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1.2 ' ' ' an originally nonchaotic system chaotic [8]) for some nonconventional
1F applications is an even more interesting subject for future research.
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stant 3 such thatl < 3 < qexp[2br/3 + b*]. Then, de-
fine © 2 (1/7)In(3/q), which satisfies3/e"™ = ¢ < 1 and
0 < u < (2b/3+1%). Since
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- o» Output Feedback Stabilization of a Class of Wiener Systems
the infinite series 352, (a7 e’*7 /") converges. This shows that the
conditions of Theorem 1 are satisfied, so that the conclusions of The-
orem 1 hold.

Remark 2: Itis clear that, for the controlled system (3), ifthe control  apstract—A globally stabilizing output feedback controller is designed
gains{g:. } satisfy the conditions of Theorem 1 or Corollary 1, then thér a class of continuous-time Wiener systems. The Wiener systems we con-
chaotic state of the pendulum system can be driven to its zero equilisier consist of a linear dynamical block and an output polynomial nonlin-
rium. Moreover, the controlled system (3) is eventually exponentialgﬁrlty connected in series. The (hybrid) controller consists of three modes

icall | f operation which are periodically applied to the system. The controller
asymptotically stable. ) . achieves a dead-beat response of the closed-loop system.

Example 1: For (3), if we take the contrak(?) with g, = (1 —

(1/2%))h, namely

2
_ in
’3(i+1) a?ciur (,%/31'

D. Nesic

Index Terms—Dead-beat, hybrid, output feedback, stabilization, Wiener
systems.
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u(t) =

i <1 - Zik) hé(t — kT)

k=1
then we haver; = (7/2)(h — g:) = (wh/2"""). Obviously,  This work is motivated by the need to further understand stabiliza-
|(@it1/ai)] = 1/2 < 1.1t then follows from Corollary 1 that the (jo ysing partial state information, which is an issue that is at the core
chaotic state of the pendulum system is driven to its zero equilibriugl ¢,rrent control theory research. While this question is well-under-
and the controlled system (3) is eventually exponentially asymptolifooq for linear systems, it is very difficult to deal with in a general
cally stable. This control process is visualized by Fig. 2. nonlinear situation. For instance, in contrast to linear systems, for gen-
eral nonlinear systems it is in general not true that controllability and
V. CONCLUSIONS observability suffice for the existence of a (dynamic) output stabilizer.

In this paper, we have developed a new impulsive control meth}[16]. necessary and sufficient (but, except for certain special cases,
for chaos suppression of a periodically forced pendulum system. Soﬁ];e[l_n’ hard to check) conditions for dynamic output reggl_atlo_n were
simple and easily verified sufficient conditions for driving the chaotiebta_'ned' Some recent references on the problem'of stabilization using
state to the zero equilibrium have been presented, and some critBfgial state feedback are [1]-3], [9], and [18]. Since the problem is

for eventually exponentially asymptotical stability of the controlled® difficult to deal with in general, it appears to be reasonable to try

system have been established. This work provides a rigorous theoretical

analysis to support some early experimental observations on impulsiv&tanuscript received September 17, 1999; revised March 20, 2000. Recom-
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to understand it in particular situations of practical importance, such@g, =). If constant input.(¢) = ¢1, ¢ > 0 is applied to (3), the so-

the class of Wiener models considered here. lution that emanates fromis denoted ag(t, =, c1). We also use no-
Wiener models consist of a linear dynamical block connected in sation z(¢, z, ¢;) andy(¢, z, c1), which are, respectively, the output

ries with a static (output) nonlinearity. The general continuous-tima the nonlinear system and output of the linear subsystem atitime

(SISO) Wiener model has the following form: that emanate from initial stateand with the control input(t) = ¢ .
z=Azx +bu (1) Given arbitrary real numbers andc:, we introduce the following set
2= f(y) = f(ca) @) of statesY[c1 : 2] := {x € R": y(¢t, x, ¢1) = 2, VE > 0}.

wherexr € R”, u, y, = € R are, respectively, state of the system, con- Definition 1: A controller stabilizes (3) if the following hold:

trol input, output of the linear subsystem, and output of the nonlinear 1) The origin is an equilibrium of the closed-loop system, that is

system and (y) is a static nonlinearity. A discrete-time version of the o(t, 0) =0, vVt > 0.

model (1), (2) is also often used in the literature. 2) For each initial statex(0), the closed-loop state satisfies
Wiener models have a long and rich history in the control systems  limi—o |¢(f, 2(0))] = 0.

literature and we review briefly some of the related results. Wiener 3) Foreactr > 0 there is somé > 0 such that, ifz(0)| < 4, then

models often arise from the so called “black-box identification” of non-  the closed-loop state satisfies thatt. +(0))| < =, V# > 0.

linear systems, which has been described in detail in the survey papers O

[4] and [5]. Observability of Wiener models with the output nonlinear- In order to keep the formalism as simple as possible, we follow the

ities f(y) = signy) andf(y) = safy) was addressed, respectivelypresentations in [8] and [10] (see also [10, Remark 1]) and we do not de-

in [6] and [7]. Our work is most closely related to the results of [8] anfine precisely the general meaning of “controller” and “closed-loop be-

[10]. In[8] a stabilizer was designed for Wiener models with output satavior.” It will be clear from our constructions how one could represent

urating nonlinearity, that ig(y) = saty). Reference [10] deals with our controller as a dynamic time-periodic “sampled-data like” system

design of an input-to-state stabilizer for Wiener models with positivghich operates on the continuous-time system (3). The following def-

outputs and measurement disturbantfs other words model (1), (2) initions are needed in the sequel.

is considered where= |y+d|]. Finally, some related work on analysis  Definition 2: The system (3) is O-state detectable if foralsuch

of controllability and observability of several classes of Wiener—Harthat (¢, ., 0) = 0 we have that the following hold:

merstein models can be found in [11]-[14]. 1) limy—oo |6(t, z, 0)] = 0;

The output feedback controller presented in this paper stabilizes2) for anye > 0 there existss > 0 such thatlz| < ¢ implies
under appropriate conditions Wiener systems of the form (1), (2) with  |¢(¢, =, 0)| < €, V¢ > 0. O
polynomial output nonlinearityf(y) = >_;-, aiy", i € R). Dueto  pefinition 3: The system (3) is O-state observable f, «, 0) =
different output nonlinearities, the design in [8] and the one presenigdy; > g — , — 0. O

here are notably different. On the other hand, results presented in [10}y yse the following assumptions and lemmas in the sequel.
(for the case without disturbancég) = 0) are more closely related to A1)

our work. In fact, the stabilizers for the class of systems considered in )
[10]|_can bte t_eas:clilhmcfndlfled’ to_apglr;’i tg ’W|e£ler iys:]e_ms th;_se Ioutput A3') The system (3) is O-state detectable.

nlon |nefar| ytls otthe sznf(!fj)h— Y T,hm Ef ’Vrhlc IS ?tpa:( It(;]u ar  A3”) The system (3) is O-state observable.

class ot systems considered here. 1heretore, the resufts ot ine presen 3) Either A is nonsingular or 0 is the unique real root of
paper can be regarded as an alternative approach for stabilization of the F()=0

class of systems considered in [10]. More importantly, the stabilizing . ) .
controller presented in this paper is applicable to a more general claskémma 1 (A2 and A3= A3'): If (4, c) is observable and the

of Wiener models with arbitrary polynomial output nonlinearity ofystem @)is Q-state detect_able then (3) is 0-s_tate observable.J
the form f(y) = Zf:l aiy', a; € R. However, our controller may . Proof:_ Since the solutions _of (3) are con_tlnuous and the polyno-
not perform well when the output is corrupted with measureme 'a,l fls)isa contlnuou:s function that has isolated real rdotsc
disturbances (whereas the controller in [10] is designed to deal with ? EN{L 2,--+, NV}, N < L, we have that(t, », 0) = 0 <
disturbances) and this may be an interesting topic for further researkt: Ui, X[0: £:]. Since A3 holds, we can state a stronger claim.

/ T = a ’ :
The paper is organized as follows. In Section Il we present and com-If A3’ holds there(t, x, 0) = 0 < = € A0 : 0].

ment on definitions and assumptions. In Section Il we present the mair{<t:) IS trlvml_ an:j we csoncentraIE Otntlﬁl Oﬁ:@)ésWeousedgontr%q!c-
result with the proof. A summary is given in the last section and sevefgi" to prove this claim. Suppose that there ex # 0 andz €

technical lemmas are stated with proofs in the Appendix. such that(t, z, 0) = 0 = N 6. X[Q : (] and the system is 0-state
detectable. Then the following implications hold:

z is the only measured variable.
(A, b, ¢) is a minimal triple.

Il. PRELIMINARIES 2t 0, 0)=0=co(t,x, 0)=L(,  Vt>0

]

Consider the system = |o(t, z, 0)| > H >0, vt > 0.
F=dvt b Hence,lim;— |¢(t, =, 0)] > |{/c| > 0, but this contradicts as-
==fly) = f(‘“”_) ) 3 sumption A3 and proves the claim. Using the claim we can write

wherex € R", u, z, y € R are, respectively, the state, input, output

of Wiener system, and output of the linear subsystem Asd = 2(t, #,0)=0,Vt >0 y(t, x,0)=0,Vt>0. 4)

Zle a;s', a; € R. Itis assumed that the polynomié(s) is non- We again use contradiction to prove that the systems is 0-state observ-
trivial, that is there exists € {1, ---, L} suchthat;; # 0.|-| denotes able. Suppose that the system is not O-state observable and A2 holds.
the absolute value of a number or the norm of a vedter| denotes Then, there exists* # 0 such that:(¢, z*, 0) = 0, V¢ > 0. This

the norm of a matrix. We denote controllability and observability mamplies [using (4)] thay(t, «*, 0) = ce2* =0, Yt > 0. However,

trices for the triple( 4, b, ¢), respectively, as( A4, b) andO( A4, ¢). this contradicts observability ¢f, A) sincex™ # 0. Q.E.D.
Denote the trajectory of (3) at time starting from the initial state Lemma 2 (if A2, then A3< A3): Suppose thatA, c) is observ-

and under the action of input, « asé(t, x, u, q). When the con- able. Then, the system (3) is O-state observable if and only if either 0
trol inputupo, ;1 is clear from the context, we use the shorter notatiois the unique real root of (-) = 0 or A is nonsingular. O
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Proof: If 0 is the unique real root of (-) = 0 it is obvious that 1) In Mode 1, one applies a zero control and measures the output

observability of A, c) is equivalent to O-state observability of (3). Sup- z(t) = z(t, x(0), 0), ¢t € [0, nT]. The measured output is

pose now thayf(-) = 0 has at least one real roet other than zero. used to:

We need to show that nonsingularity 4fis equivalent to O-state ob- a) detect if the initial state(0) = 0;

servability of (3). b) to compute a finite set, denoted &5 of » dimensional
Necessity: Supposed is nonsingular but (3) is not O-state observ- vectors such that if (0) # 0, thenz(0) € X.

able. This implies that there exists such thatex(t) = cetta” = 2) In Mode 2, we apply a piecewise constant control inpiI” +

z* # 0. Differentiate both sides with respect toand we obtain t) = u(k) = const., k=n, ---, 2n — 1, t € [0, T) which is
At 4 % . . . . ko / : b ‘3 ’ s v )

ce™Aa” =0, ¢ > 0, which from observability impliesiz* = 0 and computed using(t), ¢ € [0, nT] and the model of the system.

sinceA is nonsingular we have® = 0, which is a contradiction. The control input is such that;

Sufficiency: Supposet is singular andx(t) = ce**z* = 2* £ 0.
Then there exists™ # 0 such thatv™ = z* and Av* = 0, which
contradicts O-state observability sine@)) = v* yieldscaz(t) = 0.

We prove existence af* by contradiction. Suppose that there does not
existsv™ # 0 such thatv™ = z* andAv* = 0. Then the subspace
{v: Av = 0} must be confined to a plan#; parallel to the plane
2)1 C:v EUZ i S:m%e}o Elof/\llyev; E{(L)}\;vf iav(i) Eng}fr:geT\e?ﬁg 2nT to the origin in over the time intervgnT, 3nT], that is

eigenvectors corresponding to 0 eigenvalues are in the null space of z(3nT) = 0.
contradicting observability o4, ¢). Q.E.D. Remark 2: Modes 1 and 2 act as a dead-beat observer that computes

Remark 1: In the sequel we design a controller that stabilizes (épe initial stater(0) ofthe_ system from the measurements in finite tir_ne
under Assumptions A1, A2, and Aand we briefly comment on each (In 2T s). Note that this is not a pure sampled-data controller since
of the assumptions. Assumption Al indicates that we deal with sta}€ Use=(*). € [0. nT] and not onlyz(kT'), k = 0, ---. n — 110
lization of the system (3) using only the output measuremenits- econstruct the initial state. U
sumption A2 could be relaxed and our controller modified to requi
only that(A, b) is stabilizable andc, A) detectable, which are ob-
viously necessary conditions for the stabilization of (3) using output We now present the details. The outpit), ¢ > 0 is measured
feedback (this can be seen by considerfiig) = s and using the cor- and used to compute the control signal which is a piecewise constant
responding linear results). We use Assumption A2 only to simplify tHenction of timeu(t) = w(kT) =: u(k) = const., t € [kT, (k +
exposition. Assumption A3is a necessary condition for stabilization1)Z"). The discrete-time model of the plant that describes the systems
using output feedback, as it was shown in [16]. Therefore, the stabiligrsampling instants7" is

a) ifz(0) =0thenu(k)=0,k=mn, -, 2n —1;
b) if #(0) # 0 then we can use the measured outputs
2(kT), k = n,---, 2n — 1 in a test designed to select
one vector from the sett’ such that:(0) = 7.
3) Mode 3 of the controller acts as a linear dead-beat controller
that steers the state of the system from the (initial) state at time

r -
E. Controller Description

that we design is universal in a sense since it can be modified to sta- z(k+ 1) =Faz(k) + gu(k)
bilize any Wiener system (3) that is possible to stabilize using output 2(k) = f(ca(k)) (5)
feedback. AT I

. L ) ) . where F = e 4 e”*bds. We use notation:(k) :=
Lemma 1 is used to simplify the presentation since |tshowsthatthg;&T) y(k) == y(KT), =(k) := =(kT). Since assumption A2 holds
is no loss of generality if instead of Assumption’Age use Assump- without loss of gjeneraylity we can assume thids such that F, ¢, c)

tion A3". Moreover, Lemma 2 shows the equivalence of ASSUMPLORS, minimal triple antg + 0. To simplify exposition we describe only
A3"” and A3. Hence, we assume in the sequel that Assumptions Ale first cycle of the periodic controller.

A2, and A3 hold. O Mode1¢e[0,nT]): Applyu(k) =0,k = 0,1, -,n —1
and measure(t) = z(t, «(0), 0), ¢t € [0, nT]. The measured output
z(t) is used to compute a variabtg (that has value either 0 or 1) and
a finite set ofn dimensional vectord’ in the following manner:

The controller we design is a periodically time-varying “sam- Computation ofro

. M AIN RESULT

pled-data like” scheme, which produces a dead-beat response of the LT
. S ; . 0, if |2(s)| ds = 0;
closed-loop system. In this sense it is similar to controllers designed in o
[8] and [10]. The controller acts by cycling through three basic steps 00 = T ®)
or “modes,” each of the same duratiofi’. T is a strictly positive real 1, if z(s)|ds # 0.
. . h . o
number which can be thought of as a sampling period ransl the Computation ofV: For each:(k), k € {0, 1, ---, n— 1} we form

order of the plant. We first describe the purpose and role of each of & following set of real numbers

modes and then present the details. For simplicity, we describe only i ¢ R £ i) = ) ip =1, e 1)
the first cycle on the time intervdd, 3n7] (Mode 1-Mode 2—Mode {68 e R J(&5) = 2(h). g =1, - I ‘o oin
3) but the actual controller is periodic since after Mode 3 we switcf]°t tThatlk < L). Form the column vectory; := (& &' -
back to Mode 1 on the time intervégn T, 4nT], then to Mode 2 on n -1 )", for all possible combinations of. € {1, 2. ---. lx}, k =
the intervall4n T, 5nT7], and so on. We note that the periodicity of the): **~» » — 1 and note that there is at most < L" such vectors
controller is not necessary to prove stability since we can apply anottgriS the degree of the polynomial amdis the order of the system).
scheme which applies Modes 1-3 only once over the intéivai,7] COmpute the vectors 1 X

and thenu = 0, ¢t > 3nT. However, we use the periodic controller &= 07 (F, c)ny, Jj=12,--,L

since it rejects any disturbance that acts over a finite time intervilhere O(F, ¢) is the (nonsingular) observability matrix for the pair
(nonpersistent disturbance) whereas the other scheme does not(/&nc). Finally, we introduce the set

interesting open problem is to redesign the presented controller to Xi={&:2; #0, j=1,2,---,L}. @)
achieve good performance under a larger class of disturbances, sudRemark 3: The system is assumed O-state observable (Assumption
as input-to-state stability of the closed loop for bounded (and perhap3) and we have thai; = 0 if and only if x(0) = 0. Hence, the

persistent) measurement disturbances (see [10]). variables, acts as a “0-state detector.” Alsoif0) # 0, thenz(0) €
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X and hencet’ is a nonempty set. Note that the zero vector is never Theorem 1: If Assumptions A1, A2, and A3 hold then the periodic
included in the seft. ConsequentlyX may be an empty set when controller consisting of Modes 1, 2, and 3 stabilizes (3). |
L=1andi = 2(0) = 0! Note also thatg = 0 if X’ = (. O Proof: First, we show that the origin is an equilibrium for the
Mode 2 ¢ € [»T, 2rT]): In Mode 2 we apply the sequence ofclosed-loop system. lf(0) = 0, theng(t, 0) = 0, V¢ € [0, nT].
controlsu(k) = axv, k = n, n+ 1, ---, 2n — 1 and measure the Moreover, we have that, = 0 and the sequence (10) is a zero se-
sequence of outputs k), k = n + 1, - - -, 2n which is used in a test quence, which implieg(¢, 0) = 0, ¢ € [»T, 2nT]. This implies that
to single out a vectat; in the set¥’ such that:(0) = &;. The choice w(k) =0, k = 2n, ---, 3n — L and¢(t, 0) = 0, ¢t € [2nT, 3nT].
of a;. andv, as well as the test are discussed below. By induction we obtain that(¢, 0) = 0, V¢ > 0, and the first condi-
Choice ofa: «y are chosen so that tion of Definition 1 holds.
2(k) = F(cF*2(0) + v). Vke{n+1,---,2n}. (8) Since for any initial state:(0) we havex(3n) = 0, one can con-
clude (using an argument similar to the one above) that the origin of

Lemma 3 in the Appendix guarantees thiat € R there existu . oo .
P 9 € € the closed loop system is globally attractive in finite time, that is

R,k =n,---, 2n — 1 that satisfy (8).

Choice ofv: To choose appropriatewe first introduce o(t, 2(0)) =0, Vit >3nT, V(0) €R". (12)
min |n,], if o0 = 1 Henpe, the seccﬂd condition of Definition 1 holds.
o= {njex Sinceu(k) < Kol|z(0)|, Yk =0, 1, .-+, 2n—1 (from Remark 4),
1, if oo = 0. there exists a positive constaht; such thatlz(2n)| < K;|z(0)|.
SupposeY is nonempty and form the set Moreover, sincé F, g) is controllable and” nonsingular there exists
Vi={veR: f(Cka to) = f(Cka +o), a positive constank’, such that we have

: ; w(k)| < ||ICT(E, OIE™|||x(2n
e gt (k) < [ (B, )] 1E" ()

—1 NI (. — o
jEe{l o Ll ke {n+1, -, 20} < €N E [ IF" K [(0)] = Ka](0)]  (13)

for k. = 2n,---,3n — 1. Using the inequality above and Re-
The set is finite (this follows from Lemma 4 in the Appendix and themark 4, we conclude that there exists a positive numiiersuch
definition of the set). We intrgduce the.variable that |u(k)| < Ki|=(0)], Yk = 0,1,---,3n — 1 (just define
e, o], if oo =1 Ky := max{K,, K>}). This further implies that there is a positive
72 = ) it o0 = 0 real number, such that
From Lemma 5 in the Appendix it follows that if(0) # 0 then for lo(t, 2(0))] < Ka[2(0)], Vit €0, 3nT]. (14)
anyv ¢ V we have that there exists a unigife € X' such that (k) = By combining (12) and ,(14) we haye the{tp(.t., 2(0))] S
F(eF*#* +v), Yk =n+1, -, 2n, and moreover(0) = . It K> |z(0)], VYt > 0. Finally, the third condition of Defini-

tion 1 holds sincer e > 0 there exist$ > 0 such thafx(0)| < 6

is also proved in Lemma 5 that an appropriate choice isf S . i
implies|o(t, 2(0))] < e, V¢ > 0 (just takes = ¢/K.). Hence, the

v = 0.5 min{oo, 1, 2}. 9)

controller is stabilizing for (3). Q.E.D.
The sequence of controls that we apply in Mode 2 is

u(k) = 0.5a4 min{og, o1, 02}, k=n,---,2n—-1. (10) IV. SUMMARY

Test: If 7o = 0, thenz(0) = 0. 1f oo = 1, then for everyi; € X A globally stabilizing output feedback controller is designed for a
compute class of Wiener systems that satisfy the following conditions: the linear
G(k) == f(cF*i; +0.5 min{1, o, 02}), E=n+41,---,2n subsystem is controllable and observable; and the Wiener model is
and pickis € X' such that the measured outputg) and computed O-state detectable. The controller is periodically time-varying “sam-
¢, (k) satisfy the test pled-data like” scheme which achieves a dead-beat response of the

(k) = ¢ (k), Vh=n+1, -, n. (11) closed loop-system.
Lemma 5 in the Appendix and our choicewfjuarantee that there is APPENDIX
only onei; € A satisfying (11) and we let(0) = ij.

Remark 4: From Lemma 5 in the Appendix, we can see that any Lemma 3: Suppose thai(k) =0, Yk =0, 1, ---, n — 1. Given
sequence of controls(k) = axv such thaw ¢ V can be used inthe anyv € R there existwy, € R, k = n, ---, 2r — 1 such that the
test above to pick the correct initial staté)) from the sett’. However, sequence of controls(k) = ayv, k = n, <+, 2n — 1 yields
in order to prove stability of the origin of the closed loop system we 2(k) = f(cF*2(0) + v), Vke{n+1, -, 2n} O
needed to introduce algg ando; in our definition ofv. The properties Proof: In order to have the desired sequence of controls notice
of v defined by (9) that are needed in the stability proof are as followthat the following matrix equation has to be solvablevin
If 2(0) = 0 thensy, = 0 and this impliess = 0. As a result, we ¢y 0 0 - 0 Ol 1
haveu(k) = 0, k = n, ---, 2n — 1. Moreover, since for arbitrary cFyg cg 0 - 0 Qnt1 1
2(0) # 0 we haver < 0.50; < 0.5]2(0)| then there exist&, > 0 . - . =1
(s)utih Fh?t;c:;in{(o) € R™ we have thatu(k)| < Ky|z(0)|, V& 5 cFT_’*_lg c_F’_‘*Zg_ CERg o Nawns, 1

Mode 3 ( € [2nT, 3nT]): Using the initial stater(0) that we and tf'lllls is sqtlglgd S|ance the Hﬁnkel matrix is invertible (because the
obtained in Mode 2 and the known sequence of conwdls), k& = san ng perlc_) IS chosen so thaty .7é 0). . Q'E'D'.

. emma 4:Consider an arbitrary nontrivial polynomial
0,1, ---, 2n — 1 we computer(2n). The sequence of controls that is _ L i !
applied in Mode 3¢(k), k = 2n, ---, 3n — 1) is computed as fol- J(s) = 3z @i’ Letey, c; € R be fixed. Then we have
lows: ’ o thatf(ci +u) = f(c2 +u), Yu .E.R if arld onlyifci = ca. O
’ " . o Proof: If ¢; = ¢2 = ¢, thenitis obvious thaf(c+ ) = f(c+
(w(2n)---u(3n —1))" = =C (F, g)F"«(2n) u), Yu € R. Suppose now that there exist # ¢, and a nontrivial

I, a;s' suchthatf(ci +u) = f(ea+u), Vu.
(F, g).Note thatF" is also nonsingular. This control sequence transfekdence, all coefficients of the polynomiaf§ci + «) and f(cz + u)
the statex(2n) to the origin innT" seconds, that is(3n) = 0. must be identical. Consider the coefficients that multiply* in both

whereC(F, g¢) is the nonsingular controllability matrix for the pair polynomialf(s) = 3
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polynomials. Then we obtain th#&tuz,¢1 + ar—1 = Larcs + ar—1, [13] ——, “Controllability for a class of simple Wiener—Hammerstein sys-
which imp”eSC1 =cs,a contradiction. Q E.D tems,”Syst. Contr. Letf.vol. 36, pp. 51-59, 1999.

. . o [14] ——, “Controllability for a class of parallelly connected polynomial sys-
Lemma 5: Suppose that(0) # 0, we apply the control sequence tems,"Math. Contr. Sig. Systvol. 12, pp. 270-294, 1999,

asinLemma3and ¢ V. Then there exists a uniqug € X’ such [15] E. D. SontagMathematical Control Theory: Deterministic Finite Di-
that mensional System&nd ed. New York: Springer-Verlag, 1998.
[16] ——, “Conditions for abstract nonlinear regulatiomform. Contr, vol.

R ar N (. . L« 51, pp. 105-127, 1981.
fleF ;4 v) = 2(k). Vi=n+l, » 2n. (15) [17] —, “Abstract regulation of nonlinear systems: Stabilization—Part Il,”

in Proc. Conf. Info. Sci. Sys®rinceton, NJ, Mar. 1982, pp. 431-435.
In particular, ifv = 0.5 min{o, 01, 02 },thenv € V and there exists  [18] A. R. Teel and L. Praly, “Tools for semiglobal stabilization by partial
auniquet} € X thatsatisfies (15). Moreover, we have thét= z(0). state and output feedbackSIAM J. Contr. Optimiz.vol. 33, pp.

Proof: Sincez(0) # 0, thenX’ is a nonempty set and(0) € 1443-1488, 1995.

X. Hence, there exists at least ofg € A such thatf(cF*i} +
v) = z(k), Yk = n+ 1, ---, 2n. Suppose now that there exist
&%, &7 € X, &% # @ suchthatf (cF &t +v) = f(cF*ef +v) =
z(k), Vk=n+1, ---, 2n. From the choice of the control sequence
(10) and Lemma 4 we have that this can happen if and onll?’f[i*j =
cF*#¥, Yk =mn, ---, 2n — 1. SinceF is nonsingular andF, ¢) is
observable, this implies that: = 27, a contradiction. Ifz(0) # 0
thenV is a finite nonempty set and we have = 1 (see Remark
3),01 > 0 andoz > 0 (by definition). From definition ofr» and
the set) it follows that (0, o2) NV = 0. Hence, if we choose = Abstract—\We obtain rational suboptimal continuous-time solutions to
0.5 min{oo, o1, 02} thenv € (0, 0.502] C (0, o2) and hencer ¢  some optimal control problems specified via time domain performance cri-

V. Now itis obvious that (the uniqué); € X’ that satisfies (15) is such teria- These include£, and £, norms and peak overshoot. The approach
thatz(0) = #* - QED uses linear semi-infinite programming to compute weights for a given finite
oA _— ] . . . .

set of rational basis functions and makes the best possible use of the basis.
The closed-loop transfer functions obtained satisfy appropriate interpola-
tion constraints for internal stability and the formulation allows additional
linear constraints to be incorporated.

. The author would like FO thank E. D. Sontag for.bringirllg this ques- Index Terms—Feedback systemsl; optimization, interpolation, linear
tion to the author’s attention and for some useful discussions. Also, #@ni-infinite program.

author wishes to thank an anonymous reviewer for suggesting and pro-

viding the statement and proof of Lemma 2.
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