if  we start from any initial 
state xl (0)E R n' . It is important to emphasize that the 
sign o f  control u(k) and the values v(k) in (7) can be 
arbitrarily assigned and it is this additional degree o f  
freedom that we are exploiting in the proof. 

We have: 

(N+l)nl--1 
XI((N + 1 ) n l )  = ~ Fl(N+l)n l - l - io lu( i  ) 

i=0 

-bFl(N+l)nlXl(O). (7)  

The control sequence (7) is now substituted in (7) and 
we want to specify the existence o f  appropriate signs 
and values v(k), k = 0, 1 . . . . .  nl - 1 such that: 

(N+l)nl--1 

i=0 
Fl(N+l )n ' - l - ig lu ( i )=- -FI (N+I)n 'XI (O) .  (8) 

We introduce the following vector functions: 

i=N 
Lo ~ N-i  = F1 g~80,i 

i=0 
i=N 

L1 = El N+I Y~ N- i  F 1 gl61,i 
i=0 

i=N 
Ln,-1 = F1 (n ' - l ) (N+l)-I  ~ F1N-igl6n,-1,i  

i=0 

where 6k, i = ± ~ ,  Vk = 0, 1 . . . . .  nl - 1, 
0, 1 . . . . .  N. We can rewrite Eq. (8) as follows: 

--F1(N+0n~xl(0) 

(9) 

i = 

v(O) 

= [Lo " L1 ' " "  : Lnl-1 ] v ( l )  (10)  

v(nl - 1) 

I f  there exists a sequence o f  controls o f  the form (7) 
such that the matrix [L0 : L1 : --.  : Ln, - l ]  is nonsin- 
gular then the system (1) is dead-beat controllable. 

Because o f  non-singularity o f  F2 there exists at least 
one 6k, i > 0. Non-singularity o f  matrices F1 and F2 
and controllability o f  the pair (Fl ,gl)  causes the 
vectors Lk to have entries which are linear functions o f  
6k, i, i = 0, 1 . . . . .  N. As a result, the determinant o f  
[L0 : L1 : . . -  : Lnl-1] is a multi-linear function of6k, i, 
which we denote as p(6k, i). 

For any scalar valued affine function l (y )  = ay  + b, 
a, b E R, a ¢ 0 in a scalar variable y, we have that 
if l ( y )  = 0 then l ( - y )  7 ~ O. This observation is ex- 
ploited to select 6~,i such that p(6k, i) 7 ~ O. 

Let us consider a multi-linear function with three 
6k, i ~ O, which we relabel as 61,62, 63. It is easy to 
check that any such function can be written in the 
following form: 

((K161 + L1 )82 + (1(261 + L2))63 

+(K361 + L3)62 +K46x-J- L4, (11) 

where Ki,Li E ~. 
If  K~ ¢ 0, we can render K161 + L1 ¢ 0 by an 

appropriate choice o f  8l. Moreover, with this choice 
o f  81 we can render (Klfil + L1 )82 + (K261 + Lz ) non- 
zero by choosing 62 and finally the whole expression 
can be made nonzero by a choice of  63. I f  Kl = 0 but 
if L1 ¢ 0 we can do the same, etc. By induction, we 
show that there is no combination of6i = ± v ' ~  which 
renders (11) nonzero only if  Ki, Li = O, i = 1,2, 3, 4 
or F2 is singular (that is, 6i = 0, i = 1,2, 3). Since 
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we assumed that 6i~:0, it follows that either F1 
is singular or the pair (Fl,gl) is not controllable 
(e.g. gl = 0). Contradiction completes the proof. 
The argument can be carried out for a multi-linear 
function in any number of  variables 6i, k and hence 
conditions of Theorem 4 are sufficient for dead-beat 
controllability. [] 

We emphasize that the result on complete control- 
lability follows directly from the above given proof. 
Indeed, necessary and sufficient conditions for com- 
plete controllability of generalised Hammerstein sys- 
tems (1) are easily checked to be the conditions 1-3,  
given in Comment 2. 

It is important to notice that although we have used 
a control sequence of non-minimal length in the proof, 
we did establish that there is a uniform bound on 
the number of  steps necessary to perform dead-beat 
control. 

4. A minimum-time dead-beat controller 

y2 + z, 6z - 3z 3 - -  2 z  4 - -  z 9 ÷ 4yz, 4Z -- 8Z 3 + 3Z 5 + Z 11 } .  

Notice that the last polynomial in the Grrbner basis 
depends only on the variable z and second and third 
polynomials on variables y and z. Hence, we can find 
the solution of the equation 4z - 8z 3 ÷ 3z 5 + z  11 = 0. 
If  we substitute the obtained solutions into the sec- 
ond and third equations we obtain a set of  polyno- 
mial equations in y only which can again be solved, 
etc. Notice that the triangular structure of the Grrbner 
basis allows us to obtain solutions to the original 
set of polynomial equations in a much easier way. 
The relations between the solutions of  the original set 
of  polynomial equations and the solutions obtained 
from its Grrbner basis are summarised in the so-called 
extension and elimination theorems [4]. Due to space 
limitations we do not present any more details on the 
theory of Grrbner bases and refer to the first four 
chapters of [4] for the material that we need. 

We assume that we have the information about the 
full state vector. This is not a restriction since if the 
pair ((qv c2T), diag{F1, F2 }) is observable, an observer 
can be constructed as follows: 

In this section we present a method to design 
a closed-loop minimura-time dead-beat controller for 
generalised Hammerstein systems, in the case when 
rankF2 = 1. Actually we concentrate only on the situ- 
ation when F2 = f2 E [[~. The method is based on the 
Grrbner basis method [4]. 

Roughly speaking, a Grrbner basis of  a set of 
polynomials is a set of "simpler" polynomials. There 
exists an algorithm fox the computation of a Grrbner 
basis which stops in finite time. For example, there are 
symbolic computation packages in Maple and Mathe- 
matica which compute Grrbner bases. We choose 
simplification rules (a monomial ordering) and the 
algorithm produces a Grrbner basis with respect to the 
specified rules. The Grrbner basis method generalises 
the Gauss' elimination algorithm for systems of linear 
algebraic equations to general polynomial equations. 

The applications of  Grrbner bases include the elimi- 
nation problems, solving sets of polynomial equations, 
etc. [4]. For example, consider a set of  polynomial 
equations: 

x ÷ y - - z  3 = 0 ,  x 2 + y - - z = O ,  

--x + y2 + z  = O. 

The Grrbner basis of  the polynomials x + y - z  3, x 2 + 
y - z, - x  ÷ y2 ÷ z with the lexicographic ordering x > 
y > z (the simplification rules) is {x + y - z  3, y - z  3 + 

z(k+l) 

+ L( ( e~ cf )z( k ) + do + dl u( k ) + dzu2 ( k ) - y( k ) ), 

where L is a column vector. The observer yields the 
error dynamics of the form: 

e ( k + l ) =  [ (  F~ 0 2 ) + L ( c ~  c~)le(k),  

where e(k) = z ( k ) -  x(k). Because of the observ- 
ability assumption, we can arbitrarily assign the error 
dynamics by appropriately choosing the vector L. Con- 
sequently, a dead-beat observer is designed by placing 
all the eigenvalues of  the error dynamics matrix at the 
origin. 

The main idea behind dead-beat control is that the 
sets So, $1 . . . .  from which the origin can be reached in 
one, two, etc. time steps should be computed. It is not 
difficult to find an appropriate control law which maps 
all states in Sk+l to Sk, Vk, once the sets have been 
found. The computation of these sets can in principle 
be performed using the QEPCAD method (see [9]). It 
is shown below that the Grrbner basis method is also 
a natural tool to use in this setting if rankF2 = 1 (see 
Example 2). 
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Let us rewrite the state equation in (1) as follows: 

x(k  + 1) -- Fx(k  ) + Glu(k  ) + Gzu2(k ). 

We also use shorter notation x( k + 1 ) = f (x( k ), u( k ) ), 
where f ( x , u )  = Fx + Glu + G2u 2. 

Consider the system (1). The state at time step N ÷  1 
can be represented as: 

N--1 
x(N + 1) : F N x ( O )  + ~ F N - l - i G l u ( i )  

i=o 

N-1 
÷ ~ FN- l - iGzu2( i ) .  (12) 

i=0 

Let us compute the set o f  states that can be mapped 
to the origin in one step. 

Consider N = 1 in the expression (12). I f  all rows 
of  

Fx(O) + GlU(0)  ÷ GlU2(0) (13) 

can be rendered zero by an appropriate choice of  
control u(0) for a state x(0), the state is in the set 
So. We denote the entries of  x(0) as xl,x2 . . . . .  xn. In 
order to compute the set So we find the Grrbner  ba- 
sis of  the rows of  matrix (13) with the lex ordering 
u(0) > xl > x2 > . - .  > x~ [4]. The set o f  polyno- 
mials in the Grrbner  basis GB1 = {c~ . . . . .  c~t , } which 
depend only on xi, i = 1,2 . . . . .  n defines the set So. In 
other words, we have 

So = { x :  c l  = 0 . . . . .  = 0 } .  

Of  course, extension theorem [4] should be applied 
in order to check whether the set o f  polynomials c~ 
completely defines the set So. It is interesting that for 
the examples that we solved, extension theorem was 
always satisfied. 

Consider the expression (12) for N = 2 and repeat 
the same procedure. We find the Grrbner  basis o f  the 
rows of  the matrix 

F2x(0)  + FGlu(O) + FG1u2(O) + GlU(1) + G2u2(1) 

with the lex ordering u(0) > u(1) > Xl > x2 > 
• .. > x. [4]. The polynomials in the basis GB2 = 

2 2 {e 1 . . . . .  c~tz} which depend only on X l , X  2 . . . . .  X n de- 
fine the set SI. That is, we have 

: { x :  = 0 . . . . .  : 0 } .  

We should again use extension theorem [4]. 
The procedure is continued until the step N = n, 

where n is the order of  the system. In this step there 

will be no polynomials in the Grrbner  basis which de- 
pend only on xi, i = 1,2 . . . . .  n. One of  the polynomi- 
als depends, however, only on one control u(n - 1). 
Moreover, it turns out that it is a quadratic function in 
u(n - 1 ) and the discriminant o f  this polynomial D(x)  
defines the set Sn- 1 : 

Sn-1 = {x : D(x)~>0}. 

Finally, i f  the system is dead-beat controllable we 
can prove that Sn = •". Indeed, i f  we can prove that 
any initial state x(0) E R ~ can be transferred to Sn-l in 
one step, then the state x(0) can be transferred to the 
origin in n + 1 time steps. Take one composition of  
discriminant D (defining expression for the set Sn-1 ) 
with the map f ( x ,  u) and find which states can be 
mapped to Sn-1 in one step by choosing an appropriate 
control action. The composition is a quadratic function 
in u with the coefficient that multiplies u 2 a positive 
constant. That is 

D ( f ( x , u ) )  = azu 2 + a l ( x )u  + ao(x), a2 > O. 

Therefore, Vx E E~ there exists (perhaps very large) 
u E E which renders D ( f ( x ,  u)) > 0. In other words, 
we can map any state in E~ to S~_ 1 in one step. The 
above given procedure is carried out in Example 2. 
Notice that the condition Sn = R n could be proved 
also by using the expression (12) for N = n + 1. 

From the above given construction it follows that 
for dead-beat controllable generalised Hammerstein 
systems with F2 = (f2) ,  the minimum dead-beat time 
is n + 1 time steps. We emphasize that if  the ma- 
trix F2 is not scalar, equations of  degree higher than 
2 (in control u) occur in the above described proce- 
dure. This introduces an algebraic obstacle which can 
be resolved by using one of  the quantifier elimina- 
tion procedures in the first-order theory of  real closed 
fields [9, 2, 3]. Indeed, a quantifier elimination algo- 
rithm such as QEPCAD [2, 3] should in general be 
used to design closed-loop minimum-time dead-beat 
controllers for generalised Hammerstein systems but 
computational complexity of  the problem prevents us 
from using this method in general [9]. 

From the expressions for sets So, $1 . . . .  it is not dif- 
ficult to synthesize a closed-loop minimum-time dead- 
beat controller. The defining polynomials o f  Sk, k = 
0 ,  1 . . . . .  n - 1 are denoted as vectors 

C k = ( c k + l ( x ) .  ck+l  ( X ) )  T. 
• . Mk+l 

The composition o f  two vector functions is denoted as 

Ck o f = ( c ~ + l ( f ( x , u ) ) . . .  c k+l ICtx  u~a  T Mk+l \J \  , / J I  
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u(k )  = any real solution to 

f = 0 if x ( k ) E S o ,  
C1 o f = 0 if x ( k )  E Sl,  
C 2 o f = 0  i f  x ( k ) E S 2 ,  

C n - l o f = 0  i f  x ( k ) E S n _ l ,  
H ( x )  if  x ( k )  C S~, 

where H ( x )  is a function which yields 

(14) 

D o f ( x ( k ) , H ( x ( k ) ) ) > . O .  

I f  the composition D o  f ( x ,  u)  = a2 u2 +al (x)u +ao(x) ,  
one choice for H ( x )  is 

H ( x )  = - a l ( x )  + ~//a~(x) - 4a2ao(x) + 6, 6 > O. 
2a2 

In other words we have designed a family of closed- 
loop minimum-time dead-beat controllers. The extra 
degrees of  freedom can be used to shape the transient 
response. 

5. Examples 

Example 1. Consider the system (1) for which 

0 1 ) Fz = (-f2), 
F1 = - a 0  - a l  ' 

Notice that (FI, 91 ) and (F2, 92) are controllable pairs. 
We assume that f2 > 0 and that the matrix FI is not 
singular. Hence, all conditions of Theorem 4 are sat- 
isfied. F2 = ( - f 2 )  satisfies the equation 

F z +  f 2 I  : 0 .  

Consider the control sequence: 

u(0)  = v(0),  

u(1) = ±X/~2v(0)'  (15) 

u(2) = v(1), 

u(3) = ±X/~2v(1). 

Notice that we are not considering the most general 
sequence of controls, since we could in general have 
that u(0) = i v (0 ) ,  u(2) = i v ( I ) .  When we apply the 
control sequence to the system we obtain the following 

equation: 

Xl (4) = Fax(o )  + ( F3 ol -4- V /~2 F12 91 )v(0) 

+(F1Ol -4- ~ 2 0 1 ) v ( l ) .  

I f  there exists a sequence of 6i = 4-1 for which the 
matrix: 

[F3gl +61V/-~lF~gl :Fig1 + fi2V/~lgl] (16) 

is non-singular, the system is completely controllable. 
Since p2 + a l p  + a0 is the characteristic polynomial 
of F~, upon applying Cayley theorem we obtain that 
the determinant of  the matrix (16) 

(a 2 - ao - 6 1 t a l ) ( - a l  + 62t) 

-2a0al  + a~ - 61t(a~ - ao) 

which is equal to zero for all possible choices 61 = 
+1, 62 = 4-1 if the following four equations are 
satisfied: 

(a21 - ao - t a l ) ( - a l  + t) - 2a0al 

+a~ - t(a~ - ao) = O, 

(a~ - ao + tal ) ( - a l  + t) - 2aoal 

+a~ + t(a~ - ao) = O, 

(a~ - ao + t a l ) ( - a l  - t)  - 2a0al 

+a~ + t(a21 - ao) = O, 

( a 2 - ao - tal ) ( - a l  - t)  - 2aoal 

+a~ - t(a 2 - a0) = 0, (17) 

where t = X/~ .  Using the Gr6bner basis method [4] 
(Maple software package) for polynomials in (17) 
with the lex ordering al > a0 > t, we obtain the 
Gr6bner basis: 

{al ao, a2 t, aot, al t 2 }. 

In other words, Eqs. (17) are simultaneously satisfied 
if 

a l a o = O ,  al t  2 - - 0 ,  

a ~ t : O ,  a o t = O  
(18) 

and therefore at least one of the matrices FI or F2 is 
singular. This contradicts the assumption that Fi are 
non-singular. It is interesting that in this case we did 
not use the most general sequence of controls and still 
we could prove complete controllability. 
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Example  2. We illustrate the method for the design 
of  a closed-loop dead-beat controller which was pre- 
sented in Section 4. Consider the system: 

x2(k q- 1) = - 1  0 | x 2 ( k )  

x 3 ( k +  1) 0 - 1  \ x 3 ( k )  (3) 
+ - 1  u ( k )  + u2(k). 

0 

(19) 

The conditions of  Theorem 4 are satisfied since 

(31 ) r ank [01 :F101]=rank  _ 4 = 2 ,  

0 2 ¢ 0  and f 2 = - l < 0 .  

We compute first the set o f  states that can be trans- 
ferred to the origin in one step. The entries of  x(0) are 
denoted as Xl,X2 . . . . .  xn. I f  we compute the Grrbner  
basis o f  {Xl - 2x2 + 3u(0),Xl - x z  - u(0), -x3  + u2(0)} 
with the lex ordering u(0) > Xl > x2 > x3 [4], we 
obtain {4u(0) - x2 ,4x1  - 5x2,-8x3 + x2}. Using the 
elimination and extension theorems in [4] we obtain 

SO = {x : 4Xl - 5x2 ---- 0 and - 8x3 + x 2 = 0}. 

Find x(2) as a function of  x i (0) ,u( j ) ,  i = 1,2,3, 
j = 0,1 and let x(2) = 0. The Grrbner  basis o f  
{ - - X  1 + 5u(O) -}- 3u( 1 ), - x  2 + 4u(O) - u( 1 ), x 3 - -  2u 2 (0) 
+ 2u2(1 )} with the lex order u(O) > u( 1 ) > xl > x2 > 
x3 is {17u(O) - X l  - 3x2, Sx2 + 17u(1) - 4xl,289x3 + 
30Xl 2 - 92XlX2 + 32x~} and hence 

$1 = {x : 289x3 + 30x 2 - 92XlX2 + 32x22 = 0}. 

Having found x(3) and letting x(3) = 0, we compute 
the Grrbner  basis of  {-Xl  + 2x2 - 3u(0) + 5u(1) + 
3u(2), -Xl +x2 + u(0) + 4u(1 ) - u(2), -x3  + 2u2(0) - 
2u2(1) + 2u2(2)) with the lex order u(0) > u(1) > 
u(2) > x l  >x2  >x3:  

{ 17u(0) - 17u(2) - x 1 - 3x2, 5X2 + 17u(1) -- 4Xl, 

--289x3 -k- 1156u2(2 ) -  30x 2 

+92XlX2 + 68xlu(2) -- 32X 2 + 204x2u(2)}. 

We see that the discriminant of  the last polynomial in 
the basis must be positive, that is we find: 

$2 = {x : 143344Xl 2 - 397664XlX2 + 189584x 2 

+1336336x3 ~>0}. 

Take now one composition of  the discriminant with 
(19): 

-96873x~ + 378244xlx2 -- 544246XlU - 274204x~ 

+302412x2u + 2092127u 2 -- 668168x3. (20) 

It is obvious that since the coefficient which multiplies 
u 2 is positive, we can render the expression (20) pos- 
itive for any state in ~ 3  and hence $3 -- ~3. We have 
constructively proved that the system is dead-beat con- 
trollable in 4 steps, by computing the sets Sk, k -- 
0, l, 2, 3. The design of  a closed-loop minimum-time 
controller follows easily from the proof. 

6. Summary 

Necessary and sufficient conditions for dead- 
beat and complete controllability of  generalised 
Hammerstein systems are presented. The condi- 
tions are very easy to check as opposed to the 
symbolic computation approaches proposed in [9]. 
A design method for closed-loop minimum-time 
dead-beat controllers for a subclass of  generalised 
Hammerstein systems is described. The design relies 
on the Gr6bner basis method, implemented in e.g. 
Maple. 
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