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Correspondence

Controllability of Structured Polynomial Systems state sufficient, as well as necessary, conditions for state dead-beat
and complete controllability that are computationally less expensive
D. Nesic and I. M. Y. Mareels than the “brute force” approach based on QEPCAD [6]. Existence

of the critical variety is an important structural property for a large
) _ ) ) class of systems and we believe that our approach would play an
Abstract—Two algorithms, based on the Gobner basis method, which  jmnortant role in further simplifications of controllability tests for

facilitate the controllability analysis for a class of polynomial systems are structured polvnomial svstems since it allows us to use tools from
presented. The authors combine these algorithms with some recent results poly Y

on output dead-beat controllability in order to obtain sufficient, as well Computational algebraic geometry rather than QEPCAD.
as necessary, conditions for complete and state dead-beat controllability  In Section Il, we present our notation and briefly explain the

for a surprisingly large class of polynomial systems. Our results are Grabner basis method. Section Ill contains the main results of the
?Oer?nerlcally applicable to the class of polynomial systems in strict feedback paper. In the last section we summarize our results.

Index Terms—Controllability, discrete-time, polynomial systems.
Il. PRELIMINARIES

We use the standard definitions of rings and fields [1]. The sets

I. INTRODUCTION of real, natural, and rational numbers are, respectively, denoted as
Controllability is one of the fundamental concepts in control theoryRR, IN, and Q. IR™ is a set of alln-tuples of elements dlR, where
which can be used to uncover fundamental limitations to the systenw’'s€ IN. The ring of polynomials inn variables over a field: is

control performance. Recently, we considered state and output dedeRoted ag[w,, @2, -- -, xn]. Let fi, fa, ---, fs be polynomials in

beat controllability for polynomial discrete-time systems [5], [6]. INR[#1, 22, ---, x,]. Then we define

particular, we proposed several dead-beat controllability tests for ) o

classes of polynomial systems that can be implemented using thef1> f2: ==+ fs) ={(ar, az, -+, an) € R™: fi(ar, az, -+, an)

symbolic computation packages: quantifier elimination by partial =0forall1<i<s}.

cylindrical algebraic decomposition (QEPCAD) and thedksrer

basis method. We call V(fi, f=, - -, fs) the real algebraic set or real variety
In general, the controllability problem for polynomial systemélefined by the polynomialg:, f, ---. f.. Since the defining poly-

requires the use of tools from semi-algebraic geometry [5], [6], suélemials of a real variety are often clear from the context, we may
as QEPCAD. Semi-algebraic algorithms are, however, computatigignote it simply asV’. If V., W C IR" are real varieties, then

ally very expensive and only modest size problems can be tack@® areV U W and V.N W. A subset! C R[zi, 2, -+, ]
in this way. In order to overcome the computational complexit an ideal if:0 € I;if f,g € I, thenf + ¢ € I; and if
curse, one needs to consider systems exhibiting special structureS I and’ € Rley, -+, x,], thenhf € I. Let fi, fo, -+, f
One possible approach is to consider systems for which tools frdi Polynomials inR[z1, z2, ---, z.]. Then the set(f:, ---, f.)

algebraic geometry, such as theoBner basis method, can be usedlefined as

to decide controllability. The @bner basis method is less suited for s

the controllability problem than QEPCAD (it works over algebraically — (f1, -+, fs) = {Z hifithi, ==+, by € R[xy, -, mn]}
closed fields) but it behavesuch bettein terms of computations for i=1

the problem considered in this paper (based on the authors’ experiegc((‘ea”ed the ideal generated Iy, f. ---, f.. We use the notation
with the current versions of the two algorithms). Hence, it is highl¥,(]~) to denote the variety’(f T f ) \q/\./herefv are the gen-
desirable to investigate situations when thél@rer basis method can -0~ e e on Gien tV\;(; ide'/alanli T, € k[h ey ]

be used to test controllability. One such approach was pursued ﬁ%
output d(_ead-beat controllability in [5] and [6] for the class of “odd all polynomials f - g where f € J, and g € Jo. Notice that
polynomla! systems. _ _ V(IO UV(Js) = V(T - Js).
The main .results of this Paper are two a]gonthnp based on theAII the systems that are considered in the sequel are subclasses of
Grobner basis method which (when combined with results frome following class of polynomial systems:
[5] and [6]) can be used to test state dead-beat and complete
controllability for a large class of polynomial systems, such as strict (k4 1) = fx(k), u(k)), £(0,0)=0 (1)
feedback polynomial systems. The algorithms construct an algebraic
variety in the state space in finite time, which contains all stategherex(k) € IR" and «(k) € IR are, respectively, the state and
due to which we may loose controllability. This variety is calledhe input of the system (1) at timé. The vector f(z, u) =
“critical” and it has lower dimension than the state space. Fofi(x, u)--- fu(z, u))T is such thatfi(z, u) € Q[z,u] =
systems for which the critical variety can be constructed we ca&dzi, =2, ---, ., u]. The assumption that the polynomial
have rational coefficients is needed for computational purposes.
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time stepp 4+ 1 under the action of a control sequeriég is denoted The following propositions follow directly from [5] and [6].
asz(p + 1, z(0), U,). The following sets are introduced: Proposition 1: The maximal invariant set; C V¢ is a variety
So = {2: Ju € IR such thatf(z, u) = 0} Eisr]d it can be computed using a finite algorithm, presented in [5] and
Se ={x: Fu(0),---, u(k—2) € R Proposition 2: A polynomial system of the form (1) with Assump-
such thatf,,—2) o -+ o fuo)(x) = 0}. (2) tion 1 is state dead-beat controllableVif = @.
_ _ _ _ Proposition 3: Supposé’r # 0. A polynomial system of the form
The setS; consists of all states in the state space with the foIIowm@) with Assumption 1 is state dead-beat controllable only & V.

property: the minimum time necessary to transfer ai§) € Sk In summary, if we can identify a critical varietyc which has
to the origin isat mostk + 1 time steps. We now give a list of 5 |ower dimension than the state dimension, it is possible to use
definitions that are used in the sequel. Propositions 1-3 to decide on state dead-beat controllability.

_ Definition 1: System (1) is completely controllable if for any Notice that the main issue in the above approach is the existence

initial state «(0) € IR™ and any terminal state™ there exists f 5 variety with the property that all states outside of it can be

an integerN € IN and a control sequencEx such thatz™ = yansferred to the origin. This implies that we may work with “much

2(N, 2(0), Un). larger” critical variety which contains many “good” states as well. For
Definition 2: System (1) is state dead-beat controllable if for anjstance, suppose that at some siéphe setSx = R" — {x: 2, =

initial statex(0) € IR" there exists a control sequendeandv € N ., — (... 4,y = 0, 20 > 0}. So the critical set is in this

such thate(p + 1, x(0), Uy) = 0, Vp > v. _ case a half line inR™. However, nothing stops us from defining
Given a set of polynomials, the Goner basis algorithm producesy cyitical varietyVe: = {21 @1 = 0,22 = 0, -+, 20— = 0}
a set of “simpler” polynomials (its Gtiner basis) that has the samgynich obviously contains all “critical states” but also some “good”
solutions as the original set [1]. Packages for computingb@er  states. Then we can apply the same methodology to compute the
bases can be found in most symbolic computation packages, sucl@ximal invariant set of a critical variety. In certain situations it
Maple and Mathematica. Gbner bases are not unique. Howeveryay he straightforward and easier to compute such a larger critical

given a monomial ordering, there exists a well-defimeduced variety. We present below such an approach based on tibnér
Grobner basiswhich is unique. One can then compare whethe{ssis method.

two ideals are the same by checking whether the reducétr@r Consider (1). Let us compute the composition
bases of the ideals are the same. We denote the redudgzhésr

basis of a set of polynomialg;, ---, f; for a given ordering as R
Gbasi$fi, ---. fs]. Due to space limitations it is impossible to
present all the theory on Glbner bases that we need and we refer to futn—1y © fagn—zy 0+ 0 fuy(@) = | . Q)
[1] for more details on the subject. F
. MAIN RESULTS where obviouslyF; € Q[x1, -+, xn, u(0), ---, u(n — 1)]. Using

In this section we present a methodology which shows how one CEQ‘? IeX|cogr§1ph|c orderlngén Ei']‘i)) - g(n._ 2) e u(0) -
use the Gobner basis method, together with some assumptions on the ™ "~~~ = compute the ner basis
fé/ssttem s structure in order to obtain a state dead-beat controllability Gbasi§Fi, Fa, -+, Ful = {91, g2, -+ gn ). (5)

Assumption 1: Consider a polynomial system (1). We assume th@fo, we can give sufficient conditions for systems (1) to satisfy
S,—1 = R" — C, and the smallest variety containing the gét Assumption 1.
denoted as/c, has the dimension at most— 1 (dim(V¢) < n —1). Theorem 1: If the following conditions are satisfied:

In other words, the sef,,—, is the whole state space except perhaps . - .
for the states that belong to the “critical variefy;:. Since the variety 1) Triangular Structure Conditionin (5) we have thatV = n» and

V¢ is a lower dimensional subset of the state space, it is defined by anyy gokdg gglll;]oml,albsn Clé)(r::j)ltlan ’ ui(r?ESkS)]érvekof_ tt,e2’1‘c;li(;\;v::1’
ideal J¢:, which is not trivial. In other wordsVs = V' (J¢). Without form: y Ik 9
loss of generality we can assume that the varlélyis generated by '
a single polynomialf&: € Q[z], f& £ 0. mno ,

Definition 3: V&% = V(£) in Assumption 1 is called the critical ~ 9» = > Piw(0)'s  pi’ € Qzr, -+, @]
variety. =0

We emphasize that Assumption 1 may not be satisfied for the set < k. )
S,_1 but for some other seSx, N # n — 1. However, for the Ik = ZD piuln =k,
class of strict feedback systems that we consider Assumption 1 is = &
generically satisfied for the sét,_:. Moreover, our results can be pi € Qlrr, oo, an, u(0), -, u(n —k —1). (6)
applied also if we are not working with the smallest varig&ty but k=1 . n—1, wherems = 2ty + 1. ty € N:

with any other variety«: containingV’, such that difiVe) = n—1.
The main result for this paper is an algorithm for computatiora of
critical variety V¢, which containghe (smallest) critical variety/¢:. T =(p" )
It is not difficult to show that a critical variety may contain invariant "

3) Nontriviality Condition All the ideals:

T o i .. - 7 717k+1 r .« ..
subsets in the following sense. Ji =Gbasifgn, -+, stz P, a1 O QL1 oo 2l
Definition 4: A setV;, C Ve is invariant if (7
Vael, Vu e R, fla, w) € V. ®) k = 2,---, n are nontrivial. All Gbbner bases in (7) are

computed using the lexicographic orderiagn — k — 1) >

The union of all invariant subsets dfc is denoted ad’; and is
R (1) B N R A

called themaximal invariant set.
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then the following holds. In other words, we allow for the possibility that the real vari-
1) Assumption 1 holds. etiesV(G;),i = 1,2, -+, n are not empty. We denote(k) =
2) A critical variety is given by (21(k) 2o(k)-- 2, (k))T. If we taken compositions of this map,
starting fromz(0) € R", we obtain fori = 1, ---, n
Ve =V JE . ;
“ <H ) wi(n) = ei(2(0), w(0), -+, uli — 2))

3) The algorithm used to obtain the variety: (all ideals J7) +di(2(0), u(0), -y uli = 2)u(i—1)  (11)

stops in a finite number of steps.

Remark: From conditions 1) and 2) of the theorem, we see that tp{}éheregb di are rf)oll}/r!omialls obtained E)y fstralighthfWIard Coﬁ]pqt?‘_
Grobner basis of polynomial®; in (4) has a very special triangulartr'lonz . se:‘veli e _ttr1|angu ar structurzd o' polynomiais on the right
structure. Indeed, there are exaatlpolynomials in the Gibner basis 21d SId€ 0 (11) with respect to contraii), i = 0, 1, -, n—1,

and each polynomiaj, has odd highest degree in control variable‘!vhiCh Is required in Condition 1 of Theorem 1. H"ence, for this
u(n — k). class of systemsve do not have to compute the dbrier basis of

Proof of Theorem 1:Notice that we need to prove that if thethe polynomials on the right-hand side of (11) and we can work with

conditions of Theorem 1 are satisfied, there exists a real solutim"r: polynomials the.mselvetsl.sing (11), it 'S easy to show that the
w(0), -+, u(n — 1) to the equation: systems (10) generically satisfy the conditions of Theorem 1.

Comment 1: If Vo = IR"™ (Assumption 1 not satisfied) for a strict
Fu(n=1) © fun=2) © - © fuqo)(x) =0. (8) feedback polynomial system, it often indicates that the system is not
controllable. For instance, this is always the case for linear systems.
Now we prove that it ¢ V(I]"_, JI), there exists a real solution e show below how it is possible to modify the presented methods
u(0), -+, u(n — 1) to the equations in order to use them for complete controllability testing. Consider
g =0, G =0, g =0 ) (2). Let us compu_te the composition (4) and consider the system of
polynomial equations

and moreover, the same values @f0), ---, u(n — 1) solve the

system of (8). t—F =0 tb-F=0 - t,-F =0 (12
Suppose that ¢ V' (J7). Then it is guaranteed that there is a real

value of u(0) which rendersg,, = 0, since the highest degree ofwhereF; € @[z, ---. #,, u(0), - - -, u(n — 1)]. The variables that

u(0) in g, is an odd integer. Suppose now tha¢ V(Ji’ - J3). In  are introduced;, i = 1, ---, n can be viewed as the state of the

this case, we can guarantee that there exists real 1¢0ts «(1) t0  system at time step + %k and the variables:;, i = 1,2, ---, n
the equationgy, = 0, g.—1 = 0. Indeed, sincer ¢ V(J{') there as states at time step. If for any real values oft;, «; there is
is a real root to the equatiog, = 0. Sincex ¢ V(J5), for the a real solutionu(k), - - -, u(k + n — 1) of (12), (1) is completely
values ofu(0) which zerog,, the highest degree of(1) in g.—1  controllable. Using the lexicographic orderingn — 1) > wu(n —
is odd sincep;,' | when evaluated at and«(0) is not zero. By 2) » ... = «(0) and regarding:;. t; as parameters, compute the
continuing the same argument we verify the existence of a soluti@sbner basis:
uw(0), ---, u(n — 1) to the systems of (9).
Notice, that for allz ¢ V([]'_, Ji) the real solution to the set ) o N
of (9) also solves (8) and this proves the first claim. Gbasigy — Fi, to = Foy oot = Fu] = {g1, §o, -+, g}
The second claim is obvious from the above given argument. (13)
Indeed, the geometric interpretation of the idgdl is that for all
states inV'(.J ) there are real controls(0), u(1), -+, u(n—k—1)
which solve equationg, =0, -+, g,—r—1 = 0 but not necessarily
the equatioryy
Ve

We can state the following result.
Theorem 2: If the following conditions are satisfied:

= 0. The union of all such varieties yields the variety 1) Triangular Structure Conditionin (13) we have thatV =

The third claim of the theorem follows from the fact that @@mer Z)]agigf 16 2@?“; Sy b st w(0), s u(n =
basis of a set of polynomials can be computed using an algorithm_, /2 "~ — "7 " .
which stops in finite time. In our algorithm for the computation of a 2) Odd Polynomials Conditiang, in (5) are of the following

critical variety, we need to compute+ 1 Grobner bases. Q.E.D. form:
It may seem that Assumption 1 is strong. Surprisingly, however, .

several important classes of polynomial systems fall into this cat- . _ Z Pru(0) P EQ[rr, ey wny iy ey ]

egory. It is generically satisfied for the large class of polynomial — ’ - '

systems in strict feedback form (a discrete-time version of systems my

considered in [4]) = un =k P EQLer, e wa i, b,
=0

.1’1(16-1—1) =F1(.l1(]i))—|—G1(J1(]%))¢z(k) w(0), -+, uln—k— 1)]_’ (14)

;l'z(k + 1) = Fz(l‘l(lx’), Lz(k)) + GQ(Il(k), l'g(]x)).r3(]i)
k=1,---,n—1, wheremy, = 2t, + 1, tx € IN;
o (k+1) =Fo(xi(k), -, 2o (k) + Gul(zi(k), -+, za(k))u(k) 3) Nontriviality Condition All of the following ideals:
(10)
i P , T = (bm,,)
with ; € R, Vi = 1,---,n andu € IR. We also have that

z,t o ~ ~n—k+1
G;, F; € Q[x1, ---, x;]. Notice that the functiong’ (z1, -+, x;)+ Ji " =Gbasiggn, -+, Gn-k+2: P,y ]
Gi(x1, -++, x;)x;+1 mMay not be surjective inc;41, Yo € IR". N Qlx1, -+, Tn, t1, -+, ta], (15)
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k=2, ---, n are nontrivial. All Gbbner bases are computed Example 1: Consider the strict feedback system:
using the lexicographic ordering(n — k — 1) > --- > o1 (k4 1) = 2o(k)
w(0) >ty > -0 >t > Ep = oes > XL
then: xo(k+ 1) =a3(k)
2
1) the dimension of the variefy (I[7_, J/>") C IR*" is at most w3k + 1) =wi(k) + (w1 (k) = wa(k))ulk). an
2n — 1; Considerz(3)

2) itis possible to transfer any initial stateto the terminal state ., _ o ] . .
t, if the (t, z) ¢ V([T, JI'") C R>". I“?_I§?+C“f)‘??»ﬂm 0 OV (Ol

For obvious reasons, the variety: = V(I[, JI'") is termed 72(3) _IZ( )+ [72(0) = 27(0) = ('7/12( )~ #3(0)u(O)lu(1)
critical. The varietyV contains all terminat and initial statese 3(3) = 23(0) + [#3(0) — [22(0) — (21(0) + (21(0)
in the spacelR*" which are such that it may not be possible to — 23(0))u(0)]u(1)]u(2). (18)
transfer= to # in n time steps. There is no loss of generality ifiyq may not be able to attaim (3) = 0 if x1(0) = 3(0), that is
it is assumed that the variey is defined by a single polynomial y(,.. _"..) may contain critical states. Consider now those states for
fe € Qar, oo wn, -+, ta]. Hence, giverr(0) andz(n), there  \yhich we can zero the first equation, whereas the second equation
exists a control sequendg, —, such thatr(n) = z(n. #(0). Un—1) " may not be possible to zero. We compute theler basis
if fo(z(n), (0)) # 0.

a 1 % 2 g - 7 - - 2 -
Consider the polynomiafc (¢, =), which defines a critical variety Gbasigry + (21 — xs)uo, w2 — @1 = (21 = 23)uo]

Ver. We use the following notation: with lexicographic orderingip > 21 > =2 > 3. The obtained
- 2 o basis consists of only one polynomial which does not depend on
fe o fulx) = folt, flx, u)). uo, namely the polynomiak,. Hence, the states that belong to the

As before, we can compute the set of initialc " and terminal Variety V'(x2) are also critical. _

t € R" states which are such thatfif.(¢, x(0)) = 0, thenV k. ¥ U Finally, we compute the following basis:

we have thatfc(t, z(k, 2(0), Ux))) = 0. In other words, we can Gbasie; + (x1 — x3)uo, 25 + (xa — 27 — (21 — 23)ug)ur,
find the maximal invariant sét; of the varietyV. To do this, we

! ° T3 —(372—(37?—1—(371 — 23)u0))uq]
introduce notation

with lexicographic ordering.; > uo = @1 > @2 > x3. The only

fo o fu) = Zl BL (t, 2)u(0)’ polynomigl in the computed basis that does not dependcand o
— is @3 + x5. Thus, for the states in the variely(zs + ;v%) we may
. m3, p2 ) , zero the first two equations but not necessarily the third one.
fo o fuq)y © fuoy = Z B i, (t, 2)u(0) u(1)" As a result, we obtain that a critical variety is given by =
i1=0,i3=0 V(za(z1 — x3)(x3 + 23)). By using the Gbbner basis method
in Theorem 1, we obtain that the maximal invariant sef’is =
R AT PR b {(0, 0, 0), (1, 1, 1)}. By simple calculations one can verify that
fo o fugmy oo fu) = Z both of these states are invariant sets themselves. Moreover, the state
0t =0 ‘ , (1,1, 1) cannot be transferred to the origin. We conclude that the
BT, () u(0)t - u(k)'*H. system is not state dead-beat controllable.
(16) IV. CONCLUSON
Theorem 3: The maximal invariant sét; C Ve can be computed  The results of this paper characterize a large class of discrete-time
by the following finite algorithm. polynomial systems for which the @bher basis method can be used
1) Initialize: fe(t, x), f(x. u); Go = {fc}; k = 0; Fix a to facilitate the state dead.-beat and complete co_ntrollabjlity analysi_s.
monomial ordering. We have shown that an object called a critical variety, which we use in
2) lterate:k = k + 1. controllability tests, can be generically constructed for a large class of

polynomial systems. For instance, the class of strict feedback systems
was shown to generically satisfy our conditions. The computational
complexity of the proposed algorithms is large but this is an intrinsic

3) Computefc 0 Ffu(h—1) © ++= 0 fuq)(t, ).
4) Compute the reduced &ner basis

G = Gbasi§fc, By, -+, Bhyy Bios =+ Biuy s s feature of the problem and the class of systems we consider.
B oo
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