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D. Nešić†and I. M. Y. Mareels‡

Abstract

Stabilizability and stability for a large class of discrete-time polynomial systems can be decided
using symbolic computation packages for quantifier elimination in the first order theory of real closed
fields. A large class of constraints on states of the system and control inputs can be treated in the
same way. Stability of a system can be checked by constructing a Lyapunov function, which is
assumed to belong to a class of polynomial positive definite functions. Moreover, we show that
stability/stabilizability is possible to decide in a rather unexpected way, namely directly from the
ε− δ definition.

1 Introduction

The stability and stabilizability problems for dynamical and controlled systems respectively, represent
most important topics in control systems theory. This is due to the fact that stability is a minimum
requirement which most control systems need to satisfy. A vast literature on these problems exists and
we mention just a few important results and refer to [9, 24] for a more complete list of references. The
second method of Lyapunov is ubiquitous in analysis of stability of nonlinear systems [9] although the
construction of a Lyapunov function for a general nonlinear system is to this date an important open
problem in control theory. The well known Brockett’s necessary condition for smooth stabilizability
indicated that many important nonlinear plants can not be stabilized using smooth feedback and dis-
continuous or time-varying feedback laws are required [24]. More recently, the notions of the control
Lyapunov functions and the fundamental Artstein’s theorem paved the way to the use of the Lyapunov’s
second method for the stabilizability problem of nonlinear systems [24]. For some classes of discrete-time
nonlinear systems these problems were investigated in [23, 12, 4] and references therein.

In this paper, we concentrate on the problems of stability/stabilizability for a class of discrete-time
polynomial systems. Some applications of this class of models can be found in [3, 8, 13, 20].

The main contribution of our paper is that we show how some of the recently developed symbolic
computation methods can be used to check whether a polynomial system is stable/stabilizable. With
this set of tools we can approach the stability/stabilizability problems for polynomial systems from
a completely new direction. We propose an algorithm for quantifier elimination (QE) in the first order
theory of real closed fields as a tool to tackle the stability/stabilizability problems for polynomial systems.
The method is implemented in the QEPCAD (Quantifier Elimination by Partial Cylindrical Algebraic
Decomposition) software package, which was developed by Collins, Hong and a number of their co-
workers [5, 7]. Other QE methods have been proposed in the literature which can tackle special classes
of problems and are more efficient than QEPCAD [14, 26].

We emphasize several facts which follow from our results. First, QEPCAD is a natural tool to use
when dealing with stability/stabilizability of polynomial systems. Indeed, it is possible to exploit this

∗The authors wish to acknowledge the funding of the activities of the Centre for Sensors, Signals and Information
Processing by the Australian Government under the Cooperative Research Centres Program.

†CCEC, Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, 93106-9560.
dragan@lagrange.ece.ucsb.edu

‡Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, 3052 Victoria, Australia.

1



symbolic software in two ways when tackling the stability problem. In the first approach we chose a
class of positive definite polynomial (Lyapunov) functions, e.g., quadratic forms xT Hx, where H is an
n×n matrix whose coefficients are to be determined. QEPCAD is used to compute whether there exists
a function from the family, which is a Lyapunov function for the system. The second approach is based
on the ε− δ stability definition. Other approaches are possible but we believe that QEPCAD is the key
tool in a computational approach to stability analysis of polynomial systems and can be very useful if
combined with any other method from [9, 24].

Second, as it was already indicated, we demonstrate how checking asymptotic stability using QEP-
CAD is possible via the ε-δ definition of stability. We are not aware of any results in the literature which
make this observation. This approach is restricted to discrete-time systems. Indeed, it is impossible to
do this for general continuous time nonlinear systems since this would require an analytic solution of a
set of nonlinear differential equations. More surprisingly, it turns out that for some classes of discrete-
time systems checking stability via the ε-δ definition may be less computationally demanding than the
Lyapunov approach described above.

Our work motivates the following question: If a polynomial system is asymptotically stable, does
there exist a polynomial Lyapunov function for the system. Notice the difference between this statement
and other converse Lyapunov theorems - we require that the Lyapunov function has a special polynomial
form. The class of quadratic forms is a good candidate, which generically works, so we believe that this
statement is not far from being true in general. With this result and our first approach we could
obtain an algorithmic approach for checking in finite time whether a polynomial system is stable or not.
In summary, QEPCAD may pave the way for obtaining necessary and sufficient conditions based on
Lyapunov theory [9], checkable in finite time, for the question of whether a polynomial systems is stable
or not.

Third, we illustrate how QEPCAD can be used to test stabilizability of implicit recursive polynomial
equations which arise in the investigation of minimum phase properties of input-output polynomial (also
called NARMAX [8]) models. The approach seems to be natural in this setting since the non-uniqueness
of solutions requires a quantifier elimination to be performed in testing stabilizability.

Finally, we would like to point out that irrespective of the large computational requirements of the
QEPCAD based algorithms, which hamper their practicality, each of the above given observations is
theoretically very important. Moreover, the symbolic computation approach to quantifier elimination is
an area of ongoing active research and it is very possible that efficiency of QEPCAD is improved to the
point where it can be effectively used for solving relevant engineering problems in the very near future.

In the first part of the paper we show how QEPCAD can be used to tackle the stability problem
of polynomial dynamical (not controlled) systems. This methodology is generalized in the second part
of the paper where we consider the problems of stabilizability and stability of zero output constrained
dynamics (or zero dynamics), which can be viewed as a constrained stabilizability problem. We illustrate
our approach and limitations of the current versions of QEPCAD via an example.

2 Preliminaries

The sets of real, complex and non-negative integer numbers are respectively denoted as R,C and N. The
ring of polynomials in variables x1, . . . , xn with coefficients in a field F is denoted as F [x1, . . . , xn].

A set S ⊂ Rn is called semi-algebraic if it can be constructed by finitely many applications of union,
intersection and complementation operations on sets of the form {x ∈ Rn : fi(x) ≥ 0}, where fi are
polynomials in x with real coefficients. Given a semi-algebraic set S we denote its defining expression
as S(x). For example, if S = {x : x2

1 + x2
2 − 1 < 0 ∧ x1 > 0.5} then we write S(x) = (x2

1 + x2
2 − 1 <

0) ∧ (x1 > 0.5).
The Euclidean norm of a vector x is denoted as ||x||. The distance between points x, y ∈ Rn and the

distance between a set A ⊂ Rn and a point x ∈ Rn are respectively denoted as d(x, y) = ||x − y|| and
d(x,A) = infy∈A ||x− y||. The open hyper-ball centered at a point z∗ with a diameter p > 0 is denoted
as

Bp(z∗) = {z ∈ Rn : d(z, z∗) < p}
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and the open hyper-cube centered at a point z∗ with sides 2r > 0 is denoted as

Cr(z∗) = {z ∈ Rt : (|z∗1 − z1| < r) ∧ . . . ∧ (|z∗t − zt| < r)}

where |a| is the absolute value of the scalar a. The composition of two mappings f(x) and h(x) is
denoted as f ◦ h(x) = f(h(x)). p compositions of the mapping f by itself is denoted as fp(x).

Dynamic polynomial systems are represented by:

x(k + 1) = f(x(k)) (1)

where x = (x1 x2 . . . xn)T and k ∈ N. Moreover, without loss of generality1 it is assumed that f(0) = 0
and f = (f1 f2 . . . fn)T , fi ∈ Q[x1, . . . , xn], ∀i. The assumption that the polynomials fi have rational
coefficients is needed for computational purposes. We denote the state at time step k starting from the
initial state x(0) as x(k, x(0)), that is x(k, x(0)) = fk(x(0)).

A set Z is invariant if given any x(0) ∈ Z we have that f(x(0)) ∈ Z.

Definition 1 Given an invariant set Z, we say that the origin of the system (1) is:

1. stable (conditionally to Z) if for any ε > 0 there exists δ > 0, δ = δ(ε) such that if ||x(0)|| < δ
then ||x(k, x(0))|| < ε, ∀k ∈ N (x(0) ∈ Z and ||x(0)|| < δ then ||x(k, x(0))|| < ε, ∀k ∈ N).

2. attractive (conditionally to Z) if there exists ∆ > 0 such that if ||x(0)|| < ∆ then limk→∞ ||x(k, x(0))|| =
0 (if ||x(0)|| < ∆ and x(0) ∈ Z then limk→∞ ||x(k, x(0))|| = 0).

3. asymptotically stable (conditionally to Z) if it is both stable and attractive (conditionally to an
invariant set Z).

4. If in 2 and 3 we have ∆ = +∞, then the corresponding properties are global.

If the origin of the system (1) is asymptotically stable, we refer to the system as a stable system.

Definition 2 A function V : Rn → R is (locally) positive definite if:

1. V (0) = 0

2. V (x) > 0,∀x ∈ Rn − {0} (∃d > 0 such that V (x) > 0,∀x ∈ Bd(0)− {0}).

Suppose that we have a parameterized family of positive definite functions, depending on the (matrix)
parameter H. We denote this family of functions as V (H, x). The class of quadratic positive definite
functions is given by V (H,x) = xT Hx and H ∈ Rn×n is a positive definite matrix. For example, in the
case of second order systems the class of quadratic functions has the following form:

V (H, x) = h11x
2
1 + 2h12x1x2 + h22x

2
2

with
h11 > 0 ∧ h11h22 − h2

12 > 0

We use a shorthand notation S1(H) for the set of conditions on coefficients H that need to be satisfied
in order to have a positive definite function V (H,x).

Using Lyapunov theory [25] we have:

1We can also consider classes of systems with non-polynomial nonlinearities, such as rational functions or even
trigonometric functions. For instance, if the nonlinearities sin2 x and cos2 x appear in the model, we substitute
sin2 x = p2, cos2 x = 1 − p2 and obtain a polynomial system with the new variable p and perhaps a polynomial con-
straint.
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Theorem 1 Consider the dynamical polynomial system (1). If there exists a locally positive definite
function V , such that

(∃s > 0)( V (f(x))− V (x) < 0, ∀x ∈ Bs(0)− {0} ) (2)

then the system (1) is stable.

In the sequel, we also consider controlled polynomial systems:

x(k + 1) = f(x(k), u(k)) (3)

where x = (x1 x2 . . . xn)T , u ∈ R are respectively the state and control signal and k ∈ N represents time.
It is assumed that f(0, 0) = 0 and f = (f1 f2 . . . fn)T , fi ∈ Q[x1, . . . , xn, u], ∀i. An infinite control
sequence {u(0), u(1) . . .} is denoted as U and its truncation of length k, {u(0), . . . , u(k− 1)}, is denoted
as Uk. We denote the state at time step k starting from the initial state x(0) under the sequence of
controls Uk as x(k, x(0), Uk).

Definition 3 The system (3) is stabilizable if there exists a state feedback u = u(x) such that the system
x(k + 1) = f(x(k), u(x(k))) is stable.

We emphasize that we do not assume that u(x) in the above definition is continuous. Also, more
general situations, such as dynamic and time varying (periodic) control laws can be analyzed in the same
way but we consider only static control laws for simplicity of presentation.

QEPCAD is a symbolic computation package for quantifier elimination (QE) in the first order theory
of real closed fields. It is based on the cylindrical algebraic decomposition (CAD) algorithm [5, 7]. The
input to the algorithm is an expression which consists of polynomial equations and inequalities, Boolean
operators and (∧), or (∨), implies (→) and not (¬), as well as quantifiers ∃ and ∀. The solution (output
formula) is a quantifier free expression. We note that all variables are assumed to be real. For more on
QEPCAD see [5, 7, 11]. The simple examples we present illustrate the operation of the algorithm.

Example 1 If the input expression is (∃t)( a2t
2 +a1t+a0 = 0 ), the output expression (a2

1−4a2a0 ≥ 0)
is obtained.

Example 2 [11] If the input expression is(∀x)(∀y)( (x2+y2 < 1) → (y > x4−2) ), the output expression
TRUE is obtained.

3 Stability of polynomial systems

In this section we consider stability of dynamical polynomial systems (1). We show that stability can
be decided using QEPCAD in two completely different ways: by constructing Lyapunov functions or by
direct verification of Definition 1.

3.1 Lyapunov functions construction (Procedure 1)

In this subsection we illustrate how QEPCAD can be used to construct Lyapunov functions for the
systems (1).

From the converse stability theorems [9, 25], it follows that if the system is asymptotically stable,
there exists a positive definite Lyapunov function satisfying the conditions of Theorem 2. This function
does not have to be polynomial in general, but we will assume that it belongs to a class of positive definite
polynomial functions V (H, x), whose coefficients are free (to be determined later). Although there is no
way we can say a priori how large the class of functions V (H,x) should be, we can often have a good
guess. Indeed, all systems whose linearization does not have critical modes (poles on the unit circle)
allow for the use of quadratic polynomial functions to check stability/instability. Hence, we can say that
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the class of quadratic polynomial functions generically contains a desired Lyapunov function with which
we can check whether the system is stable. Observe that using quadratic polynomial functions is already
more general than checking stability via the linearization of (1).

We know that S1(H) needs to be satisfied in order to have the class of positively definite functions
V (H, x). Consider now the following quantifier elimination problem:

(∃D)(∀x)( D > 0 ∧ 0 < ||x|| < D ∧ V (H, f(x))− V (H,x) < 0 ).

The solution to the above problem can be found (in principle) using QEPCAD. The solution is a set
of polynomial constraints on the coefficients of H which guarantee that the condition V (H, f(x)) −
V (H, x) < 0 is satisfied for x ∈ BD(0) − {0}. These constrains are denoted as S2(H). Hence, if the
decision problem:

(∃H)( S1(H) ∧ S2(H) )

is TRUE, there exists a quadratic Lyapunov function for the system (1). Moreover, the conditions
S1(H) ∧ S2(H) on the coefficients H describe all positive definite quadratic functions from the given
class V (H, x), which are Lyapunov functions for the system (1).

Constructing a Lyapunov function in our approach means computing a polynomial positive definite
function (or a set of functions) from a class of polynomial positive definite functions, which satisfies the
conditions of the Lyapunov Theorem [9]. Notice that if we obtain that there is no Lyapunov function of
the form V (H, x), there still may exist a Lyapunov function which belongs to a perhaps larger class of
positive definite functions V̂ (H,x).

3.2 Verifying stability by definition (Procedure 2)

We show below that QEPCAD can be used to check the stability properties of systems (1) in a maybe
surprising way, namely directly by verification of the definition. Our arguments are based on the following
observations:

Observation 1 If the equilibrium of the system (1) is exponentially stable, that is there exist constants
K > 0 and λ ∈]0, 1[ such that ||x(k, x(0))|| < K||x(0)||λk, then there exist ∆ > 0 and p ∈]0, 1[ and a
positive integer N ∈ N such that the following is true:

||x(N, x(0))|| < p||x(0)||, ∀x(0) ∈ B∆(0)− {0} (4)

We note that the number N may be very large for poorly damped systems. This condition must
necessarily be satisfied if the system (1) is to be exponentially stable. Moreover, it is easy to show that
the condition is also sufficient for (exponential) attractivity of (1). Note, however, that it is not sufficient
for stability. We can write:

||x(kN, x(0))|| < pk||x(0)||, ∀x(0) ∈ B∆(0),

and hence limk→∞ ||x(kN, x(0))|| = 0.
The formula (4) can be cast into a decision problem that can be solved using QEPCAD. If we take

N compositions of f(x), the formula:

(∃∆)(∃p)(∀x1)(∀x2) . . . (∀xn)(0 < p < 1 ∧ 0 < ||x|| < ∆ → ||fN (x)|| < p||x|| )

is a valid input formula to the QEPCAD algorithm. In other words, QEPCAD can produce an answer
(TRUE or FALSE) for the above given decision problem and hence attractivity of the origin for the
systems (1) can be tested in this manner2. If we want to check global attractivity, the test formula
becomes

(∃p)(∀x)(0 < p < 1 ∧ ||x|| > 0 → ||fN (x)|| < p||x||).

2We use a shorter notation ∀x to denote ∀x1∀x2 . . . ∀xn.
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Indeed, if the above condition was violated ∀N ∈ N, the system is not globally (exponentially) attractive
by definition.

Observation 2 Assume that the system (1) is globally exponentially attractive and that we have found
the integer N for which condition (4) holds. It is then a simple consequence of attractivity that

||f i(x)|| < max
j=0,1,...,N

{||f j(x)||}, ∀i = N + 1, . . .

This implies that if the following condition is satisfied:

∀ε > 0, ∃δ > 0 such that ||x|| < δ → ||f j(x)|| < ε, ∀j = 0, 1, 2, . . . , N (5)

then it is also true that

∀ε > 0, ∃δ > 0 such that ||x|| < δ → ||f j(x)|| < ε, ∀j = N + 1, . . . (6)

In other words, for attractive systems (1) if the number N is known, stability requires checking whether
the conditions given by:

∀ε > 0, ∃δ > 0 such that ||x|| < δ implies ||x|| < ε, ||f(x)|| < ε, . . . , ||fN (x)|| < ε

are satisfied. This observation is crucial since we replace an infinite number of conditions ||x(k, x(0))|| <
ε, ∀k ∈ N by a finite number of conditions ||x(k, x(0))|| < ε, k = 0, 1, 2, . . . , N . Moreover, the above given
conditions also qualify as an input formula to QEPCAD and hence can be checked using the algorithm.

Observations 1 and 2, together with the QEPCAD as a tool, provide us with a constructive approach to
testing asymptotic stability of an equilibrium of a polynomial system (1) by definition. QEPCAD can
be used in principle for this purpose for a very large class of polynomial dynamical systems (1). Notice
also that a similar approach in continuous time framework is bound to be futile since we would need an
analytic solution to a set of nonlinear differential equations. In discrete time we can find compositions
of the polynomial map f more easily.

3.3 Computational complexity

The main drawback of the method based on QEPCAD is its computational complexity. Denote as F the
input formula to the algorithm. The computation time of the CAD sub-algorithm [5] is over bounded
by the following expression:

Pr(d,m, l) = (2d)2
2r+8

m2r+6
l3, (7)

and of the QE sub-algorithm
Pr(d, m, l) = (2d)2

2r+8
m2r+6

l3a, (8)

where r is the number of variables in the input polynomials to the algorithm, m number of input
polynomials F , d the maximum degree of any polynomial in F in any of the input variables, l the
maximum norm length and a the number of atomic formulas in F . It is important to observe that for
fixed m, a, l, d, the “computation time” is doubly exponential in the number of variables in the input
polynomials F .

We note that the number of variables in the input polynomials influences the computation time the
most. Consequently, it is practically impossible to tackle “large-scale” problems using this approach. It
is very difficult to tackle more than four variables using the current versions of the algorithm. However,
there are several variants of the algorithm and also other QE algorithms which can deal with certain
classes of QE problems (input polynomials) more efficiently. For example, linear QE was discussed in
[14] and the case when all quantified variables have at most degree 2 in [26]. In these cases, one can
easily cope with 20 variables and hence this procedure becomes practically feasible.
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Observation 3 We argue that when using QEPCAD, it may be in some cases computationally more
efficient to use Procedure 2 than Procedure 1. Indeed, consider a second order polynomial system (1).
Assume that ||f(x)|| < ||x||, ∀x. Notice that this guarantees asymptotic stability using Procedure 2.
The number of variables in the input polynomials is equal to the number of states, that is r = 2. If
we want to check stability using Procedure 1 and if we decide to work with quadratic positive definite
polynomials, we end up with 5 variables in the input polynomials (two states plus three coefficients
in the quadratic function). Hence, deciding stability by definition in this case can be done in a much
shorter time than if we try to construct a quadratic Lyapunov function.

Notice that a similar line of reasoning applies always: if we opt for Procedure 2, we always work with
a fixed number of variables: n for attractivity (the number of states) and for stability n + 2 (states plus
δ and ε. If the number N for which ||fN (x)|| < ||x|| is large, the degrees and coefficients are very large
(we use N compositions of f(x)) but the number of variables is at most n + 2. On the other hand, if we
use Procedure 1, even if we work with the simplest class of polynomial positive definite functions, such
as quadratic, the number of variables is much larger than in the first case and is equal to the sum of the
dimension of the system and the number of free coefficients H in the function class V (H, x).

In summary, it seems that very often Procedure 2 is computationally more feasible than Procedure
1. Hence, in the sequel we concentrate only on different applications of Procedure 2 to stabilizability
problems. The explicit bounds on computation time (7) and (8), together with Procedures 1 and 2,
tell us something new about the problem of stability of a discrete-time nonlinear system. The example
presented in the last section illustrates the capabilities and limitations of the current versions of the
QEPCAD algorithm.

4 Stabilizability of controlled polynomial systems

In this section we show how Procedure 2 can be modified to address the problem of stabilizability of
systems (3). If the system (3) can be made exponentially attractive by means of control, there exists a
positive integer N , positive number p ∈]0, 1[ and control sequence UN such that

||x(N,x(0), UN )|| < p||x(0)||, ∀x ∈ Bd(0)− {0}, 0 < p < 1

The above formula can be checked using QEPCAD. However, notice that we have N controls and n
states and d as variables in the input polynomials. This is highly undesirable since the computations are
not feasible for high N . It is straightforward to write the corresponding formulas for testing stability if
the above attractivity condition is satisfied.

We present below, however, a recursive procedure which uses at each step n + 2 variables and which
can be used to test stabilizability in certain cases. The main assumption for the application of the
method is given below:

Assumption 1 There exists a controller u = u∗(x) and a proper subset of state space St0 such that

1. The set St0 is invariant for the system

x(k + 1) = f(x(k), u∗(x(k))). (9)

2. The system (9) is stable conditionally to St0.

With Assumption 1, we introduce the following sets:

St1 = {x : ∃u ∈ R, f(x, u) ∈ St0}
St2 = {x : ∃u ∈ R, f(x, u) ∈ St1}
. . . . . .

Stk = {x : ∃u ∈ R, f(x, u) ∈ Stk−1} (10)
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and denote the defining expressions for the sets as Stk(x).
Suppose that a set StN is a neighborhood of the origin, that is:

(∃d)( (d > 0 ∧ ||x|| < d) → StN (x) ).

Then the origin of the system (3) can be made attractive by means of control u. Notice that one can
easily construct a feedback control law which renders the system (3) exponentially attractive:

u(x) = any real solution to

u∗(x) , x ∈ St0,



St0(f(x, u)) , x ∈ St1 − St0
. . . . . .
StN−1(f(x, u)) , x ∈ StN − StN−1

(11)

The above feedback yields actually a family of feedback laws that render the system (3) attractive with
the property that ||x(N, x(0), UN )|| < p||x(0)||. The question arises whether such feedback laws may
yield stability as well. This question can be again formulated as a decision problem:

(∀x)(∃u)(∀ε)(∃δ)[Stk(f(x, u))∧Stk+1(x)∧ (ε > 0)∧ (δ > 0)∧ ||x|| < δ → ||f(x, u)|| < ε], k = 0, 1, . . . , N.

Notice that in this way we reduced the number of variables in input polynomials to n + 3. The above
condition tests for the existence of a controller with a “small control property” which is sufficient to
show stability. If it happens that the stronger condition holds:

(∀x)(∀u)(∀ε)(∃δ)[Stk(f(x, u))∧Stk+1(x)∧ (ε > 0)∧ (δ > 0)∧ ||x|| < δ → ||f(x, u)|| < ε], k = 0, 1, . . . , N.

then any controller in the family (11) is stabilizing (this situation is illustrated in the example).
Assume that the above given test is satisfied with StN = Rn. Then the test guarantees that there

exists a control law u(x) (it may be discontinuous) which achieves finite time attractivity to the set
St0 and moreover which is such that ∀εk > 0,∃δk > 0 such that ∀x ∈ Stk+1, ||x|| < δk we have
that f(x, u(x)) ∈ Stk, ||f(x, u(x))|| < εk, k = 0, 1, . . . , N . By using induction arguments, and letting
εk+1 = δk, k = 0, 1, . . . , N − 1, it is not difficult to show stability of the closed loop system using
Lyapunov stability definition.

To motivate Assumption 1, we single out several important cases:

1. St0 = {0}, then the method given above would test if there are any stabilizing state dead-beat
controllers (which are also time-optimal). Design of time-optimal dead-beat controllers was carried
out in [19] but those controllers render the origin of the closed loop system globally attractive,
whereas their stability must be tested using the above given formulas.

2. St0 ⊆ {x : h(x) = 0}, then Assumption 1 asserts that the system is minimum phase and the
method tests if there are any stabilizing output dead-beat controllers. In the next section we
present a method for testing if a system is minimum phase or not (testing if Assumption 1 is
satisfied).

3. St0 is an arbitrary lower dimensional subset of the state space. The stabilization techniques for
feed-forward and strict feedback systems presented in [22] can be interpreted as finding a “dummy”
output y = H(x) with respect to which the system is minimum phase and relative degree one, which
imply passivity. Assumption 1 asserts that such a dummy output can be found for the system (3).

5 Stability of zero output constrained dynamics

In this section we address the problem of stability of zero output constrained dynamics of a class of
input-output (IO) polynomial models. The problem can be regarded as a constrained stabilizability
problem (see [18]), since the IO linearizing control law is normally not unique for this class of systems.
We consider a class of polynomial IO models of the form [8]:

y(k + 1) = F (y(k), y(k − 1), . . . , y(k − s), u(k), u(k − 1), . . . , u(k − t)) (12)
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where y(k) ∈ R and u(k) ∈ R are respectively output and input of the system at time instant k. F is
a polynomial function in all its arguments. Notice that if we want to control the output of the system
(12) to a desired value y∗ and keep it for all future time steps at y∗, the system evolves according to:

F (y∗, y∗, . . . , y∗, u(k), u(k − 1), . . . , u(k − t))− y∗ = 0 (13)

The equation (13) defines the final regime in output dead beat control, which we investigate here.
We assume that the system is output dead beat controllable and that after finitely many steps the
system evolves according to (13). By denoting F (y∗, . . . , y∗, u(k), u(k−1), . . . , u(k− t)) = G(u(k), u(k−
1), . . . , u(k − t)), we need to consider the equation:

G(u(k), u(k − 1), . . . , u(k − t)) = 0 (14)

We say that (14) defines implicit “zero” output constrained dynamics, or simply - implicit zero dynamics.
Explicit zero dynamics take the form

u(k) = G(u(k − 1), . . . , u(k − t)) (15)

If we introduce state variables u(k − t) = x1(k), u(k − t + 1) = x2(k), . . . , u(k − 1) = xt(k), we obtain
the linear system:

x1(k + 1) = x2(k)
x2(k + 1) = x3(k)

. . . . . .

xt(k + 1) = u(k) (16)

which is defined on the real variety defined in Rt by

G(u(k), x1(k), x2(k), . . . , xt(k)) = 0 (17)

Obviously, for any initial state x(0) we can apply to the linear system (16) only controls u = u(x(0))
which are obtained as solutions of the equation G(u, x(0)) = 0. Notice that since G(u, x) is a polynomial
in u and x, for almost all x we will have finitely many roots u. We use the following assumption:

Assumption 2 ∀x1, . . . , xt ∈ R, ∃u such that G(u, x1, . . . , xt) = 0.

The equilibria of the system (14) are found using G(ζ, ζ, . . . , ζ) = 0. We denote the equilibria as
ζ = (ζ ζ . . . ζ)T ∈ Rt.

Definition 4 A criterion of choice is a single valued function c : R→ R (denoted also as uk = c(u(k −
1), . . . , u(k − t))) such that

G(c(u(k − 1), . . . , u(k − t)), u(k − 1), . . . , u(k − t)) = 0, ∀u(k − 1), . . . , u(k − t) ∈ R. (18)

Definition 5 Consider a criterion of choice applied to the system (16):

x1(k + 1) = x2(k)
x2(k + 1) = x3(k)

. . . . . .

xt(k + 1) = c(xt(k), . . . , x1(k)) (19)

We call the system (19) the “c”-resulting system.
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We can now talk about stability of the origin of a “c”-resulting system in the sense of Definition 1.
Hereafter, we assume that we are working around a known equilibrium ζ.

Below we propose definitions of minimum phase systems, which incorporate the criterion of choice.
Motivation for these definition can be found in [18].

Definition 6 The system (12) is:

1. minimum phase if there exists a criterion of choice c such that the equilibrium ζ of the “c”-resulting
system is asymptotically stable in the sense of Definition 1

2. uniformly minimum phase if for any criterion of choice c the equilibrium ζ of the “c”-resulting
system is asymptotically stable in the sense of Definition 1

3. non minimum phase if for any criterion of choice c the equilibrium ζ of the “c”-resulting systems
is unstable

It is immediately clear that if the IO linearizing control law is unique, the notions of minimum phase
and uniform minimum phase systems coincide. This corresponds to the situation when the system has
a bijective relative degree [23].

Comment 1 The above given definitions of minimum phase systems may be generalized in two direc-
tions. First, one may rephrase the definitions to include a possible non uniqueness of the equilibria ζ and
define minimum phase system: “there exists an equilibrium ζ and a criterion of choice c which renders
the equilibrium asymptotically stable”. Another generalization was proposed in [1] where the stability
of an invariant attractor, which is not necessarily a point, is incorporated in the definition of minimum
phase systems. We note here that the methods that we propose in the next section to check different
minimum phase properties of polynomial systems can be used (with appropriate modifications) to check
these more general notions.

5.1 Deciding stability of zero dynamics using QEPCAD

The main results of this section are summarized in Theorems 2 and 3. The theorems give sufficient
conditions for the existence of a criterion of choice c such that the “c”-resulting system is locally or
globally asymptotically stable. For i-o polynomial systems we propose the use of QEPCAD symbolic
computation package [5, 6, 7] to check the conditions of Theorems 2 and 3. Computational complexity of
the problems may be prohibitive and this is the main hindrance to the proposed method. Nevertheless,
for i-o systems of small total degrees of the defining polynomial map, the method may yield satisfactory
results.

Fix a number p ∈]0, 1[. It is easily seen that we can compute the following sets using QEPCAD:

S
xj

1 = {x ∈ Rt : ∃ζ ∈ R, |ζ| < p|xj |, G(ζ, xt, . . . , x1) = 0}
S

xj

2 = {x ∈ Rt : ∃ζ ∈ R, |ζ1| < p|xj |, G(ζ0, xt, . . . , x1) = 0, G(ζ1, ζ0, xt, . . . , x2) = 0}
. . . . . . (20)

where j = 1, 2, . . . , t. Hence, sets S
xj

k represent states in Rt for which there is a sequence of controls
(criterion of choice) yielding |xt(k)| < p|xj(0)|. The above given sets can be used to check whether the
system (12) is locally (globally) minimum phase.

Theorem 2 The origin of the zero dynamics (14) is locally stable if the set N = ∪jS
xj

1 is a neighborhood
of the origin.

Proof of Theorem 2: Notice first that if the set N is the neighborhood of the origin this guarantees
that zero dynamics are defined on this neighborhood since ∀x ∈ Rt,∃u ∈ R such that G(u, x) = 0 (see
definition of sets S

xj

1 in (20)).
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Given a positive number s > 0, we define the hypercube

Cs = {x ∈ Rt : |x1| < s ∧ . . . ∧ |xt| < s}

Notice that if the conditions of Theorem 2 are satisfied, there exists s∗ > 0 such that Cs∗ ⊂ N . Then,
there exists a criterion of choice c such that any hypercube Cs, s ∈]0, s∗[ satisfies that if x(0) ∈ Cs then
x(k) ∈ Cs,∀k = 1, 2, . . .. Indeed, if

|x1(0)| < s ∧ . . . ∧ |xt(0)| < s

then we have from the structure of the system that

|x1(1)| = |x2(0)| < s ∧ . . . |xt−2(1)| = |xt(0)| < s

Moreover, by definition of sets (20) we have that there exists a criterion of choice c such that

|xt(1)| < p|xj(0)| < s, j ∈ {1, 2, . . . , t}

and hence we conclude that x(1) ∈ Cs. Notice that this holds for arbitrary x(0) ∈ Cs and hence we have
that x(k) ∈ Cs,∀k.

Consider now any hyper ball Bε = {x :
∑t

i=1 x2
i < ε} and define δ = δ(ε) = min(ε/2, s∗/2). Then if

x(0) ∈ Bδ we have that x(k) ∈ Cδ,∀k since δ ∈]0, s∗[. Moreover, we have that Cδ ⊂ Bε,∀ε > 0 and hence
x(k) ∈ Bε, ∀k. Therefore there exists a criterion of choice c such that the “c”-resulting system is stable
by definition. Q.E.D.

Notice that the criterion of choice is in general a discontinuous map. Moreover, the sets S
xj

1 can be
given in certain cases a nice interpretation based on Lyapunov functions. Indeed, assume that the set
Sx1

1 is a neighborhood of the origin. Assume that we consider the explicit zero dynamics (15) with the
function G continuous and define the Lyapunov function:

V (x(k)) =
t∑

i=1

|xi(k)|

which is positive definite. By considering the difference:

V (x(k + 1))− V (x(k)) =
t∑

i=2

|xi(k)|+ |G(x(k))| −
t∑

i=1

|xi(k)|

we obtain V (x(k + 1)) − V (x(k)) = |G(x(k))| − |x1(k)|. By definition of the set Sx1
1 we have that

|G(x(k))| < p|x1(k)| on the set. Hence, we obtain

V (x(k + 1))− V (x(k)) < 0, ∀x ∈ Sx1
1

and since Sx1
1 is a neighborhood of the origin, the zero dynamics are stable.

This result can be generalized to implicitly defined zero dynamics (14) and even when the criterion
of choice is a discontinuous mapping.

Theorem 3 Suppose that ∃j ∈ {1, . . . , t} such that the set S
xj

1 is a neighborhood of the origin. Then
the origin of the zero dynamics is locally asymptotically stable.

Proof of Theorem 3: Stability follows from Theorem 2. We show now that the system is also locally
attractive. We know that there exists a number s∗ such that any hypercube Cs, s ∈]0, s∗[ is invariant
with respect to the solutions x(k),∀k. Hence, we have that if x(0) ∈ Cs

|xt(k + t− j)| < p|xj(k)|, ∀k

11



If k = 0 we have that |xt(t − j)| = p0|xj(0)|, p0 ∈ [0, p[. For k = 1 we have that |xt(1 + t − j)| =
p1|xj(1)| = p1p0|xj(0)|, p1 ∈ [0, p[. In general we obtain that

|xt(N + t− j)| =
N∏

i=0

pi|xj(0)|, pi ∈ [0, p[

and by taking the limit we obtain limN→∞ |xt(N+t−j)| → 0. Since xl(k+1) = xl+1(k), l = 1, . . . , t−2 we
conclude that limN→∞ |xl(N)| → 0, ∀l = 1, . . . , t−1. In other words we have that limN→∞ ||x(N)|| → 0.
We can therefore take ∆ = s∗/2 and the attractivity of the zero dynamics follows by definition. Q.E.D.

An obvious consequence of the above results is:

Corollary 1 Suppose there exists j ∈ {1, 2, . . . , t} such that S
xj

1 = Rt. Then the zero dynamics (14)
are globally stable.

We have considered so far only how the sets S
xj

1 can be used to decide on stability of zero dynamics.
We show below that for a class of polynomial i-o systems we also may make use of the sets S

xj

k when
dealing with this problem. The following assumptions defined the class of systems that we consider.

Assumption 3 ∀x(0) ∈ Rt,∀ζ ∈ R such that G(ζ, x(0)) = 0 we have that |ζ| < ∞.

Assumption 4 Consider G(x1, x2, x3, . . . , xt+1) = 0, then

∀x3, . . . , xt+1 ∈ R,∃x1 : lim
|x2|→0

|x1| → 0

and in particular we have that

∀x3, . . . , xt+1 ∈ R, G(0, 0, x3, . . . , xt+1) = 0

Assumption 3 guarantees that the domain of existence of zero dynamics for the set point y∗ = 0 is the
whole state space Rt. Moreover, it is assumed that there are no finite escape times (for all bounded
initial states, all allowable controls that satisfy the constraint (17) are bounded. The assumption is
satisfied for all explicit zero dynamics (15) where the function G is a polynomial in all its variables or a
rational function with the denominator not having zero values for all values of its arguments. In general,
we can write the implicit zero dynamics (14) in the following form

G(x1, . . . , xt) = gn(x2, . . . , xt)xn
1 + . . . + g0(x2, . . . , xt) = 0.

Assumption 3 is satisfied if gn(x2, . . . , xt) 6= 0, ∀x2, . . . , xt ∈ R since we have the bound on the roots [2]:

|x1| < 1 + sup
i
| gi(x2, . . . , xt)
gn(x2, . . . , xt)

|

which guarantees that |x1| is bounded on the whole state space. We use the notation H = {x ∈ Rt :
xt = 0}.

Theorem 4 Suppose that Assumptions 3 and 4 are satisfied for the implicit polynomial dynamics (14).
The zero dynamics are globally attractive if there is an integer N such that ∪N

i=1S
xj

i = Rt −H for some
j ∈ {1, . . . , t}. Moreover, x(k),∀k is bounded.

Proof of Theorem 4: Suppose that conditions of Theorem 4 are satisfied. Consider any initial state
x(0) ∈ Rt. If x(0) ∈ H then by simply applying u(k) = 0,∀k we have that x(k) = 0, ∀k ≥ t. If
x(0) ∈ Rt−H, then we have that x(0) ∈ S

xj

k1
, k1 ∈ {1, . . . , N}. By definition of the set S

xj

k1
we have that

|xt(k1)| = pk1 |xj(0)|, pk1 < p < 1
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If x(k1) ∈ H we trivially have the attraction to the origin. Suppose that x(k1) 6∈ H. Then, we have that
x(k1) ∈ S

xj

k2
, k2 ∈ {1, . . . , N} and by definition

|xt(k2)| = pk2 |xt(k1)|, pk2 ∈ [0, p[

Therefore, if we suppose that x(ki) 6∈ H, ∀i = 1, 2, . . . we have that

|xt(kN )| =
N∏

i=1

pki |xj(0)|, pki < p < 1, ∀i

and by taking the limit of the above expression we obtain that

lim
N→∞

|xt(kN )| → 0

Because of the Assumption 4 and since xt(kN ) → 0 we have that xt−j(kN +j) → 0, j = 1, 2, . . . , t−1 and
therefore ||x(k)|| → 0. The boundedness of x(k), ∀k follows trivially from the boundedness of solutions
(Assumption 3). Q.E.D.

We also have

Corollary 2 If the conditions of Theorems 2 and 4 are satisfied, the implicit zero dynamics (14) are
globally stable.

Notice that Assumption 3 is not essential for the global attractivity result and is only used to
guarantee that there are no finite escape times.

Comment 2 The computational complexity of the decision rules used to define the sets S
xj

k may be
prohibitive and hence it is of utmost importance to investigate ways in which the complexity can be
reduced. The required computations may be drastically reduced by first decomposing the polynomial G
which defines the implicit zero dynamics (14)

G(ζ1, ζ2, . . . , ζt) =
M∏

i=1

fi(ζ1, ζ2, . . . , ζt)

where fi are all irreducible polynomials. Notice that G = 0 if fi = 0 for some i and if any of the newly
defined implicit zero dynamics

fi(ζ1, ζ2, . . . , ζt) = 0

satisfies conditions of some of Theorems 2, 3 or 4, the zero dynamics (14) have at least the same properties
as newly defined zero dynamics. The idea of factorizing an implicit system into several sub-systems can
be found in [23] but we here presented tools for this factorization and tests of stability of zero dynamics
for IO polynomial systems.

6 Example

We use the procedure described in Section 4 to illustrate on an example the capabilities and limitations
of a current version of QEPCAD. Consider the polynomial system3:

x1(k + 1) = x1(k) + u(k)
x2(k + 1) = x3(k)
x3(k + 1) = −x2(k)− 2x3(k) + u2(k) (21)

3The example was solved by prof. G.E.Collins and C. Brown. The attractivity part was presented in [19, 20].
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We Assume that St0 = {0}, which means that we want to check if there are any stabilzing state dead-beat
controllers. Using the procedure described in Section 4 we obtain:

St1 = {x : x2 − x2
1 = 0 ∧ x3 = 0}

St2 = {x : 2x3 + x2 ≥ 0 ∧ 2x2x3 + x2
3 − 6x2

1x3 + x2
2 − 2x2x

2
1 + x4

1 = 0}
St3 = R3

Using our notation, we have that St1(x) ≡ (x2−x2
1 = 0) ∧ (x3 = 0), St2(x) ≡ (2x3+x2 ≥ 0) ∧ (2x2x3+

x2
3−6x2

1x3 +x2
2−2x2x

2
1 +x4

1 = 0) and St3(x) ≡ (0 = 0). We also introduce Ŝti = Sti−Sti−1, i = 1, 2, 3.
The family of controllers that achieve finite time global attractivity of the origin is given below:

u(x) = any real root u to

0 ,if x ∈ St0



(x1 + u = 0) ∧ (−x2 − 2x3 + u2 = 0) ,if x ∈ Ŝ1

(x3 − (x1 + u)2) = 0) ∧ (−x2 − 2x3 + u2 = 0) ,if x ∈ Ŝ2

(2(−x2 − 2x3 + u2) + x3 ≥ 0)∧ ,if x ∈ Ŝ3

(2x3(−x2 − 2x3 + u2) + (−x2 − 2x3 + u2)2

−6(x1 + u)2(−x2 − 2x3 + u2) + x2
3−

2x3(x1 + u)2 + (x1 + u)4 = 0)

(22)

The second step is to test, using the ε− δ definition if there exists a controller in the family (22) which
is also stabilizing. The answer to this question was not possible to solve using the version of QEPCAD
that the authors had. However, we show below that we do not have to resort to QEPCAD in order to
obtain affirmative answer to this question. However, stability of all controllers in the family (22) can be
deduced.

The control u is obtained as a real solution to a set of polynomial equations if x ∈ Ŝ1 or Ŝ2. On the
other hand, a polynomial equation and an inequality should be solved for x ∈ Ŝ3. We can first solve the
equation and then check which solutions satisfy the inequality. Notice that any controller u = u(x) in
the family (22), must satisfy an equation of the form:

umk + ak
mk−1(x)umk−1 + . . . + ak

1(x)u + ak
0(x) = 0, x ∈ Ŝtk, k = 1, 2, 3

For any fixed x ∈ Rn we let r(u) = umk and p(u) =
∑mk−1

i=0 ak
i ui. All roots of r(u) = 0 are equal to

0. If we regard the (analytic) function p(u) as a perturbation to the original (analytic) function r(u),
the Ruche’s Theorem [15] states that all roots to r(u) + p(u) = 0, denoted as ui, are inside a ball
Bε = {u : |u| < ε} if on the boundary of the ball u = ε, we have that p(ε) < r(ε). This can be used
to show that ∀εk > 0,∃δk > 0 such that if x ∈ Ŝtk and ||x|| < δk then ||u(x)|| < εk. Finally, using
an induction argument, it can be shown that any controller in the family (22) renders the closed loop
system globally stable.

Although we could not solve the stabilizability problem using the “brute force” approach of Section 4,
QEPCAD was still able to provide us with enough information to design a family of stabilizers (22) for the
system, which could not be obtained by any other method. QEPCAD is an interactive package [6] and its
efficiency can be greatly improved if a problem is reformulated. Moreover, whenever a theoretical result
which simplifies computations can be used, one should use it, as it was the case in the above example.
In this sense, the procedures we presented can be regarded as a brute force approach since they rely
entirely on the computational capabilities of QEPCAD. Combining QEPCAD with available theoretical
results that exist in the literature can enhance our ability to design new classes of stabilizing controllers
for the class of polynomial systems. To cover all possibilities, however, appears to be impossible in this
note and the example is supposed to illustrate one such situation.

7 Conclusion

In this paper, we have presented a novel approach to testing stability and stabilizability for a class of
polynomial discrete-time systems. The symbolic computation approach based on QEPCAD offers several
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possibilities to tackle the stability/stabilizability problems. We presented solutions to stability, stabiliz-
ability and constrained stabilizability problems for polynomial systems. The constrained stabilizability
problem arises in the context of stability of zero output constrained dynamics. Constraints on states
and controls and MIMO systems can be tackled in a straightforward way. Computational complexity
of the problem is very large but non-trivial problems can be tackled in this way. We emphasize that
utilizing the structure of a polynomial system and perhaps some other tools, we may be able to reduce
the computational complexity.
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