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Department of Electrical

and Electronic Engineering
The University of Melbourne

Victoria 3010, Australia
d.nesic@ee.mu.oz.au

Lars Grüne
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Abstract: Given a continuous-time controller and a Lyapunov function that shows global asymptotic
stability for the closed loop system, we provide several results for modification of the controller for sampled-
data implementation. The main idea behind this approach is to use a particular structure for the redesigned
controller and the main technical result is to show that the Fliess series expansions (in the sampling period
T ) of the Lyapunov difference for the sampled-data system with the redesigned controller have a very special
form that is useful for controller redesign. We present results on controller redesign that achieve two different
goals. The first goal is making the lower order terms (in T ) in the series expansion of the Lyapunov difference
with the redesigned controller more negative. These control laws are very similar to those obtained from
Lyapunov based redesign of continuous-time systems for robustification of control laws and they often lead to
corrections of the well known ”−LgV ” form. The second goal is making the lower order terms (in T ) in the
Fliess expansions of the Lyapunov difference for the sampled-data system with the redesigned controller behave
as close as possible to the lower order terms of the Lyapunov difference along solutions of the ”ideal” sampled
response of the continuous-time system with the original controller. In this case, the controller correction is
very different from the first case and it contains appropriate ”prediction” terms. The method is very flexible
and one may try to achieve other objectives not addressed in this paper or derive similar results under different
conditions. Simulation studies verify that redesigned controllers perform better (in an appropriate sense) than
the unmodified ones when they are digitally implemented with sufficiently small sampling period T .

Keywords: Controller design, asymptotic controllability, stabilization, sampled-data, nonlinear,
robustness.

1 Introduction

Design of a controller based on the continuous-time plant model, followed by a discretization of the
controller, is one of the most popular methods to design sampled-data controllers [3, 6, 13]. This
method, which is often referred to as emulation, is very attractive since the controller design is carried
out in two relatively simple steps. The first (design) step is done in continuous-time, completely
ignoring sampling, which is easier than the design that takes sampling into account. The second
step involves the discretization of the controller and there are many methods that can be used for
this purpose. The classical discretization methods, such as the Euler, Tustin or matched pole-zero
discretization are attractive for their simplicity but they may not perform well in practice since the
required sampling rate may exceed the hardware limitations even for linear systems [10, 1]. This
has lead to a range of advanced controller discretization techniques based on optimization ideas that
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compute ”the best discretization” of the continuous-time controller in some sense. A nice account
of these optimization based approaches for linear systems has been given in the Bode Lecture by
Anderson in [1] and later in the book [3].

Emulation has been proved to preserve a range of important properties for nonlinear sampled-
data systems in [13] if the discretized controller is consistent in some sense with the continuous-time
controller and the sampling period is small enough. Hence, in [13] all the classical discretization
techniques were shown to work for a large class of nonlinear systems under sufficiently fast sampling.
While the optimization based approaches could probably be carried out for nonlinear systems, we are
not aware of any results in this direction. This may be due to the fact that these approaches inevitably
require solutions of partial differential equations of Hamilton-Jacobi type that are very hard to solve.

In this paper we present a Lyapunov based framework for redesign of continuous-time controllers
for sampled-data implementation. We assume that an appropriate continuous-time controller u0(x)
has been designed together with an appropriate Lyapunov function V (·) for the closed-loop continuous-
time system. Then, we presuppose the following structure of the redesigned controller

udt(x) = u0(x) +
N∑

i=1

T iui(x) ,

where T is the sampling period and ui(x) are the extra terms that need to be determined through
controller redesign. This controller structure yields a particularly useful structure of the Fliess series
expansion (in the sampling period T ) of the first difference for V (·) along solutions of the sampled-data
system with the redesigned controller. The terms in the Fliess series depend explicitly on V , u0, the
continuous-time model and ui and they can be used to systematically compute corrections ui that
achieve a particular objective of the redesign.

We were motivated to exploit this particular structure of the controller for several reasons. First,
this structure was obtained in several different papers as an outcome of the design procedure. For
instance, in [16] this controller structure was obtained as an outcome of a backstepping design based
on the Euler approximate discrete-time model of the plant. In [2] this structure was obtained when
approximately feedback linearizing a nonlinear system via sampled-feedback. Note that we impose this
structure of the controller instead of obtaining it as an outcome of some design procedure. Furthermore,
a robotic manipulator example was considered in [14] where the Euler model was used to redesign a
continuous-time controller uct(x) in the following way udt = uct(x) + Tu1. Simulation studies in [14]
showed that this redesign yielded better behaviour of the sampled-data system. We emphasize that
[14] does not contain a systematic methodology for controller redesign, which is the purpose of this
paper.

We present results that achieve two different objectives. We emphasize that the method is much
more flexible and one can prove new results under different conditions or try to achieve other objectives
not addressed in this paper. The first objective is to make the first terms in the Fliess series expansions
more negative by choosing ui. This often leads to the correction terms of the form ”−LgV ” that are
known to be useful in robustification of continuous-time controllers by Lyapunov redesign (see, for
instance, [4, 20]). Moreover, we show for a particular class of (optimal) control laws under appropriate
conditions that we can always make the first two terms in the Fliess series expansions negative by
choosing u1. Note that in this case ui always depend on the Lyapunov function V (·) and its derivatives
with respect to x. The second objective is to make the first terms of the Fliess series expansions of
the first difference for V (·) along solutions of the sampled-data system with the redesigned controller
as close as possible to the first difference for V (·) along sampled solutions of the ”ideal” response
of the continuous-time system with the original controller. In this case, correction terms ui take
a completely different form and they do not explicitly depend on the Lyapunov function V (·) or
its derivatives. Numerous simulations illustrate that our redesigned controllers work better (in an
appropriate sense) than the original ones when they are implemented with sufficiently small sampling
periods.

The paper is organized as follows. In Section 2 we present the notation, main assumptions and
the problem formulation. Section 3 contains the main technical result on the Fliess series expansions
of the Lyapunov difference for the sampled-data system with the redesigned controller. These results
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are used in Section 4 to show two distinct ways to redesign continuous-time controllers. Numerous
simulations for different examples are given in Section 5. Conclusions are presented in the last section.

2 Preliminaries

The set of real numbers is denoted as R, the set of natural numbers (excluding 0) as N and we use
N0 = N ∪ {0}. A function γ : R≥0 → R≥0 is called class K if it is continuous, zero at zero and strictly
increasing. It is of class K∞ if it is also unbounded. A function β : R≥0 × R≥0 → R≥0 is called class
KL if it is continuous, of class K in the first and strictly decreasing to 0 in the second argument. The
notation |·| always denotes the Euclidean norm. We will say that a function G(T, x) is of order T p

and we write G(T, x) = O(T p) if, whenever G is defined, we can write G(T, x) = T pG̃(T, x) and there
exists γ ∈ K∞ such that for each ∆ > 0 there exists T ∗ > 0 such that |x| ≤ ∆ and T ∈ (0, T ∗) implies∣∣∣G̃(T, x)

∣∣∣ ≤ γ(|x|).
Consider the system

ẋ = g0(x) + g1(x)u , (2.1)

where x ∈ Rn and u ∈ R are respectively the state and the control input of the system. We will assume
that all functions are sufficiently many times (r times) continuously differentiable. For simplicity,
we concentrate on single input systems but the results can be extended to the multiple input case
u ∈ Rm,m ∈ N.

For several classes of systems (2.1), there exist nowadays systematic methods to design a continu-
ous-time control law of the form

u = u0(x) , (2.2)

and a Lyapunov function V : Rn → R≥0 and α1, α2, α3 ∈ K∞ such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (2.3)
∂V

∂x
[g0(x) + g1(x)u0(x))] ≤ −α3(|x|) ∀x ∈ Rn . (2.4)

Examples of such methods are backstepping [12, 7] and forwarding [20] or methods based on control
Lyapunov functions, such as Sontag’s formula [9].

However, in most cases the controller (2.2) is implemented digitally using a sampler and zero order
hold. Since the controller (2.2) is static, it is often proposed in the literature to simply implement it
digitally as follows (see [13]):

u(t) = u0(x(k)) ∀t ∈ [kT, (k + 1)T ),∀k ∈ N0 . (2.5)

It was shown, for instance, in [13] that this digital controller will recover performance of the continuous-
time system in a semiglobal practical sense (T is the parameter that needs to be chosen sufficiently
small). However, this implementation typically requires very small sampling periods T to work well
and, hence, it often does not produce a desired behaviour for a fixed given T . The purpose of this
paper is to address the following problem:

Assuming that an appropriate continuous-time control law u0(·) and a Lyapunov function
V (·) have been found for the continuous-time system (2.1), redesign the controller u0(·)
so that the redesigned controller performs better than (2.5) in an appropriate sense when
implemented digitally.

In our redesign technique we will aim at improving the quantitative behavior of the asymptotic stability
property in terms of the transient behavior and overshoots and the attraction speed. However, as a side
effect, we also expect that our procedure enlarges the domain of stability of the semiglobal practical
stability property with respect to the emulated controller (2.5). These multiple objectives are the
reason for the slightly vague phrase “appropriate sense” in the problem statement, above.

In order to precisely state in which sense we can expect to improve the systems’s quantitative
behavior with our approach we will below introduce our main Assumption 2.1. Before doing this, we
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need to recall some standard facts about Lyapunov functions. It is a well known fact (see [15]) if (2.3)
and (2.4) hold, then there exists a function β ∈ KL such that solutions of the closed loop system (2.1),
(2.2) satisfy:

|x(t, x0)| ≤ β(|x0| , t) ∀x0 ∈ Rn, t ≥ 0 . (2.6)

Moreover, the function β is completely determined by α1, α2, α3 in the following manner. Consider
the solution of the following scalar differential equation1:

ẏ = −α3 ◦ α−1
2 (y) y(0) = y0 . (2.7)

Proposition 4.4 in [15] states that there exists σ ∈ KL such that the solution y(·) of (2.7) equation is
defined for all t ≥ 0 and it can be written as y(t) = σ(y0, t). Finally, using a standard proof technique
and comparison principle we can write that:

β(s, t) := α−1
1 (σ(α2(s), t)) . (2.8)

Based on these considerations we can now state our main assumption.

Assumption 2.1 Suppose that a continuous static state feedback controller (2.2) has been designed
for the system (2.1) so that the following holds:

(i) There exists a Lyapunov function V (·) and α1, α2, α3 ∈ K∞ satisfying (2.3) and (2.4).

(ii) The function β ∈ KL defined in (2.8) satisfies all performance specifications in terms of overshoot
and speed of convergence.

(iii) The controller (2.2) is to be implemented digitally using a sampler and zero order hold, that
is for a given sampling period T > 0 we measure x(k) := x(kT ), k ∈ N0 and u(t) = u(k) =
const., t ∈ [kT, (k + 1)T ), k ∈ N0.

Remark 2.2 It may seem strange that we use both items (i) and (ii) in Assumption 2.1, since either
(i) or (ii) may seem enough. However, in our approach we will use the Lyapunov function V (·) to
carry out the redesign of the control law and the objectives we use in redesign require us to use both
items in the assumption: all our redesign approaches aim at optimizing the decay of the Lyapunov
functions along the sampled–data trajectories according to different criteria, like, e.g., fast decay of
V or recovery of the continuous time decay rate. Obviously, to carry out such redesign we need to
have a Lyapunov function satisfying item (i) of Assumption 2.1. On the other hand, for our controller
redesign objectives to be plausible we also need to assume that item (ii) of Assumption 2.1 holds,
because with our Lyapunov function based approaches we arrive at sampled–data controllers which
can only optimize those quantitative properties which are already “encoded” in V via the KL function
β from (2.8). In other words, the bound on the continuous-time closed-loop response obtained from
the Lyapunov function is regarded as “ideal” or a “reference” stability bound that we try to either
optimize or to recover as much as possible by redesigning the controller. In general, finding a Lyapunov
function that satisfies both items (i) and (ii) of Assumption 2.1 is hard but in some cases it is possible,
cf. the examples in Section 5.

The exact discrete-time model of the system with the zero order hold assumption is obtained
(whenever it exists) by integrating the equation (2.1) starting from x(k) with the control u(t) =
u(k), t ∈ [kT, (k + 1)T ):

x(k + 1) = x(k) +
∫ (k+1)T

kT
[g0(x(s)) + g1(x(s))u(k)]ds ,

which we shortly write as
x(k + 1) = F e

T (x(k), u(k))
1Without loss of generality we need to assume here that α3 ◦ α−1

2 (·) is a locally Lipschitz function (see footnote in
[15, pg. 153]).
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with

F e
T (x, u) :=

∫ T

0
[g0(x(s)) + g1(x(s))u(k)]ds (2.9)

where x(s) denotes the corresponding solution of (2.1) with x(0) = x. We use this notation in the
sequel and for given x ∈ Rn, u ∈ u and T > 0 we say that F e

T (x, u) is well defined if the solution of
(2.1) with initial value x and control u exists on the interval [0, T ].

3 Fliess expansion of the Lyapunov difference

In this section we propose a particular structure for the redesigned controller. This structure of the
controller yields an interesting structure of the series expansion of the Lyapunov difference along
the solutions of closed loop system with the redesigned controller and will allow us to redesign the
controller in a systematic manner. We propose to modify the continuous-time controller as follows:

udt(x) :=
M∑

j=0

uj(x)T j , (3.1)

where u0(x) comes from Assumption 2.1 and uj = uj(x), j = 1, 2, . . . ,M are corrections that we want
to determine.

The idea is to use the Lyapunov function V as a control Lyapunov function for the discrete-time
model (2.9) of the sampled-data system with the modified controller (3.1) where we treat ui, i =
1, 2, . . . ,M as new controls, and then from the Lyapunov difference:

V (F e
T (x, udt(x)))− V (x)

T
(3.2)

determine ui, i = 1, 2, . . . ,M .
Since the exact model F e

T (x, u) in (3.2) is in general not possible to compute exactly we will have
to use in an approximation technique for the controller redesign. Results in [17, 19] show that if we
use (3.1) and we can show that it stabilizes any reasonable (more precisely consistent2) approximate
model of (2.9), then the exact model (2.9) will be stabilized by the same controller for sufficiently
small sampling periods T . In our approach in this paper we do not explicitly use such consistent
discrete time approximations. Instead, below we present a series expansion of the Lyapunov difference
(3.2) in T that is particularly useful for controller redesign. The expansion is based on truncated
Fliess series and the special structure of the modified controller (3.1). In the context of discrete time
approximations, the truncated Fliess series can be interpreted as a consistent approximation of the
Lyapunov difference which in our approach replaces the discrete approximation of the system itself.
It should, however, be noted that Fliess series approximations applied to the system itself can also be
used to construct consistent discrete time approximations, see [8] for details.

Theorem 3.1 Consider system (2.1) and controller (3.1) and suppose that Assumption 2.1 holds.
Then, for sufficiently small T , there exist functions pi(x, u0, . . . , ui−1) such that we can write:

V (F e
T (x, udt))− V (x)

T
= Lg0V + Lg1V · u0 +

M∑
s=1

T s[Lg1V · us + ps(x, u0, . . . , us−1)]

+G(T, x, u0, u1, . . . , uM ) , (3.3)

where G(T, x, u0, u1, . . . , uM ) = O(TM+1). �

Proof of Theorem 3.1: Consider, the solutions of (2.1) initialized at x(0) = x with some input u(·)
and with the ”output”

y(t) = V (x(t)) . (3.4)
2The notion of consistency is borrowed from the numerical analysis literature and can be checked easily for a given

approximate model.
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Then, for sufficiently small t, using the Fliess series expansions (see [5] or formula (3.7) in [9, Section
3.1]) we can write:

V (x(t))− V (x) =
∞∑

k=0

1∑
i0,...,ik=0

Lgi0
· · ·Lgik

V (x)
∫ t

0
dξik · · · dξi0 , (3.5)

where
∫ t
0 dξik · · · dξi0 are the so called iterated integrals (see [9, pg. 106]). Note that since we consider

single input systems we obtain m = 1 in [9, formula (3.7)] and the indices ik take values on the set
{0, 1}. The iterated integrals are defined as follows:

ξ0(t) = t

ξ1(t) =
∫ t

0
u(τ)dτ∫ t

0
dξik · · · dξi0 =

∫ t

0
dξik(τ)

∫ τ

0
dξik−1

· · · dξi0 .

Several integrals for the single input case are given below:∫ t

0
dξ0dξ0 =

t2

2
,

∫ t

0
dξ0dξ1 =

∫ t

0

∫ τ

0
u(θ)dθdτ

∫ t

0
dξ1dξ0 =

∫ t

0
u(τ)τdτ,

∫ t

0
dξ1dξ1 =

∫ t

0
u(τ)

∫ τ

0
u(θ)dθdτ.

If we write (3.5) for the case when t = T is sufficiently small and u(·) = u = const., then we have that

x(T ) = F e
T (x, u)∫ T

0
dξik · · · dξi0 =

T (k+1)

(k + 1)!
u(i0+···+ik) ,

and, hence, we can write:

V (F e
T (x, u))− V (x)

T
=

∞∑
k=0

1∑
i0=0,...,ik=0

Lgi0
· · ·Lgik

V (x)
T k

(k + 1)!
u(i0+···+ik) . (3.6)

Introduce now multinomial coefficients:(
n

n0 n1 . . . nM

)
:=

n!
n0!n1! . . . nM !

.

Then, from [11, Theorem 4.2] we can write for any ai ∈ R, i = 0, 1, 2, . . . ,M and n ∈ N:

(a0 + a1 + . . . + aM )n =
n∑

n0 = 0, . . . , nM = 0
n0 + . . . + nM = n

(
n

n0 n1 . . . nM

)
an0

0 · · · anM
M .

Hence, the following holds: M∑
j=0

ujT
j

(i0+...+ik)

=
i0+...+ik∑

n0 = 0, . . . , nM = 0
n0 + . . . + nM = i0 + . . . + ik

(
i0 + . . . + ik

n0 n1 . . . nM

)
un0

0 · · ·unM
M · T

∑M
j=0 jnj .

(3.7)
Substituting (3.1) into (3.6) and using (3.7), we can write:

V (F e
T (x, u))− V (x)

T
= H(T, x, u0, . . . , uM ) + O(TM+1) , (3.8)
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where H(T, x, u0, . . . , uM ) is equal to:

M∑
k=0

1∑
i0,...,ik=0

Lgi0
· · ·Lgik

V (x)
T k

(k + 1)!


∑k

j=0 ij∑
n0, . . . , nM = 0∑M
j=0 nj =

∑k
j=0 ij

( ∑k
j=0 ij

n0 n1 . . . nM

) M∏
j=0

u
nj

j · T
∑M

j=0 jnj

 .

The proof is completed by introducing a new index s := k +
∑M

j=0 jnj and then collecting first terms
that multiply T s, s = 0, 1, 2, . . . ,M in the expression for H. Indeed, H in (3.8) can be written as
follows:

M∑
s=0

T s
s∑

k=0

1∑
i0,...,ik=0

Lgi0
· · ·Lgik

V (x)

(k + 1)!



∑k
j=0 ij∑

n0, . . . , nM = 0∑M
j=0 nj =

∑k
j=0 ij∑M

j=0 jnj = s− k

( ∑k
j=0 ij

n0 n1 . . . nM

) M∏
j=0

u
nj

j


+O(TM+1) .

Direct calculations show that the term for s = 0 is

Lg0V

(
0

0 0 . . . 0

)
u0

0u
0
1 · · ·u0

M + Lg1V

(
0

1 0 . . . 0

)
u1

0u
0
1 · · ·u0

M = Lg0V + Lg1V · u0

and the terms for arbitrary s = 1, ...,M and k = 0 are

Lg1V

(
0

0 0 . . . 1 . . . 0

)
︸ ︷︷ ︸

1 is in sth place

u0
0u

0
1 · · ·u1

s · · ·u0
M = Lg1V · us .

Hence, we can write H as follows:

H = Lg0V + Lg1V · uct +
M∑

s=1

T s[Lg1V · us + ps(x, u0, . . . , us−1)] + O(TM+1) ,

where

ps :=
s∑

k=1

1∑
i0=0,...,ik=0

Lgi0
· · ·Lgik

V (x)

(k + 1)!



∑k
j=0 ij∑

n0 = 0, . . . , nM = 0∑M
j=0 nj =

∑k
j=0 ij∑M

j=0 jnj = s− k

( ∑k
j=0 ij

n0 n1 . . . nM

) M∏
j=0

u
nj

j


,

which completes the proof by noting that ps are functions of x and u0, ..., us−1. �
It is instructive to write down the expressions for the first couple of ps and we do this below for

p1, p2 and p3. Direct calculations show that

p1 =
Lg0Lg0V

2!

(
0

0 0 . . . 0

)
u0

0u
0
1 · · ·u0

M +

(Lg1Lg0V + Lg0Lg1V )
2!

(
1

1 0 . . . 0

)
u1

0u
0
1 · · ·u0

M + (3.9)

Lg1Lg1V

2!

(
2

2 0 . . . 0

)
u2

0u
0
1 · · ·u0

M

=
Lg0Lg0V + (Lg1Lg0V + Lg0Lg1V )u0 + Lg1Lg1V u2

0

2!
.
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p2 =
Lg0Lg1V + Lg1Lg0V

2!

(
1

0 1 . . . 0

)
u0

0u
1
1u

0
2 · · ·u0

M +

Lg1Lg1V

2!

(
2

1 1 . . . 0

)
u1

0u
1
1u

0
1 · · ·u0

M +

Lg0Lg0Lg0V

3!

(
0

0 0 . . . 0

)
u0

0u
0
1u

0
2 · · ·u0

M + (3.10)

Lg0Lg0Lg1V + Lg0Lg1Lg0V + Lg1Lg0Lg0V

3!

(
1

1 0 . . . 0

)
u1

0u
0
1u

0
2 · · ·u0

M +

Lg0Lg1Lg1V + Lg1Lg1Lg0V + Lg1Lg0Lg1V

3!

(
2

2 0 . . . 0

)
u2

0u
0
1u

0
2 · · ·u0

M +

Lg1Lg1Lg1V

3!

(
3

3 0 . . . 0

)
u3

0u
0
1u

0
2 · · ·u0

M

=
u1(Lg0Lg1V + Lg1Lg0V + (2!) · Lg1Lg1V u0)

2!
+

Lg0Lg0Lg0V + (Lg0Lg0Lg1V + Lg0Lg1Lg0V + Lg1Lg0Lg0V )u0

3!
+

(Lg0Lg1Lg1V + Lg1Lg0Lg1V + Lg1Lg1Lg0V )u2
0 + Lg1Lg1Lg1V u3

0

3!
.

p3 =
Lg0Lg1V + Lg1Lg0V

2!

(
1

0 0 1 0 . . . 0

)
u0

0u
0
1u

1
2u

0
3 · · ·u0

M +
Lg1Lg1V

2!

(
2

0 2 . . . 0

)
u0

0u
2
1u

0
2 · · ·u0

M +

Lg1Lg1V

2!

(
2

1 0 1 0 . . . 0

)
u1

0u
0
1u

1
2u

0
3 · · ·u0

M +

Lg0Lg0Lg1V + Lg0Lg1Lg0V + Lg1Lg0Lg0V

3!

(
1

0 1 0 . . . 0

)
u0

0u
1
1u

0
2 · · ·u0

M +

Lg0Lg1Lg1V + Lg1Lg1Lg0V + Lg1Lg0Lg1V

3!

(
2

1 1 0 . . . 0

)
u1

0u
1
1u

0
2 · · ·u0

M + (3.11)

Lg1Lg1Lg1

3!

(
3

2 1 0 . . . 0

)
u2

0u
1
1u

0
2 · · ·u0

M +
Lg0Lg0Lg0Lg0

4!

(
0

0 0 0 . . . 0

)
u0

0u
0
1u

0
2 · · ·u0

M +

Lg0Lg0Lg0Lg1 + Lg0Lg0Lg1Lg0 + Lg0Lg1Lg0Lg0 + Lg1Lg0Lg0Lg0

4!

(
1

1 0 0 . . . 0

)
u1

0u
0
1u

0
2 · · ·u0

M +

Lg0Lg0Lg1Lg1 + Lg0Lg1Lg1Lg0 + Lg1Lg1Lg0Lg0 + Lg1Lg0Lg0Lg1 + Lg1Lg0Lg1Lg0 + Lg0Lg1Lg0Lg1

4!
×

×
(

2
2 0 0 . . . 0

)
u2

0u
0
1u

0
2 · · ·u0

M +

Lg0Lg1Lg1Lg1 + Lg1Lg1Lg1Lg0 + Lg1Lg1Lg0Lg1 + Lg1Lg0Lg1Lg1

4!

(
3

3 0 0 . . . 0

)
u3

0u
0
1u

0
2 · · ·u0

M +

Lg1Lg1Lg1Lg1

4!

(
4

4 0 0 . . . 0

)
u4

0u
0
1u

0
2 · · ·u0

M

=
Lg0Lg1V + Lg1Lg0V

2!
u2 +

Lg1Lg1V

2!
u2

1 +
Lg1Lg1V (2!)

2!
u0u2 +

Lg0Lg0Lg1V + Lg0Lg1Lg0V + Lg1Lg0Lg0V

3!
u1 +

(Lg0Lg1Lg1V + Lg1Lg1Lg0V + Lg1Lg0Lg1V )(2!)
3!

u0u1 +
Lg1Lg1Lg1

3!
3!
2!

u2
0u1 +

Lg0Lg0Lg0Lg0

4!
+

Lg0Lg0Lg0Lg1 + Lg0Lg0Lg1Lg0 + Lg0Lg1Lg0Lg0 + Lg1Lg0Lg0Lg0

4!
u0 +(

Lg0Lg0Lg1Lg1 + Lg0Lg1Lg1Lg0 + Lg1Lg1Lg0Lg0 + Lg1Lg0Lg0Lg1 + Lg1Lg0Lg1Lg0

4!
+

Lg0Lg1Lg0Lg1

4!

)
u2

0 +

Lg0Lg1Lg1Lg1 + Lg1Lg1Lg1Lg0 + Lg1Lg1Lg0Lg1 + Lg1Lg0Lg1Lg1

4!
u3

0 +
Lg1Lg1Lg1Lg1

4!
u4

0
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Other functions ps can be obtained in a similar manner.

Remark 3.2 Computer algebra systems, such as Maple, can be used to compute expansions of the
Lyapunov difference for particular examples. We note that this is the approach we took when solving
the examples in Section 5. While these formulas can be in general very complex, we illustrate in
the next section how Theorem 3.1 can be used for controller redesign under relatively weak condi-
tions.

4 Lyapunov based controller redesign

In this section we propose controller redesign procedures that are based on the structure of (3.3) in
Theorem 3.1. The main idea behind the redesign is to use the Lyapunov function of the continuous-
time closed loop system (2.1), (2.2) as a control Lyapunov function for the discrete-time model of
the sampled-data closed loop system with the redesigned controller udt(x) of the form (3.1). More-
over, since the exact discrete-time model of the system is not available, we will use the Fliess series
expansions from the previous section for this purpose.

There is a lot of flexibility in this procedure and in general one needs to deal with systems on a
case-by-case basis. Hence, we concentrate below on two different goals for controller redesign and the
issues involved that are respectively presented in Subsections 4.1 and 4.2. The first case is reminiscent
of the Lyapunov controller redesign of continuous-time systems for robustification of the system (see
[4, 15]). In this case, the redesigned controller udt(x) is providing more negativity to the Lyapunov
difference than the original controller u0(x). This typically yields high gain controllers that may have
the well known ”−LgV ” structure which was used, for example, in [20]. In the second subsection, the
goal is to redesign the controller so that the Lyapunov difference along the solutions of the discrete-
time model with the redesigned controller udt(x) is as close as possible to the Lyapunov difference of
the sampled solutions of the continuous-time closed loop system with the original controller u0(x),
which can be thought of as providing the ”ideal” reference response.

Examples in the next section are serving to further illustrate how to use this method to systemat-
ically improve performance of the redesigned controller.

4.1 High gain controller redesign

Note that the special structure of (3.3) is due only to the controller structure (3.1) that we proposed
to use and this is crucial in our controller redesign approach. Indeed, the first M + 1 terms in the
series expansion have the following form:

O
(
T 0

)
term : Lg1V · u0 + Lg0V (4.1)

O
(
T 1

)
term : Lg1V · u1 + p1(x, u0) (4.2)

O
(
T 2

)
term : Lg1V · u2 + p2(x, u0, u1) (4.3)

O
(
T 3

)
term : Lg1V · u3 + p3(x, u0, u1, u2) (4.4)

...
...

O
(
TM

)
term : Lg1V · uM + pM (x, u0, u1, u2, . . . , uM−1) . (4.5)

This special triangular structure allows us to use a recursive redesign. We already assumed that u0 is
designed based on the continuous-time plant model (2.1). At the next step we design u1 from (4.2)
since p1(x, u0) and u0 are known by assumption. We will choose u1 so that O(T ) terms in the expansion
(3.3) are more negative than when u1 = 0. At step s ∈ {2, . . . ,M} we design us to make O(T s) more
negative and for this purpose we can use ps(x, u0, . . . , us−1) since all previous ui, i = 0, 1, 2, . . . , s− 1
have already been designed.

The question is how to design us at each step of the above described procedure. We present some
choices below and point out some issues that have to be taken into account. It is obvious from (3.3)
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that any function uj with

uj = uj(x) such that
{

uj ≤ 0 if Lg1V ≥ 0
uj ≥ 0 if Lg1V ≤ 0

will achieve more decrease of V (·) if we neglect the terms of order ≥ j + 1. For example, one such
choice is

uj(x) = −γj(V (x)) · (Lg1V (x)) , (4.6)

where γj ∈ K is a design parameter that can be determined using the ps(x, u0, . . . , us−1) functions
from (3.3). In particular, one would like to dominate the sign indefinite function ps(x, u0, . . . , us−1) as
much as possible with the available control via the negative term us(x)Lg1V (x). Hence, we can state
formally the following:

Theorem 4.1 Consider the system (2.1) and suppose that Assumption 2.1 holds. For any j ∈
{0, 1, 2, . . . ,M} denote uj(x) :=

∑j
i=0 T iui(x). Then, suppose that for some x ∈ Rn and j ∈

{0, 1, 2, . . . ,M} the function F e
T (x, uj(x)) is well defined and the following holds:

V (F e
T (x, uj(x)))− V (x)

T
≤ −α3(|x|) + G1(T, x) , (4.7)

and G1(T, x) = O(T p) for some p ∈ N. Suppose now that the controller uj+1(x) is implemented, where
uj+1(x) := −γj+1(V (x)) · Lg1V (x). Then, whenever F e

T (x, uj+1(x)) is well defined, we have that:

V (F e
T (x, uj+1(x)))− V (x)

T
≤ −α3(|x|)− T j+1γj+1(V (x))

(
∂V

∂x
g1(x)

)2

+ G1(T, x) + G2(T, x) , (4.8)

where G1(T, x) is the same as in (4.7) and G2(T, x) = O(T j+2). �

The proof of the above result follows directly from Theorem 3.1. If the function ps has the special
form

ps(x, u0, . . . , us−1) = Lg1V · p̄s(x, u0, . . . , us−1) ,

then it is possible to make the O(T s) term in (3.3) negative for all x ∈ Rn. Unfortunately, this
condition is too strong in general. On the other hand, it is often useful to use corrections of a more
general form than (4.6). This situation is illustrated in the following theorem that is derived under
stronger assumptions than Theorem 4.1. The conditions we use allow us to use a construction very
similar to the well known Sontag’s formula [21]. Indeed, we can state:

Theorem 4.2 Consider the system (2.1) and suppose that the following conditions hold:

(i) Assumption 2.1 holds;

(ii) u0(x) = −(Lg1V (x))R(x), where R(x) > 0,∀x ∈ Rn;

(iii) for all x 6= 0 we have that Lg1V (x) = 0 implies Lg0Lg0V (x) < 0;

(iv) for all ε > 0 there exists δ > 0 such that if |x| ≤ δ, x 6= 0 there exists some u, with |u| ≤ ε, such
that

Lg0Lg0V (x)
2

+ Lg1V (x)u < 0 .

Then, the controller udt(x) = u0(x) + Tu1(x) with

u1(x) = ũ1(x)− −(Lg1Lg0V + Lg0Lg1V )R(x) + (Lg1Lg1V ) · (Lg1V ) ·R(x)2

2!
(4.9)

and

ũ1(x) =


0 if Lg1V (x) = 0

−
Lg0Lg0V

2
+

√
(Lg0Lg0V )2

4
+(Lg1V )4

Lg1V if Lg1V (x) 6= 0
(4.10)
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yields
V (F e

T (x, udt(x)))− V (x)
T

≤ −α3(|x|) + TG1(x) + G2(T, x) , (4.11)

with α3 from (2.4),

G1(x) := −
√

(Lg0Lg0V (x))2

4
+ (Lg1V (x))4

being negative definite and G2(T, x) = O(T 2). �

Proof of Theorem 4.2: From item (i) of Theorem 4.2 and Theorem 3.1 we have that

V (F e
T (x, udt(x)))− V (x)

T
= Lg0V + Lg1V u0 + T [Lg1V u1 + p1] + O(T 2)

≤ −α3(|x|) + T [Lg1V u1 + p1] + O(T 2) (4.12)

where p1 comes from (3.9) and has the following form:

p1 =
Lg0Lg0V + (Lg1Lg0V + Lg0Lg1V )u0 + Lg1Lg1V u2

0

2!
.

From item (ii) of Theorem 4.2 the O(T ) terms in (4.12) can be written as

Lg1V ·
(

u1 +
−(Lg1Lg0V + Lg0Lg1V )R(x) + (Lg1Lg1V ) · (Lg1V ) ·R(x)2

2!

)
+

Lg0Lg0V

2!
, (4.13)

which by using (4.9) can be simplified to

Lg1V · ũ1 +
Lg0Lg0V

2

Now the proof is completed by using (4.10), items (iii) and (iv) of the theorem and arguments identical
to the ones used to prove Sontag’s formula (see [21]).

Remark 4.3 Note that a large class of optimal and inverse optimal control laws satisfy the item (ii)
of Theorem 4.2 (see [20, Sections 3.3, 3.4 and 3.5]).

Remark 4.4 It is obvious from the proof of Theorem 4.2 that if one has that us = −Lg1V · R(x),
then we can make the O(T s+1) term in the Lyapunov difference expansion negative definite. The main
obstruction to propagating this construction to terms O(T j), j ≥ s + 2 is that the constructed us+1

will not have the same dependence on Lg1V that is crucial.

Remark 4.5 An important point is that whenever Lg1V (x) 6= 0 then in principle we can dominate
the terms ps(x, u0, . . . , us−1) by increasing the gain of us. However, due to saturation in actuators
that is always present in the system, arbitrary increase in gain is not feasible. If we know an explicit
bound on the control signals, such as |uj | ≤ γ(|x|), then the control that produces most decrease of
V (·) under this constraint is

uj(x) =
{
−γ(|x|) if Lg1V (x) ≥ 0

γ(|x|) if Lg1V (x) ≤ 0
.

We will use such a controller in the jet engine example presented in Section 5.2, below.

Remark 4.6 We emphasize that one should exercise caution when applying the above reasoning.
Indeed, the approach indicated above can work well only if the sampling period T is sufficiently
small so that terms of order O(TM+1) are negligible. However, O(TM+1) terms depend in general on
u0, u1, . . . , uM and larger magnitudes of ui will in general increase O(TM+1) terms. Hence, making
O(T i), i = 1, 2, . . . ,M more negative will in general mean that we are making O(TM+1) less negligible.
See, for example, the dependence of p1 and p2 (see equations (3.9) and (3.10)) on u1. If we want to
achieve more decrease in O(T ) in (3.3) by increasing the gain in u1, then this will in general increase
the magnitude of p2 and, hence, of the O(T 2) term in (3.3). Nevertheless, we will show in examples
that a judicious choice of ui and of the sampling period T does produce controllers that perform better
than the original non-redesigned controller (2.5).
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Remark 4.7 We again emphasize that the procedure we described above is very flexible and we only
outlined some of the main guiding principles and issues in controller redesign. However, even the
simplest choice of redesigned controller of the form udt(x) = uct(x)−TLg1V (x) will in general improve
the transients of the sampled-data system. Indeed, it is well known (see [20]) that control laws of this
form robustify the controller to several classes of uncertainties and lead to improved stability margins.
This theory has connections with inverse optimality and passivity and is relatively well understood.
Our results show that adding the −Lg1V terms of the form (4.6) robustifies the controller also with
respect to sampling (small time varying time delays). However, this positive effect is observable only
for certain bandwidths of controller gain and sampling rate: adding too much negativity for too large
sampling rates may lead to undesirable behaviour, and it is this situation where more sophisticated
techniques exploiting the structure of ps terms become important and show better performance, see
Section 5.1.2 for an example.

Remark 4.8 Note that the controller correction u1(·) defined by (4.9) and (4.10) in Theorem 4.2 does
not have the form (4.6). Hence, by exploiting the structure of the terms ps, as well as the properties of
the control law u0 it is possible to obtain control laws that provide better Lyapunov function decrease
than the general corrections (4.6).

Another approach to take into account higher order terms is obtained using the expansion (3.3)
setting ui = 0 for i = 2, 3, . . .. This leads to the expansion

V (F e
T (x, udt))− V (x)

T
= Lg0V + Lg1V · (u0 + Tu1) +

M∑
s=1

T sps(x, u0, u1) + O(TM+1). (4.14)

Neglecting the O(TM+1) term, for moderate values of M one may end up with an expression in u1

which is easy to minimize, e.g., a quadratic form in u1. Choosing the term u1 as the minimizer of
this expression we can simultaneously take into account several terms in (3.3) instead of looking at
them separately as in Theorem 4.1. Clearly, this approach is less systematic than the recursive design
in Theorem 4.1 and its feasability crucially depends on the system structure. If applicable, however,
it may result in a redesign with higher accuracy and lower gain than the recursive design, see the
example in Section 5.1.2.

Remark 4.9 For nonlinear systems whose linearization is stabilizable, one can use linear techniques
to guarantee stability and performance of the nonlinear system locally around an equilibrium using
linear design techniques. Furthermore, close to the origin the simple emulated controller (2.5) often
performs satisfactorily. Hence, in many cases our redesign is more important for states away from
the origin, an observation which may facilitate the search for a suitable Lyapunov function, as it may
happen that we can find a Lyapunov function satisfying Assumption 2.1 only on a subset of the state
space. Then, we can use that Lyapunov function to redesign the controller only on this region of a
state space. This situation is presented in the jet engine example that we consider in Section 5.2,
below.

4.2 Model reference based controller redesign

In this subsection, the goal of the controller redesign is to make the sampled data Lyapunov difference
V (F e

T (x, udt(x)))− V (x) as close as possible to the continuous time Lyapunov difference V (φ(T, x))−
V (x), where φ(T, x) is the solution of the continuous time closed loop system (2.1), (2.2) at time
t = T and initialized at x(0) = x. This makes sense in situations when we want the bound on our
sampled-data response with the redesigned controller to be as close as possible to the ”ideal” bound
on the response generated by sampling the solution of the continuous-time closed-loop system (2.1),
(2.2). Note that this is a plausible goal when Assumption 2.1 holds. We will see that in this case the
redesigned controller has a completely different form from the ones obtained in the previous subsection.
We present an explicit construction for the case udt(x) = u0(x)+Tu1(x) and comment on more general
controller structures. We use the following notation:

∆Vdt(T, x, u) := V (F e
T (x, u))− V (x); ∆Vct(T, x) := V (φ(T, x))− V (x) .
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The main result of this subsection is presented below:

Theorem 4.10 Suppose that Assumption 2.1 holds. Then we have

∆Vct(T, x)−∆Vdt(T, x, u0(x)) = O(T 2) . (4.15)

Defining the redesigned controller by udt(x) = u0(x) + Tu1(x), with

u1(x) =
1
2

∂u0(x)
∂x

[g0(x) + g1(x)u0(x)] (4.16)

then we have
∆Vct(T, x)−∆Vdt(T, x, udt(x)) = O(T 3) . (4.17)

�

Proof: Using Theorem 3.1 we have that

∆Vdt(T, x, u0 + Tu1) = V (x) + T [Lg0V + Lg1V · u0] + T 2[Lg1V · u1 + p1(x, u0)] + O(T 3) , (4.18)

where p1 is given by (3.9). Using Taylor series expansions of the solution V (φ(t, x)) in t and evaluating
them at t = T , we have:

V (φ(T, x)) = V (x) +
∞∑
i=1

T i

i!
diV (φ(t, x))

dti

∣∣∣∣
t=0

.

Note that
diV (φ(t, x))

dti

∣∣∣∣
t=0

= Li
g0+g1u0

V (x) .

By direct calculations, we can compute:

dV (φ(t, x))
dt

∣∣∣∣
t=0

= Lg0V + Lg1V · u0 , (4.19)

which together with (4.18) shows that (4.15) holds. Computing further:

d2V (φ(t, x))
dt2

∣∣∣∣
t=0

= L2
g0+g1u0

V (x)

=
∂(Lg0V + Lg1V · u0)

∂x
[g0 + g1u0]

= Lg0Lg0V + [Lg1Lg0V + Lg0Lg1V ]u0 + Lg1Lg1V u2
0

+Lg1V · ∂u0

∂x
[g0 + g1u0] . (4.20)

Using now (3.9), (4.16), (4.18), (4.19) and (4.20) the proof follows by comparing the T 0, T 1 and T 2

terms in the expansions of ∆Vct(T, x) and ∆Vdt(T, x, udt(x)).

Remark 4.11 Note that the correction (4.16) satisfies:

u1(x) =
1
2

du(φ(t, x))
dt

∣∣∣∣
t=0

. (4.21)

Hence, the modification term is in some sense trying to extrapolate (predict) what the continuous-time
control law would be like at time T/2. Note also that this controller does not depend on the Lyapunov
function as opposed to control laws derived in Subsection 4.1.
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Remark 4.12 It may be tempting to conjecture that the control law of the form:

udt(x) = u0(x) +
N∑

i=1

T i

(i + 1)!
diu(φ(t, x))

dti

∣∣∣∣
t=0

(4.22)

for some fixed N ∈ N will yield:

∆Vct(T, x)−∆Vdt(T, x, udt(x)) = O(TN+2) .

However, this is not true even for N = 2, as we show next. By taking another derivative of (4.20)
along solutions of (2.1), (2.2) we obtain

d3V (φ(t, x))
dt3

∣∣∣∣
t=0

=
∂

∂x

{
Lg0Lg0V + [Lg1Lg0V + Lg0Lg1V ]u0 + Lg1Lg1V u2

0

}
[g0 + g1u0]

+
∂

∂x

{
∂u0

∂x
[g0 + g1u0]

}
[g0 + g1u0]

= Lg0Lg0Lg0V + [Lg1Lg0Lg0V + Lg0Lg1Lg0V + Lg0Lg0Lg1V ]u0

+[Lg1Lg1Lg0V + Lg0Lg1Lg1V + Lg1Lg0Lg1V ]u2
0 + Lg1Lg1Lg1V · u3

0

+Lg0Lg1V · ∂u0

∂x
[g0 + g1u0] + Lg1Lg1V · ∂u0

∂x
[g0 + g1u0] · u0

+Lg1V · ∂

∂x

[
∂u0

∂x
[g0 + g1u0]

]
· [g0 + g1u0] . (4.23)

Let the control law be
udt(x) = u0(x) + Tu1 + T 2u2 (4.24)

where u1 is given by (4.16) and u2 is

u2(x) =
1
3!

∂

∂x

[
∂u0

∂x
[g0 + g1u0]

]
· [g0 + g1u0] .

Using (3.10), (4.23) and expressions for u1 and u2, direct computations show that

1
3!

d3V (φ(t, x))
dt3

∣∣∣∣
t=0

− [Lg1V · u2 + p2(x, u0, u1)] =
Lg1Lg0V · u1

2!
+

(
1
2!
− 2!

3!

)
Lg0Lg1V · u1

+
(

1− 2!
3!

)
Lg1Lg1V · u1u0

6= 0 .

Hence, it is impossible in general to satisfy the above hypothesis. However, note that u2 did cancel
the term

T 2

3!
Lg1V · d2u0(φ(t, x))

dt2

∣∣∣∣
t=0

=
T 2

3!
Lg1V · ∂

∂x

[
∂u0

∂x
[g0 + g1u0]

]
· [g0 + g1u0]

that is due to (4.23). This is true in general, if we use the controller structure (4.22), we will cancel
some terms in ∆Vct(T, x) − ∆Vdt(T, x, udt) but as we have shown above we can not in general make
this difference of order higher than O(T 3).

Remark 4.13 It may seem too restrictive to use in our main results only the corrections u1 in the
redesigned controller. However, we observed in simulations that adding corrections uk for k ≥ 2 often
does not improve the response considerably with respect to the redesigned controller with only the
first correction u1. The reason for this behaviour lies in the fact that the higher order corrections often
introduce additional high gain which implies that the sampling rates have to be reduced in order to
ensure satisfactory performance, cf. Remark 4.6 and the discussion in Section 5.1.1, below. For small
sampling rates, however, the sampled continuous time trajectories usually show satisfactory results,
hence the need for redesign is not given. This does not mean that the higher order terms cannot give
valuable information, but this has to be handled with care, preferably using additional structure of
the system, cf. Remark 4.8 and Section 5.1.2, below.
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Remark 4.14 The function β ∈ KL appearing in our Assumption 2.1(ii) does not enter explicitly
in our feedback design methods, however, it is necessary for our controller redesing technique to be
plausible. We explain this fact for the model reference redesing technique: recall that the continuous
time system satisfies

|x(t, x0)| ≤ β(|x0|, t) = α−1
1 (σ(α2(s), t))

which is what we want to recover in our model reference redesign technique.
Assuming for simplicity of exposition that α−1

1 from Assumption 2.1(i) is Lipschitz and denoting
the solutions of the sampled data system with emulated controller u0 = u by xs(k, x0, u0), by induction
over the inequality for ∆Vdt(T, x, u0(x)) from Theorem 4.10 we obtain

|xs([τ/T ], x0, u0)| ≤ α−1
1 (σ(α2(|x0|), [τ/T ]) + O(T ))

≤ α−1
1 (σ(α2(|x0|), [τ/T ])) + O(T ) = β(|x0|, [τ/T ]) + O(T ).

Here τ > 0 is a fixed time and [τ/T ] denotes the largest integer k ≤ τ/T .
In contrast to this, for the redesigned controller udt from Theorem 4.10 we obtain

|xs([τ/T ], x0, udt)| ≤ α−1
1 (σ(α2(|x0|), [τ/T ]) + O(T 2))

≤ α−1
1 (σ(α2(|x0|), [τ/T ])) + O(T 2) = β(|x0|, [τ/T ]) + O(T 2).

i.e., the bound on the norm is much closer to that of the continuous time system.

5 Examples

In this section we illustrate our proposed techniques with two examples. For both examples we use
several redesign techniques in order to demonstrate the flexibility of our approach and the different
behaviour of the resulting discrete time controllers.

5.1 A first order example

Our first example is a simple first order nonlinear system given by

ẋ = x3 + u. (5.1)

For this system we use the stabilizing continuous time controller

u0(x) = −x3 − x
√

x4 + 1

and the Lyapunov function

V (x) =
x2

2
.

5.1.1 Lyapunov based redesign

Using the controller structure udt = u0 +Tu1 +T 2u2 we obtain the following expansion from Theorem
3.1.

V (F e
T (x, udt))− V (x)

T
= x4 + xu0

+ T
(
xu1 + 2x6 +

5
2
x3u0 +

1
2
u2

0

)
+ T 2

(
xu2 +

5
2
x3u1 + 4x8 +

13
2

x5u0 + u0u1 +
5
2
x2u2

0

)
+ O(T 3)

With this example we illustrate the redesign technique from Theorem 4.1, where γj was designed in
such a way that the inequality

V (F e
T (x, udt))− V (x)

T
= −10x2 + G2(T, x)
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holds. More precisely, knowing u0 we choose u1 such that

x4 + xu0 + T
(
xu1 + 2x6 +

5
2
x3u0 +

1
2
u2

0

)
= −10x2

holds and knowing u0 and u1 we choose u2 such that

x4 + xu0 + T
(
xu1 + 2x6 +

5
2
x3u0 +

1
2
u2

0

)
+ T 2

(
xu2 +

5
2
x3u1 + 4x8 +

13
2

x5u0 + u0u1 +
5
2
x2u2

0

)
= −10x2

holds. Note that in both cases these equations are linear in u1 and u2, respectively, hence they can be
solved explicitly.

Figure 5.1 shows the corresponding solution trajectories (left) and sampled data control values
(right) for sampling rate T = 0.2 and innitial value x0 = 1. The left figure shows the continuous
time trajectory (no markers), and the sampled trajectory with udt = u0 (marked with circles), with
udt = u0 + Tu1 (crosses) and with udt = u0 + Tu1 + T 2u2 (squares). The right figure shows the
corresponding control values for the sampled data controllers.

0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Trajs. for 1d ex. T=0.2, inival=1 type=Lf

0 1 2 3 4 5
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
Ctrls. for 1d ex. T=0.2, inival=1 type=Lf

Figure 5.1: Solutions for controllers from Theorem 4.9

Note that the redesigned controllers introduce a higher gain, which also means that the higher
order terms in (3.3) become larger and consequently for larger sampling rates the respective trajectory
behave worse. Recall that all our results are asymptotic, i.e., they hold for sufficiently small sampling
rate, where “sufficiently small” is substantially affected by the size of |uj |, cf. Remark 4.6. Indeed,
in the example above for the larger sampling rate T = 0.3 and x0 = 1 the above redesign strategy
turns out to yield oscillatory behaviour, cf. Figure 5.2, below. There are several ways to avoid this
undesirable response. Introducing suitable gains for the correction terms u1 and u2 is one way, which
does, however, affect the performance of the redesigned controller also in regions where it shows good
behaviour. Using higher order terms in (3.3) is another way, however, the recursive design approach
chosen here will typically result in even higher gain for u3, u4, . . . and thus in udt, which is why our
simulation experience suggests that this recursive approach is best applied for a moderate number of
terms in the expansion, cf. Remark 4.13.

5.1.2 Lyapunov based minimizing redesign

For example 5.1 the minimizing redesign technique sketched in Remark 4.8 provides an alternative
approach to take into account higher order terms in (3.3). For this example it turns out that the
expansion (4.14) for M = 5 is a quadratic expression in u1, hence it is easily minimized. For sampling
rate T = 0.3 Figure 5.2 shows the corresponding trajectory together with the results for the controllers
from the last section. The oscillatory behaviour (due to large remainder terms in the expansion) of
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the latter is clearly observable and in fact the trajectory with udt = u0 + Tu1 + T 2u2 (marked with
squares) is the least satisfactory — due to its high gain. In contrast to this, the minimizing strategy
from Remark 4.8 with M = 5 (marked with diamonds) shows much better performance. In particular,
this example shows that a more sophisticated redesign taking into account the higher order pi terms
may indeed outperform simpler redesign ideas which just add negativity to the Lyapunov difference,
cf. Remark 4.7.
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Figure 5.2: Solutions for controllers from Theorem 4.9 and Remark 4.8

5.1.3 Model reference based redesign

Let us finally illustrate the model reference controller correction u1 from Theorem 4.10 for example
5.1. For this example, this formula yields

u1(x) =
1
2
(3x3

√
x4 + 1 + 3x5 + x).

The Figures 5.3 and 5.4 compare this controller (marked with crosses) with the continuous time tra-
jectory (unmarked) and the sampled continuous time controllers (marked with circles). As expected,
this controller manages to keep the sampled data trajectory closer to the continuous time trajectory.
In addition, it yields lower gain and, as Figure 5.4 shows, it can help avoiding oscillatory phenomena
even for rather large sampling rates.
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Figure 5.3: Solutions for controller from Theorem 4.10
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Figure 5.4: Solutions for controller from Theorem 4.10

5.2 A second order example

As a second order example we consider the following model that is taken from [12, Section 2.4.3], a
simplified Moore-Greitzer model of a jet engine with the assumption of no stall given by

ẋ1 = −x2 −
3
2
x2

1 −
1
2
x3

1

ẋ2 = −u ,

where x1 and x2 are respectively related to the mass flow and the pressure rise though the engine after
an appropriate change of coordinates (see [12] for more details). The control law u0(x) = −k1x1+k2x2

and the Lyapunov function V (x) = 1
2x2

1 + c0
8 x4

1 + 1
2(x2 − c0x1)2, have been derived in [12, pg. 72],

where k1 = 1 + c0c2 + 9c20
8c1

, k2 = c2 + c0 + 9c0
8c1

, c0 = c1 + 9
8 and c1, c2 > 0 are design parameters. We

use the choice c1 = 7
8 , c2 = 3

7 , which yield c0 = 2, k1 = 7, k2 = 5. With these particular choices of
parameters, we obtain

u0(x) = −7x1 + 5x2 (5.2)

V (x) =
1
2
x2

1 +
1
4
x4

1 +
1
2
(x2 − 2x1)2 , (5.3)

and the closed loop system becomes

ẋ1 = −x2 −
3
2
x2

1 −
1
2
x3

1 (5.4)

ẋ2 = 7x1 − 5x2 , (5.5)

This continuous-time system has a very nice response and we will now proceed to redesign the controller
(5.2) for digital implementation.

By simulation studies one observes that in this example we are in the situation of Remark 4.9: the
simple emulated sampled–data controller (2.5) shows good results near the origin but exhibits rather
poor performance, in particular large overshoots, for initial values farther away from the origin, which
is in contrast to the nice response of the continuous–time system, whose trajectories converge very
quickly with no overshoot. This nice response, however, is not captured by the Lyapunov function
V from (5.3), which is due to the fact that for large values c > 0 the Lyapunov function (5.3) has
level sets V −1(c) that are elongated very much along the x2 axis. This yields very large functions
α−1

1 and α2 in (2.8) and consequently the resulting function β ∈ KL does not satisfy performance
requirements, because overshoots are just too big. In summary, the function V from (5.3) does not
satisfy our Assumption 2.1(ii) and hence, following Remark 4.9, we try to find a better Lyapunov
function outside a neighbourhood of the origin.



19

To this end, since simulations reveal that any sufficiently large ball around the origin is a forward
invariant set for the trajectories, we try to use the Lyapunov function

V1(x) =
1
2
x2

1 +
1
2
x2

2 . (5.6)

Direct calculations show that

V̇1 =
∂V1

∂x1
(−x2 −

3
2
x2

1 −
1
2
x3

1) +
∂V1

∂x2
(7x1 − 5x2)

= −3
2
x3

1 −
1
2
x4

1 + 6x1x2 − 5x2
2

= 2 (x2
1 −

3
2
x3

1 −
1
2
x4

1)︸ ︷︷ ︸
Term 1

− (2x2
1 − 6x1x2 + 5x2

2)︸ ︷︷ ︸
Term 2

, (5.7)

where in the last step we just added and subtracted the term 2x2
1. Note that Term 1 in (5.7) is negative

on the set S1 := {x ∈ R2 : x1 6∈ [−4,+1], x2 ∈ R} achieving the maximum value of about 18.1 on
its complement. On the other hand, Term 2 is a positive definite quadratic form that is positive
everywhere and radially unbounded. In particular, we have that the value of Term 2 is larger than
18.1 on the set S2 := {x ∈ R2 : 2x2

1 − 6x1x2 + 5x2
2 > 18.1}. Hence, V̇1 in (5.7) is strictly negative on

the set:
S := S1 ∪ (SC

1 ∩ S2) ,

where SC
1 denotes the complement of the set S1. Hence, V1 is a Lyapunov function on the above set

and, moreover, it satisfies our Assumption 2.1 since it shows that trajectories are converging without
any overshoot.

Using V1 one sees that the complement Sc is a forward invariant neighbourhood of the origin, on
which we can use the original Lyapunov function V to conclude asymptotic stability for the continuous
time system and thus, by the results in [13], also for the emulated controller (2.5) for sufficiently small
sampling rate. It turns out that for a large interval of sampling rates the emulated controller shows
satisfactory results on Sc, thus we use (2.5) on Sc and perform our redesign on S. Overall asymptotic
stability then follows from the asymptotic stability on Sc and the fact that our redesigned controller
steers any trajectory to Sc in finite time.

For our redesign on the set S we now use V1 as a control Lyapunov function. Based on Theorem
4.1 and Remark 4.5 and noting that Lg1V1 = −x2, we implemented the controller

uLf
dt (x) =

{
u0(x) + TuLf

1 (x) if x ∈ S
u0(x) otherwise

with

uLf
1 (x) =

{
x2

1 + x2
2 if Lg1V1 = −x2 < 0

−(x2
1 + x2

2) otherwise
.

The chosen gain γ(|x|) = |x|2 here was selected using the following guidelines: first we identified
parameter domains (i.e., combinations of initial value x0 and sampling rate T ) for which the sampled
continuous time controller did not yield satisfactory response. Particularly, we chose a region where
the corresponding trajectories exhibit overshoots; for sampling rate T = 0.1 the domain [−25, 25]2 (and
specifically initial values close to the boundary of this set) turns out to be such a region. In the second
step we tuned the gain γ(|x|) such that the redesigned controller yields a significant improvement in
the response in this region.

As an alternative to the Lyapunov function based controller we also used the model reference
controller from Theorem 4.10, which here reads

umr
1 (x) =

35
2

x1 +
21
4

x2
1 +

7
4
x3

1 − 9x2.

For the parameter region of interest it turned out that this controller yields a gain which induces too
large remainder terms, hence we used a saturation for umr

1 with ±|x|2. This choice also allows a “fair”
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comparison between the two controllers uLf
dt and umr

dt because this way their first order correction
terms uLf

1 and umr
1 satisfy the same constraints.

Figure 5.5 shows the trajectories, (sampled) control values and the Lyapunov function V1(x) along
the trajectories for the different controllers for initial value x0 = [22, 21]3 and sampling rate T = 0.1.
The unmarked curves show the continuous time system, the curves marked with circles show the
sampled continuous time controller udt = u0. The Lyapunov based redesigned controller uLf

dt is marked
with squares while the model reference type controller umr

dt is marked with crosses.
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Figure 5.5: Solutions for different controllers

Note that on the first sampling interval the controllers uLf
dt and umr

dt coincide (umr
1 saturates).

Afterwards the trajectory corresponding to uLf
dt tends to 0 faster while umr

dt keeps the trajectory closer
to the continuous time one. Both redesigned controllers avoid the overshoot in the x2–component
clearly visible in the sampled continuous time controller.

6 Conclusions

We have presented a method for a systematic redesign of continuous-time controllers for digital im-
plementation. This method is very flexible and we illustrated its usefulness through several examples.
Many variations of this method are possible and the main directions for further improvement are
including dynamical and observer based controllers and relaxing some of the assumptions that we use
at the moment.

3This initial value has been chosen in order to illustrate the performance of our method and has no further physical
meaning.
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