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OUTPUT DEAD BEAT CONTROL FOR A CLASS OF PLANAR
POLYNOMIAL SYSTEMS∗

D. NEŠIĆ∗, I. M. Y. MAREELS† , G. BASTIN‡ , AND R. MAHONY∗

Abstract. Output dead beat control for a class of non linear discrete time systems, which are
described by a single input-output polynomial difference equation, is considered. The class of systems
considered is restricted to systems with a two dimensional state space description. It is assumed that
the highest degree with which the present input appears in the equation is odd. Necessary and
sufficient conditions for the existence of output dead beat control and for the stability of the zero
output constrained dynamics are presented. We also design a minimum time output dead beat
control algorithm (feedback controller) which yields stable zero dynamics, whenever this is feasible.
A number of interesting phenomena are discussed and illustrated by examples.

Key words. polynomial systems, dead beat, controllability

Subject classification: 93B05, 93B27, 93C55, 93D99
AMS subject classifications. 93B05, 93B27, 93C55, 93D99

1. Introduction. Linear dead beat control has received a great deal of attention
in the last 30 years [16]. The discoveries in the area of linear dead beat control resulted
in a better understanding of linear systems theory and a number of very successful
applications. The fact that very often the dynamics of a plant can not successfully
be modelled using linear time invariant equations, provide motivation for considering
non linear dead beat control. Dead beat control or controllability for special classes
of non linear systems has been addressed by many authors [1, 7, 8, 9, 10, 12, 20, 21].
Nevertheless, a wealth of open questions remain to be explored.

Polynomial I-O systems of the form yk+1 = f(yk, . . . , yk−s, uk−t, . . . , uk) are often
used [13, 14, 5] for system identification in black-box mode. y, u and k are respectively
the output, input and time index. The function f is a polynomial in all its arguments.
This is an obvious generalisation of linear ARMA models. Although a number of
applications of I-O polynomial systems have been reported, e.g. [5, 14], their control
properties are not well understood.

In this paper we consider a class of I-O polynomial systems of the following form:

yk+1 = f(yk, uk−1, uk)(1)

We assume throughout the paper that the highest exponent of the argument uk in
the polynomial f is an odd integer. An application of this class of systems can be
found in [5] where a subsystem of a radiator and fan is identified in this form.

The control question that we are interested in is minimum time output dead beat
regulation. In particular, we want to design a control law of the form:

uk = c(yk, uk−1)(2)

such that yk = 0, ∀k ≥ t, for some integer t and such that the constrained dynamics1
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defined by:

0 = f(0, uk−1, uk)
uk = c(0, uk−1)(3)

are stable in a sense to be specified later. The paper deals with two questions: output
dead beat controllability and stability of constrained dynamics for (1).

Some pioneering work on controllability for a class of discrete time bilinear systems
can be found in [11]. Papers [7, 8, 12] provide complete conditions for controllability
for the same class of systems. Invariance of the control independent set was investi-
gated in [11]. We show that a new notion of strongly invariant sets, first introduced in
[20], is crucial for output dead beat controllability of (1). We take a similar approach
as in [20], where dead beat controllability of scalar polynomial systems is considered.
The output controllability result of this paper can be viewed as a generalisation of
some results on odd systems in [20]. In the conference version [21] of this paper, we
provided the output controllability test for (1). However, the design of a feasible dead
beat controller and stability of constrained dynamics are analysed in the sequel.

Output dead beat control of recursive nonlinear systems was investigated in [1, 3].
Existence of constrained dynamics together with a number of interesting phenomena
were studied. The considered class of systems was, however, large and results are
consequently weak. The notion of criterion of choice is introduced in the context of
stability of constrained dynamics in [1, 3]. This notion is also important in our discus-
sions. Stability of one dimensional explicit constrained dynamics uk = f(uk−1) was
investigated [2, 3]. Our paper extends these results to the case of implicitly defined
polynomial dynamics (3) and we present necessary and sufficient conditions of the
existence of a criterion of choice that leads to stable constrained dynamics. We point
out that the stability of an interval that we consider was investigated in [3] and in
[15], where this property is referred to as “permanence”. In [15], global stability prop-
erties of a number of nonlinear explicit systems of the form yk+1 = F (yk, . . . , yk−s)
was investigated. We, however, consider the implicit difference equation in (3). We
emphasize that the notion of constrained dynamics considered here differs from the
concept of zero dynamics introduced in [17, 18]. Moreover, the notion of zero dynam-
ics [17, 18] appears not to be sufficiently general to be applicable to the stabilising
dead beat control problem considered here.

This paper provides an explicit test for verifying the existence of an output dead
beat control law which yields stable constrained dynamics for the system of the form
(1). Furthermore, a constructive design method is provided to find any such feedback
law. A purpose of this paper is to show the difficulties that one may face when tackling
output dead beat control problem for the simple class of I-O polynomial systems (1)
and to present a number of interesting phenomena.

The paper is organised as follows. In Section 2 we present some notation and
in Section 3 we define the problem and the class of systems that we consider. The
question of the existence of dead beat control is addressed in Section 4. Sections 5 and
6 are respectively dedicated to the stability of constrained dynamics and a method
to check the existence of a dead beat control law which yields stable constrained
dynamics. The modified dead beat control law which zeroes the output in minimum

1 The definition of stable zero output constrained dynamics that we analyse is more general than
the usual definition of zero dynamics found in literature [17]. To make the distinction more obvious
we refer to our definition as constrained dynamics and to the definition in [17] as zero dynamics.
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time and also yields stable constrained dynamics is then presented in Section 7. In
Section 8, we present several examples which illustrate our methods. The summary
and conclusion are given in the last section.

2. Mathematical preliminaries. We use the standard definitions of rings and
fields [6]. We work over the field of real numbers which is denoted as <. <n is a
set of all n-tuples of elements of <, where n is a non negative integer. The ring of
polynomials in n variables over the real field < is denoted as <[x1, x2, . . . , xn]. Let
f1, f2, . . . , fs be polynomials in <[x1, x2, . . . , xn]. Then we define

V (f1, f2, . . . , fs) = {(a1, a2, . . . , an) ∈ <n : fi(a1, a2, . . . , an) = 0 for all 1 ≤ i ≤ s}.
We call V (f1, f2, . . . , fs) the real algebraic set or real variety defined by f1, f2, . . . , fs.
Since the defining polynomials of a real variety are often clear from the context, it is
often denoted simply as V .

Definition 1. A real variety V ⊂ <n is irreducible if whenever V is written
in the form V = V1 ∪ V2, where V1 and V2 are real varieties then either V1 = V or
V2 = V . [6, pg. 196]. 2

Theorem 2.1. [6, pg. 202] Let V ⊂ <n be a real variety. Then V can be written
as a finite union of irreducible varieties V = V1 ∪ V2 ∪ . . . ∪ Vm where each Vi is an
irreducible variety. 2

Let f, g ∈ <[x1, x2, . . . , xn]. f |g means that g divides f , that is, there exists a
polynomial h ∈ <[x1, x2, . . . , xn] such that f = hg. f ≡ g|h means that f is divisible
by h modulo g, that is, given polynomials h and g, deg(g) < deg(f) there exists a
polynomial h1 ∈ <[x1, x2, . . . , xn] such that f = h1h + g. Also, f 6 | g and f ≡ g 6 | h
denotes respectively that f is not divisible by g and f is not divisible by h modulo g.

We say that a variety V ⊂ <2 has Special Form if

V = {(y, v) ∈ <2 : y −
n−1∑

i=0

biv
i = 0, bi ∈ <, i = 0, 1, . . . , n− 1}.

Varieties of Special Form are irreducible because they can be parametrized by poly-
nomials [6, pg. 197].

3. Definition of the system. We consider systems described by the following
recursive input-output polynomial equation:

yk+1 = f(yk, uk−1, uk)(4)

where yk is the output of the system at time k and uk is the input to the system at
time k. The function f is a polynomial, f ∈ <[y, v, u]. We assume that the highest
exponent of u in f(y, v, u) is an odd integer. A system (4) with this property is
referred to as an odd system.

It is always possible to rewrite (4) in the following form:

yk+1 = gn(yk, uk−1)un
k + gn−1(yk, uk−1)un−1

k + . . . + g0(yk, uk−1)(5)

where gn 6≡ 0 and n is an odd positive integer.
Assumption 1. Constrained dynamics are defined:

∀v ∈ <, ∃u ∈ < such that f(0, v, u) = 0(6)
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A sequence of controls is denoted as

U = {u0, u1, . . .}
The truncation to a sequence of length p+1 is denoted as Up = {u0, u1, . . . , up}. The
composition of the function f in equation (4) under the action of a control sequence
Up which starts from (y0, u−1) ∈ <2 is denoted as

fUp(y0, u−1) = f(f(. . . f(f︸ ︷︷ ︸
p times

(y0, u−1, u0), u0, u1), . . . , up−1, up)

Obviously yp+1 = fUp(y0, u−1) is the output at time p + 1, given the starting point
(y0, u−1) and the input Up.

We can introduce the state variables x1(k) = yk and x2(k) = uk−1 and write
accordingly the model in state space format. In the sequel, we refer to (y0, u−1) ∈ <2

as an initial state although we work with the input output equation (4).
We are interested in output dead beat control:
Definition 2. The system (4) is output dead beat controllable if for every

(y0, u−1) ∈ <2 there is a sequence U = {u0, u1, . . .} such that the output of the
system (4) is driven to zero in finite time, that is, yk = 0, ∀k ≥ t, where t is a non
negative integer. 2

Definition 3. A feedback controller, given by uk = c(yk, uk−1), is an output
dead beat controller if there exists a positive integer P such that ∀(y0, u−1) ∈ <2, and
k ≥ P , we have yk = 0, where yk+1 = f(yk, uk−1, c(yk, uk−1)) = 0. 2

Because of Assumption 1, we can split the dead beat control problem into two
parts. Indeed, the control sequence U in Definition 2 may be split into two parts. Ut is
the part of the sequence U that transfers the output to the origin and {ut+1, . . .} the
part which keeps the output at the origin. Section 4 is concerned with the existence
of the sequence Ut, which naturally leads to the construction of an (feedback) output
dead beat controller. In Section 5 we consider the properties of the obtained control
laws, which settles the usefulness of the approach.

4. Output dead beat controllability of recursive polynomial systems.
In this section, we consider when it is possible to transfer the output of the system
(4) to the origin in finite time, starting from an arbitrary initial state (y0, u−1) ∈ <2.
The following definition is used in the sequel:

Definition 4. The one step reachable set from an initial state (y0, u−1) ∈ <2 is
defined as

Vr(y0, u−1) = {(y, u) ∈ <2 : y − f(y0, u−1, u) = 0} 2

We also define the projection of the one step reachable set onto the first coordinate
axis as:

ΠVr(y0, u−1) = {y ∈ < : ∃v ∈ < : (y, v) ∈ Vr(y0, u−1)}
and call it the set of one step reachable outputs. 2

Observe that the one step reachable set is a real variety and it has Special Form
for any initial state in <2. Moreover, since the systems is odd, the only states from
which it may not be possible to zero the output in one step belong to the real variety
VC defined by

VC = {(y, v) ∈ <2 : gn(y, v) = 0}(7)
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Notice that dimVC < 2.
Definition 5. The variety VC given by (7) is called the critical variety. 2

Definition 6. The number of varieties of Special Form that are contained in VC

is denoted by N . 2

Let V and W be varieties. We introduce notation:

V
f→ W(8)

to denote that Vr(y0, u−1) = W, ∀(y0, u−1) ∈ V . It should be emphasised that the
equation (8) means that the one step reachable set from any initial state in V is equal
to W .

Definition 7. A set VIj
⊆ VC is invariant if

∀(y, v) ∈ VIj
, Vr(y, v) ⊆ VIj

(9)

The union of all invariant sets VI = ∪jVIj
is called the maximal invariant set. 2

Definition 8. A subset WIj of the variety VC is strongly invariant if it is
invariant and ∀(y0, u−1) ∈ WIj

there exists an integer t ≥ 0, t = t(y0, u−1) and a
sequence of controls Ut = {u0, u1, . . . , ut} which yields (yt+1, ut) = (y0, u−1) where
yt+1 = fUt(y0, u−1). The union of all strongly invariant sets WI = ∪jWIj is called
the maximal strongly invariant set. 2

Definition 9. The number of varieties of Special Form that are contained in
the maximal strongly invariant set WI of VC is denoted by L. 2

The propositions below indicate some important properties of the maximal in-
variant and strongly invariant sets.

Proposition 4.1. The maximal strongly invariant set can be decomposed into
finitely many strongly invariant subsets WIj , each of which can be decomposed into
finitely many varieties of Special Form Wi:

WI = W1 ∪ . . . ∪WL1︸ ︷︷ ︸
WI1

∪WL1+1 . . . ∪WL1+L2︸ ︷︷ ︸
WI2

∪ . . .∪WL1+...+Lp−1+1 ∪ . . . ∪WL1+...+Lp︸ ︷︷ ︸
WIp

where L1 + L2 + . . . + Lp = L. Therefore, the maximal strongly invariant set is itself
a variety. 2

Sketch of the proof: We prove this proposition in four steps. Since Vr(y0, u−1)
is of Special Form for any (y0, u−1) ∈ VC , at least one variety of Special Form W1

belongs to the maximal strongly invariant subset WI . Then we can show that in order
to have invariance one step reachable sets from any initial state in W1 must coincide,
that is Vr(y1, v1) = Vr(y2, v2), ∀(y1, v1), (y2, v2) ∈ W1. Therefore, we show that one
can write Vr(y, v) = W2, ∀(y, v) ∈ W1, where W2 is a variety of Special Form which
is a subset of VC . After this, we show that the union W1 ∪W2 ∪ . . . ∪WL is a subset
of WI . Finally, it is proved that the union W1 ∪W2 ∪ . . . ∪WL is equal to WI , and
the partition into smaller strongly invariant sets follows easily. For a more detailed
proof see [21]. Q.E.D.

Proofs of the propositions below hinge on the proof of Proposition 4.1 (see [21]).
Proposition 4.2. Any invariant subset VIj of the critical variety VC contains a

strongly invariant subset WIj . 2

Proposition 4.3. Any initial state that belongs to an invariant subset VIj of
the critical variety VC is transferred to a strongly invariant subset WIj (which is a
subset of VIj ) in finite time. 2
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Proposition 4.4. Any (y0, u−1) ∈ VC − VI can be mapped to <2 − VC in at
most N − L + 1 time steps (see Definitions 6 and 9). 2

Comment 1. An immediate consequence of Proposition 4.4 is that if VI = ∅ any
initial state in VC can be mapped to <2 − VC in at most N + 1 time steps and hence
the output can be zeroed in at most N + 2 steps (see Definition 6).

Proposition 4.5. Consider the system (4). The critical variety VC (7) contains
a strongly invariant subset if and only if there exist polynomials y−∑n−1

i=0 bp
i v

i, bp
i ∈

<, p = 1, 2, . . . , B, B ≤ L ≤ N such that

gn(y, v)|(y −
n−1∑

i=0

bp
i v

i), ∀p = 1, 2, . . . , B

gi(y, v) ≡ bp+1
i |(y −

n−1∑

i=0

bp
i v

i), ∀p = 1, 2, . . . , B − 1,∀i = 1, . . . , n− 1, and

gi(y, v) ≡ b1
i |(y −

n−1∑

i=0

bB
i vi), ∀i = 1, . . . , n− 1 2

The above properties of invariant subsets of VC , lead to necessary and sufficient
conditions for output dead beat controllability for the class of odd systems (4).

Theorem 4.6. The odd system (4) is output dead beat controllable if and only if
either the maximal invariant set VI = ∅ or if VI 6= ∅, then all irreducible components
(varieties) Wi, i = 1, 2, . . . , L of the maximal strongly invariant set WI intersect the
line y = 0. 2

Sketch of the proof: The whole state space can be partitioned as WI ∪ (VI −
WI) ∪ (VC − VI) ∪ (<2 − VC). Propositions 4.1, 4.2, 4.3, 4.4, together with the fact
that any state in VC − VI can be mapped to <2 − VC , give a characterisation of all
possible behaviours. Q.E.D.

Comment 2. It is easily verified that the conditions under which the critical
variety VC may contain invariant subsets (they are given in Proposition 4.5) are
clearly not generic.

Comment 3. It is important to notice that Theorem 4.6 provides conditions
for output controllability to the origin. If we want to check output controllability to
some other point y∗ 6= 0 then all irreducible components (varieties) Wi of the maximal
strongly invariant set WI should intersect the line y = y∗.

5. Stability of Constrained Dynamics. We examine in this section properties
of the control law which keeps the output of the system at zero after the output
was zeroed. We extend Theorem 6.2 [3] to the class of polynomial implicitly defined
systems. This theorem gives necessary and sufficient conditions for the global stability
of an invariant interval for the class of explicit constrained dynamics defined by uk =
g(uk−1) with g continuous. We consider implicitly defined polynomial systems. The
equation that defines the behaviour of the system is given below:

f(0, uk−1, uk) = 0.(10)

It was noticed in [1] that the properties of the control law that keeps the output at
zero depends on the rule used to determine which particular solution from among
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the possible alternatives uk, satisfying (10), is used for any given uk−1. This rule is
referred to as a criterion of choice. If we have several control actions that satisfy the
constraint (10) at our disposal, it is very important to apply “the most appropriate
one”.

In this section we define what we mean by stable constrained dynamics and find
conditions which guarantee the existence of a “good” criterion of choice, i.e. one that
leads to stable constrained dynamics. Now we give definitions for the concepts that
we need in our developments.

Definition 10. A criterion of choice is a single valued function c : < → <
(denoted also as uk = c(uk−1)) such that

f(0, v, c(v)) = 0, ∀v ∈ <. 2(11)

Definition 11. Consider a criterion of choice c (Definition 10). A bounded
interval A ⊂ < is invariant under mapping c if c(A) ⊆ A . 2

Definition 12. Let A ⊂ < be a bounded interval invariant under mapping c.
Then:

1. A is called stable if ∀E ⊆ <, A ⊂ E, ∃K(E) > 0 such that ∀uk−1 ∈ E we
have supuk−1∈E |c(uk−1)| ≤ K(E) < ∞.

2. A is called attractive if ∀∆ > 0, ∀u−1, ∃T = T (∆, u−1) such that infx∈A, |x−
uk| < ∆, ∀k > T .

3. A is called asymptotically stable if 1 and 2 hold .2
Definition 13. Implicitly defined constrained dynamics (equation (10)) are

called stable if there exists a criterion of choice c such that there is a bounded interval
A invariant under mapping c which is asymptotically stable. 2

We emphasize that the present notion of stability is more general than allowed
for in [17, 18], where only stability of equilibria is considered. Notice also that we
consider a global stability property.

We now cite Theorem 6.2 from [3] which is used in the proof of the main result.

Theorem 5.1. [3] Consider the map g : D → D, D ⊂ <. Let A 4
= [a, b] ⊂ <

such that:
1. D ∩ A is invariant under g: g(D ∩ A) ⊂ D ∩ A
2. (<−]a, b[) ⊂ D
3. g is continuous on (<−]a, b[)

Then A is globally attracting interval of the iterative map u(k + 1) = g(u(k)) if and
only if the following conditions hold:

∀x < a g(x) > x

∀x > b g(x) < x

∀x < a such that ∃(x, z) ∈ G−1
R g(x) < z

∀x > b such that ∃(x, z) ∈ G−1
L g(x) > z 2(12)

The domain D represents the domain of definition of constrained dynamics. Other
symbols used in the statement of Theorem 5.1 are given below:

G = {(x, g(x)) : x ∈ < − [a, b]}, GL = {(x, g(x)) ∈ G : x < a},
GR = {(x, g(x)) ∈ G : x > b}, G−1

L = {(g(x), x) : (x, g(x)) ∈ GL},
G−1

R = {(g(x), x) : (x, g(x)) ∈ GR}
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Comment 4. In our case the domain of definition of constrained dynamics is the
whole real line, that is D = <. Therefore, Condition 2 of Theorem 5.1 does not need
to be verified. 2

Given T ≥ 0 a real number, the following sets will be used in the sequel:

S1 = {(v, u) ∈ <2 : v < −T}, S2 = {(v, u) ∈ <2 : v > T}(13)

A very important feature of polynomial systems which is crucial for the stability of
constrained dynamics is given in the theorem below.

Theorem 5.2. Consider the real variety Vz defined by

Vz = {(v, u) ∈ <2 : f(0, v, u) = 0}(14)

There exists T ≥ 0 such that there are constant numbers n1 and n2 of continuous
branches2 of variety Vz on sets S1 and S2 (13). 2

Proof of Theorem 5.2: Sturm sequences can be used in order to check the
exact number of distinct real roots of a univariate polynomial on any interval [a, b],
including ]−∞,+∞[ [4]. We will regard uk−1 as a parameter and for any fixed uk−1

we can find the number of distinct real roots uk to (10). In other words, we can find
the exact number of real roots to (10) on vertical lines uk−1 = const..

Consider the Sturm sequence of f(0, v, u). It has the form:

A0
n(v)un + . . . + A0

0(v)
A1

n−1(v)un−1 + . . . + A1
0(v)

. . .

An
0 (v)(15)

The leading coefficient functions are rational functions in v. It turns out that for the
number of real solutions u to (10) for a fixed value of the parameter v, only the leading
coefficient functions are important. Actually, the signs of these functions determine
the number of real roots and since they are rational functions, we can find a set of the
form ]−∞,−D1[∪]D1,+∞[ on which their signs do not change. The modified division
algorithm which is used to determine the sequence (15) yields a special form of the
leading coefficients in the Sturm sequence. Namely, the denominator of Aj+1

n−j+1(v)
has the same roots as the numerator of Aj

n−j(v), ∀j > 1. Also, A0
n = gn(0, v) and

A1
n−1 = n∂/∂v[gn(0, v)] are polynomials. Consequently, the set on which the Aj

n−j(v)
do not change signs can be determined considering the equations Aj

n−j(v) = 0,∀j =
0, . . . , n. We introduce the following set:

D1 = {v ∈ < : Aj
n−j(v) = 0, for some j = 0, . . . , n}(16)

Denote as D1 the following number:

D1 = sup
v∈D1

|v|(17)

It follows that on the set ] −∞,−D1[∪]D1, +∞[ all the leading coefficient functions
do not change their signs. Therefore, there is a constant number of real roots uk for

2 The term “branch of Vz” that we use corresponds to parts of irreducible varieties (curves) from
which the variety Vz is composed [4, 6] that belong to sets S1 and S2.
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every uk−1 ∈]−∞,−D1[ and uk−1 ∈]D1, +∞[ to equation (10). We can also say that
there exist a constant number of continuous branches of Vz on sets ] −∞,−D1[×<
and ]D1, +∞[×<. This follows from the theorem on the continuity of real roots [4,
pg. 38]. Since gn(0, v) 6= 0 (gn = A0

n) for v ∈] −∞,−D1[∪]D1, +∞[ and since there
is a constant number of complex roots all the conditions of the theorem are satisfied.
Q.E.D.

Comment 5. Theorem 5.2 states that it is possible to find an interval [−D1, D1]
inside which all bifurcations of the variety Vz occur. Moreover, from the theorem on
the continuity of roots [4, pg. 38] we see that all intersections between branches of
the variety Vz occur inside the same interval. 2

Lemma 5.3. A necessary condition for the existence of stable constrained dynam-
ics is

sup
|v|<K

inf
(v,u)∈Vz

|u| < +∞, ∀K ∈]0, +∞[ 2

Proof of Lemma 5.3: Suppose that there exists a criterion of choice c which
yields stable constrained dynamics. Suppose that there exists v = u∗k−1 which belongs
to the invariant interval such that all branches of the variety Vz have a vertical asymp-
tote at v = u∗k−1. In other words, the condition of Lemma 5.3 is not satisfied for any
neighbourhood of the origin that contains u∗k−1. It is then obvious that the invariant
interval must have one of the following forms: ]−∞, +∞[, [K, +∞[ or ]−∞, K] and
we have a contradiction since neither of these intervals is bounded. Suppose now that
u∗k−1 does not belong to the invariant interval. In this case, constrained dynamics can
not be stable in the sense of Definition 13 because for uk−1 such that uk−1 → u∗k−1

we have that |uk| → +∞, so we again obtain a contradiction. Q.E.D.
Now we can give definitions of maximal and minimal branches of the variety Vz.

Definition 14. Consider the variety Vz on sets S1 and S2. The maximal branch
of Vz in S2 is given by:

V S2
M = {(v, u) : v ∈]T,+∞[, u = max

(v,y)∈(Vz∩S2), y<v
y}

The minimal branch of Vz in S1 is such that:

V S1
m = {(v, u) : v ∈]−∞,−T [, u = min

(v,y)∈(Vz∩S1), y>v
y}. 2

In other words, the maximal branch is the closest branch of Vz to the bisector
u = v, which is below the bisector (on the set S2). Notice that minimal and maximal
branches are well defined parts of irreducible varieties of Vz, following from the the-
orem on continuity of roots [4]and Bezout’s theorem [6]. Bezout’s theorem says that
we can find a set [−D3, D3]×< inside which all intersections between the variety Vz

and the bisector u = v occur. Also notice that if there are no branches in S2 that are
below the bisector u = v, then by definition V S2

M = ∅.
Comment 6. Suppose that we can find a criterion of choice such that outside

a bounded interval [−T, T ] all orbits are bounded, converge to the interval and enter
it in finite time from any given u−1. Then it is easy to show that when Lemma 5.3
holds there exists an interval (perhaps larger than [−T, T ] but bounded) such that
it is invariant and stable. Consequently, we will concentrate only on the existence
of a bounded stable interval and Lemma 5.3 guarantees that we can always have a
criterion of choice for all u−1 ∈ [−T, T ] which renders the interval invariant.
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Now we can state the main result.
Theorem 5.4. Implicitly defined constrained dynamics (10) are stable if and

only if the mapping uk = g(uk−1) defined as

uk =





y such that (uk−1, y) ∈ V S1
m if uk−1 < −T

y such that (uk−1, y) ∈ V S2
M if uk−1 > T

y such that (uk−1, y) ∈ Vz if uk−1 ∈ [−T, T ] and
y has the smallest absolute value

(18)

satisfies equations (12) of Theorem 5.1 and Lemma 5.3 holds. 2

Proof of Theorem 5.4:
Sufficiency: Consider the criterion of choice (18). It is obvious that all the condi-

tions of Theorem 5.1 are satisfied and this criterion yields stable constrained dynamics.
Necessity: We only have to show that the conditions (12) are necessary for stable

constrained dynamics. We can find a set inside which all intersections between the
variety Vz and the bisector u = v occur and denote it as [−D3, D3]×<. Moreover, we
can find another set inside which all the intersections between Vz and V −1

z = {(v, u) ∈
<2 : f(0, u, v) = 0} occur (modulo common components which may have infinitely
many common points) and denote it as [−D2, D2]×<. All the subsequent arguments
are given for the sets S1 and S2 defined by the number T = max[D1, D2, D3]. Sets S1

and S2 (13) defined in this way obviously have the property that (modulo common
components) there are no intersections between Vz and V −1

z on the sets, there are no
bifurcations of the variety Vz on the sets and, finally, minimal and maximal branches
V S1

m and V S2
M are either parts of continuous curves or they are empty sets.

Suppose that the constrained dynamics are stable and that the first condition in
(12) is not satisfied. Since V S1

m = ∅, all branches are below the bisector u = v and as a
consequence we have that uk → −∞ as k →∞, ∀u−1 ∈]−∞,−T ]. A similar situation
happens when the second condition (12) is not satisfied and therefore the first two
conditions in (12) are necessary to ensure stability of the constrained dynamics. In
other words, a necessary condition for the stability of the implicitly defined constrained
dynamics (10) is that V S1

m 6= ∅ and V S2
M 6= ∅.

Consider now what happens if the third condition in (12) is not satisfied. Since
all branches of Vz in S2 are above V S2

M , all their inverses will lay on the left hand
side (or below) of (V S2

M )−1. Thus, we suppose that no branch of V −1
z satisfies the

third condition in (12). Moreover, if we use pieces of branches of Vz to construct a
piecewise continuous one to one function and use the modified Theorem 5.1 [3] we
can see that no such function would satisfy the conditions of Theorem 5.1. Therefore,
there does not exist a criterion of choice which yields stable constrained dynamics.
The contradiction completes the proof. The last two conditions are symmetric and
they are either both satisfied or not. Q.E.D.

6. An Algebraic Test for Stability of Constrained Dynamics. We now
present a method to check the conditions of Theorem 5.4. First, we provide a means
of verifying the conditions of Lemma 5.3.

We write the function (10) as

f(0, v, u) = gn(0, v)un + . . . + g0(0, v)(19)

The only critical points that we have to check are the ones for which the leading
coefficient gn(0, v) (19) vanishes [4, pg. 10, pg. 39]. Therefore, the first step is to find
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all real solutions v to gn(0, v) = 0. It is then necessary to check whether

f(0, v, u) = 0(20)

has real roots u, for all critical values of v. We define the following sets:

A = {v : gn(0, v) = 0}(21)
B(v) = {u ∈ < : f(0, v, u) = 0}, v ∈ A(22)
C = {(v, u) : v ∈ A, u ∈ B(v)}(23)

There must be at least one real root u ∈ B(v), ∀v ∈ A, otherwise Assumption 1
would not be satisfied. We can now use the implicit function theorem. For all pairs
of controls (v, u) ∈ C the equation (10) holds. If for every v ∈ A there exists at least
one u ∈ B(v) for which:

∂f

∂u
|(v,u) 6= 0(24)

then the implicit function theorem guarantees the existence of a function u = g(0, v),
which is C∞ since we deal with polynomials, such that f(0, v, g(0, v)) = 0 .

The implicit function theorem gives only sufficient conditions to check Lemma 5.3
but they are easy to check. If (24) does not hold, we may check whether Lemma 5.3
is satisfied. The easiest way to do this is to draw the variety Vz around every point
(v, u) in C using Matlab (the set C contains finitely many points) and check whether
there exists a branch of Vz which does not have a vertical asymptote at (v, u).

Before we give the classification of all possible situations we define bisectors and
octants.

B1 = {(v, u) ∈ <2 : v = u}, B2 = {(v, u) ∈ <2 : −v = u}

O1 = {(v, u) ∈ <2 : v > 0, u > 0, u < v}, O2 = {(v, u) ∈ <2 : v > 0, u > 0, u > v}

O3 = {(v, u) ∈ <2 : v < 0, u > 0, u > −v}, O4 = {(v, u) ∈ <2 : v < 0, u > 0, u < −v}

O5 = {(v, u) ∈ <2 : v < 0, u < 0, u > v}, O6 = {(v, u) ∈ <2 : v < 0, u < 0, u < v}

O7 = {(v, u) ∈ <2 : v > 0, u < 0, u < −v}, O8 = {(v, u) ∈ <2 : v > 0, u < 0, u > −v}
We also use notation A1 and A2 to denote respectively the line v = 0 and u = 0 in
<2.

A very important concept of the “inverse graph” of the variety Vz (14) which is
given by:

V −1
z = {(v, u) ∈ <2 : f(0, u, v) = 0}(25)

is obtained by simply interchanging variables v and u in the defining polynomial. It is
easy to check that if a point on a variety Vz is in the first octant O1, the corresponding
point on V −1

z is in the second octant O2 and vice versa. We use the following notation
to summarise all possible situations:

O2 ↔ O1, O3 ↔ O8, O4 ↔ O7, O5 ↔ O6
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In some cases the position of branches V S2
M and V S1

m provide sufficient information to
conclude on the stability of constrained dynamics since the conditions on the inverse
graph are automatically satisfied. We summarise these trivial cases in the Lemma
below.

Lemma 6.1.
1. If one of the following conditions hold

(a) V S1
m ⊂ O5 and V S2

M ⊂ O1

(b) V S1
m ⊂ O5 and V S2

M ⊂ O8

(c) V S1
m ⊂ O5 and V S2

M ⊂ O7

(d) V S1
m ⊂ O4 and V S2

M ⊂ O1

(e) V S1
m ⊂ O4 and V S2

M ⊂ O8

(f) V S1
m ⊂ O3 and V S2

M ⊂ O1

then there exist a criterion of choice which yields stable constrained dynamics.
2. If V S1

m ⊂ B2 (V S2
M ⊂ B2) then there exists a criterion of choice which yields

stable constrained dynamics if and only if V S2
M (V S1

m ) belongs to the cone
{(v, u) ∈ <2 : |v| < |u|}.

3. If V S1
m ⊂ A2 or V S2

M ⊂ A2, the constrained dynamics are stable.
4. If V S1

m = ∅ or V S2
M = ∅ or V S1

m = ∅ and V S2
M = ∅ then the constrained

dynamics are unstable.
5. If V S1

m ⊂ O3 or V S2
M ⊂ O7 or V S1

m ⊂ O3 and V S2
M ⊂ O7 then the constrained

dynamics are unstable. 2

It can easily be checked that the only remaining cases are:
1. V S1

m ⊂ O3 and V S2
M ⊂ O8

2. V S1
m ⊂ O4 and V S2

M ⊂ O7

Only in these cases do we have to use “inverses” (V S1
m )−1 and (V S2

M )−1. Since we are
dealing with polynomial systems, we can use the algebraic structure of these systems
in order to obtain a “box” inside which all intersections between Vz and V −1

z occur
(modulo common components). We will use the theory of resultants to compute such
a box. We denote f1 = f(0, v, u) and f2 = f(0, u, v).

Resultants procedure:
First, we find the greatest common divisor of f1 and f2 which is denoted as

GCD(f1, f2) ∈ <[v, u]. Then we compute “common components free” polynomials:

f ccf
1 =

f1

GCD(f1, f2)
f ccf
2 =

f2

GCD(f1, f2)
(26)

Now, we can regard polynomials fccf
1 and f ccf

2 as polynomials in v whose coefficients
are polynomials in u. Now we can find the resultant of the two polynomials:

R(f ccf
1 , f ccf

2 ) =
p∑

i=0

aiu
i(27)

The resultant R(f ccf
1 , f ccf

2 ) is a polynomial in u. We know that polynomials f ccf
1 and

f ccf
2 have no common roots if R(f ccf

1 , f ccf
2 ) 6= 0. We can find a number D2 which is

such that all absolute values of real roots of the resultant are less than D2.
Second, we estimate the number D2 using formulas for bounds on roots, e.g.

D̂2 = 1+supi |ai| [4], where ai, i = 0, 1, . . . , p are coefficients of the resultant. Outside
the box defined by {(v, u) ∈ <2 : |v| ≤ D̂2 and |u| ≤ D̂2} the varieties Vz and V −1

z

have no intersections modulo common branches.
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Third, we pick û such that |û| > |D̂2| and find sets of solutions:

Σ1 = {v ∈ < : f(0, v, û) = 0}, Σ2 = {v ∈ < : f(0, û, v) = 0}(28)

We can see that the sets Σ1 and Σ2 give a complete picture about the branches of
varieties Vz and V −1

z and therefore can be used to check whether constrained dynamics
are stable for the two remaining cases. The criterion for the stability of constrained
dynamics of the two last cases, which are not covered by Lemma 6.1, is given in the
following Lemma.

Lemma 6.2. If
1. V S1

m ⊂ O3 and V S2
M ⊂ O8 or

2. V S1
m ⊂ O4 and V S2

M ⊂ O7

then constrained dynamics are stable if there exist σ1 ∈ Σ1 and σ2 ∈ Σ2 such that
σ1 < σ2. In the first case sets Σ1 and Σ2 (28) are calculated using û > T̂ and in the
second case û < −T̂ . 2

Proof of Lemma 6.2: It trivially follows from Theorem 5.4 and the above given
procedure.

The method to check the existence of constrained dynamics consists of several
steps:

1. Check the conditions of Lemma 5.3 as described before.
2. Form the Sturm sequence and find all leading coefficient functions. Using

(17) and bounds on roots, determine the estimate D̂1.
3. Find the box inside which all intersections between the variety Vz and B1, B2, A1

and A2 occur. This is done in the following way. Find the following estimates:

D̂3 = 1 + max
i
|ni|, D̂4 = 1 + max

i
|mi|, D̂5 = 1 + max

i
|ki|, D̂6 = 1 + max

i
|li|

where ni, mi, ki, li ∈ < are respectively coefficients of polynomials f(0, v, v),
f(0, v,−v), f(0, 0, u) and f(0, v, 0).

4. Find the estimate T̂ of T using:

T̂ = max(D̂1, D̂3, D̂4, D̂5, D̂6)(29)

5. Pick any v∗ ∈]−∞,−T̂ [ and compute all real roots of

f(0, v∗, u) = 0(30)

Pick any v∗∗ ∈]T̂ ,+∞[ and compute all real roots of

f(0, v∗∗, u) = 0(31)

6. Determine to which octants do the pairs (v∗, real root to (30)) and (v∗∗, real
root to (31)) belong and check whether Lemma 6.1 holds (remember that
checking the position of a single point of the variety implies that the whole
branch has the same position). If Lemma 6.1 is not satisfied then proceed
onto the next step.

7. Compute D̂2 = 1 + maxi |fi| where fi are the coefficients of the resultant
R(f ccf

1 , f ccf
2 ), redefine T̂ = max(D̂1, D̂2, D̂3, D̂4, D̂5, D̂6) and apply the resul-

tants procedure which is used to check conditions of Lemma 6.2.
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Fig. 1. Output dead beat controller - algorithm

7. Output Dead Beat Control Law with Stable Constrained Dynamics.
Propositions 4.1-4.5 can be used to design a dead beat controller (algorithm) as out-
lined in Figure 1. The obtained controller uses static feedback to compute the value
of control signal at any time instant k. The closed loop system can be written in the
form:

yk+1 = f(yk, uk−1, uk)
uk = c(yk, uk−1)(32)

The control signal is obtained as a solution to a polynomial algebraic equation and
since there may be more than one solution we need a criterion of choice to define the
control law c(yk, uk−1). One criterion for the choice may be: apply the control signal
that has the least absolute value. We may be able to shape the transient response
and keep the control signals as small as feasible, using a different criterion of choice.
The question of which choice is not so critical if the output is not zero. Having zeroed
the output, the criterion of choice becomes crucial for the stability of constrained
dynamics and, consequently, for the stability of the closed loop system (32).
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A criterion of choice which yields stable constrained dynamics is given by:

uk =





u ∈ V S1
m if (v, u) ∈ S1

u ∈ V S2
M if (v, u) ∈ S2

u s.t. it has minimum absolute value if v ∈ [−T̂ , T̂ ]
(33)

This choice does not guarantee the fastest convergence to the invariant interval and
other choices may be better in this sense than this control law. The tradeoff between
the speed of convergence to the invariant interval and the shape of the transient re-
sponse is a difficult problem in its own right but very often it is possible to successfully
tackle this problem on a case by case basis.

Notice that working with poor bounds on roots, such as the one that we have
used, may yield an estimate T̂ which is much larger than the minimal possible T , but
the computations are simpler and faster to use when checking the existence of stable
constrained dynamics. Computing exact roots, on the other hand, yields a smaller
size of the invariant interval, which should be used when implementing the controller.
Blocks in which we need to check whether (y(k), u(k − 1)) belong to WI or VI are
equivalent to testing whether a finite number of polynomials which define WI and VI

are zero when evaluated at (y(k), u(k − 1)).

8. Examples. The following example illustrates the concepts of invariant and
strongly invariant subsets of the variety VC .

Example 1. Consider the system:

yk+1 = (yk − u2
k−1 − 1)(yk + u2

k−1 + 1)[(yk + 2)u3
k + u2

k + 1] + u2
k + 1(34)

Assumption 1 is satisfied. The critical variety VC is defined by:

VC = {(y, v) ∈ <2 : (y − v2 − 1)(y + v2 + 1)(y + 2) = 0}

In this case we can verify that the only strongly invariant set is given by:

WI = {(y, v) ∈ <2 : (y − v2 − 1) = 0} ⊂ VC

We check the existence of strongly invariant sets via Proposition 4.5. There are three
varieties of Special Form that are contained in VC

y − v2 − 1; y + v2 + 1; y + 2

and we also have

g0 = (y − v2 − 1)(y + v2 + 1) + 1; g1 = 0; g2 = (y − v2 − 1)(y + v2 + 1) + 1

The only cycle of Proposition 4.5 is given by the divisions:

g0 ≡ 1|(y − v2 − 1); g1 ≡ 0|(y − v2 − 1); g2 ≡ 1|(y − v2 − 1)

which defines WI . Since WI does not intersect the line y = 0 according to Theorem
4.6 the system is not output dead beat controllable.

We have, therefore, WI
f→ WI , and t in Definition 8 can be chosen to be 1. From

equation (34) it is clear that ∀(y, v) ∈ V1, where V1 = {(y, v) ∈ <2 : (y + v2 + 1) = 0}
(see Figure 2) we have Vr(y, v) = WI . Therefore, any initial state in V1 is transferred
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Fig. 2. Invariant sets VI and strongly invariant sets WI (Example 1)

in one step to some point in WI irrespective of the control that is applied. Thus, we
can write:

V1
f→ WI

f→ WI
f→ . . .

Consider now initial states on the line y0 = −2. The model of the system becomes:

y1 = [(−3− u2
−1)(−1 + u2

−1) + 1](u2
0 + 1).

Denote real solutions u−1 of the following equations:

[(−3− u2
−1)(−1 + u2

−1) + 1] = −1

[(−3− u2
−1)(−1 + u2

−1) + 1] = 1

as ai and bi (i = 1, 2), respectively. The set of one step reachable states from (−2, a1)
and (−2, a2) is V1 and from (−2, b1) and (−2, b2) is WI . Notice also that b1 = 1, b2 =
−1 and hence (−2, b1) and (−2, b2) belong to V1. Therefore, we can write:

(−2, ai)
f→ V1

f→ WI
f→ WI

f→ . . . , i = 1, 2

The maximal invariant set VI is:
VI = {(y, v) ∈ <2 : (y − v2 − 1)(y + v2 + 1) = 0} ∪ {(−2, a1), (−2, a2)}.

Sets VI and WI are shown in Figure 2. The set VC −VI is not invariant and there
exists a control uk which can map any initial state from it to <2 − VC in one step.
Observe that both VI and WI are real varieties, whereas VC − VI is not. Also, initial
states in V1 are transferred to WI in one step and the initial states (−2, ai), i = 1, 2
are transferred to WI in two steps. 2

The following example serves to illustrate why the present notion of stability of
constrained dynamics is more appropriate in this context than the notion of zero
dynamics introduced in [17, 18].
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Example 2. Consider the following system:

yk+1 = (uk + 2uk−1 + yk)(uk − 0.5uk−1 − yk)

We introduce the state variables x1(k) = yk and x2(k) = uk−1 and write:

x1(k + 1) = (uk + 2x2(k) + x1(k))(uk − 0.5x2(k)− x1(k))
x2(k + 1) = uk(35)

y(k) = x1(k)

According to [17], the relative degree for system (36) is d = 1 and Assumption 1 in
[17] holds. Two possible feedback laws can be used to transform the system into the
form (2.6) in [17]:

uk =
−1.5x2(k) +

√
6.25x2

2(k) + 10x1(k)x2(k) + 4x2
1(k) + 4v(k)

2
(36)

uk =
−1.5x2(k)−

√
6.25x2

2(k) + 10x1(k)x2(k) + 4x2
1(k) + 4v(k)

2
,(37)

where v(k) is the new control input. If we use the control law (37), the the correspond-
ing zero dynamics are then defined as x2(k +1) = −2x2(k) (with x1(k) = 0, v(k) = 0)
and are obviously not stable. If, on the other hand, we had chosen (36), we obtain
x2(k + 1) = 0.5x2(k), which is obviously stable. In this case there are 4 different
continuous feedback laws that transform the system into the form (2.6) in [17]. Three
of them yield stable zero dynamics and one yields unstable zero dynamics. Also, there
are infinitely many discontinuous control laws that keep the output at zero. Notice,
that all conditions in [17] are satisfied and it appears that the stability of the zero
dynamics depends on the choice of the feedback law. The criterion of choice that we
use in the definition of stable constrained dynamics takes this phenomenon explicitly
into account. 2

The following example illustrates the method for checking the existence of stable
constrained dynamics.

Example 3. Check the existence of stable constrained dynamics for the following
system:

yk+1 = −2(1+y2
k)u5

k−2u3
k+2ukuk−1(1+y4

k)+2uku2
k−1+uk−1u

4
k+uk−1u

2
k−u2

k−1−u3
k−1+y3

k

For yk = 0 we have:

−2u5
k − 2u3

k + 2ukuk−1 + 2uku2
k−1 + uk−1u

4
k + uk−1u

2
k − u2

k−1 − u3
k−1 = 0(38)

Therefore, the variety Vz is defined by:

Vz = {(v, u) ∈ <2 : −2u5 − 2u3 + 2uv + 2uv2 + vu4 + vu2 − v2 − v3 = 0}.

We will follow the steps that are described in Section 6 in order to check the existence
of stable constrained dynamics.

Step 1: Since g5(0, v) = −2 the conditions of Lemma 5.3 are satisfied.
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Step 2: Using Maple3, we obtain the following Sturm sequence:

f0 = −2u5 − 2u3 + 2uv + 2uv2 + vu4 + vu2 − v2 − v3

f1 = −10u4 − 6u2 + 2v + 2v2 + 4vu3 + 2vu

f2 = −(−4
5

+
2
25

v2)u3 − 12
25

vu2 − (
41
25

v2 +
8
5
v)u +

24
25

(v2 + v3)

f3 = −25
(−24 + 7v4 + 8v3 − 80v − 82v2)u2

(−10 + v2)2
+ 50

v(−15v2 + 4v3 + 4v4 − 16v − 4)u
(−10 + v2)2

−50
4v3 + v4 + v5 + 4 + 4v + 4v2

(−10 + v2)2

f4 = −[8(12800v + 41680v2 + 68240v3 + 52516v4 + 7268v5 − 10960v6

−3152v7 + 449v8 + 133v9 + 8v10 + 4v11 + 1600]/[25(−24 + 7v4

+8v3 − 80v − 82v2)2] + [v(161600v + 548160v2 + 923680v3(39)
+727392v4 + 113716v5 − 142400v6 − 41100v7 + 4456v8 + 1033v9

+196v10 + 100v11 + 19200)u]/[25(−24 + 7v4 + 8v3 − 80v − 82v2)2]
f5 = [50(49v15 + 161v14 − 2148v13 − 8948v12 + 27908v11 + 175332v10

+5760v9 − 1338048v8 − 2333952v7 + 1619072v6 + 10299904v5 + 15313920v4

+11967488v3 + 5407744v2 + 1351680v + 147456)v]/[(25v5 + 24v4

+728v3 + 1360v2 + 848v + 192)2(−10 + v2)2]

From the Sturm sequence we find the leading coefficient functions:

−2, −10, −(−4
5

+
2
25

v2),

−25
(−24 + 7v4 + 8v3 − 80v − 82v2)

(−10 + v2)2
,

[v(161600v + 548160v2 + 923680v3 + 727392v4 + 113716v5

−142400v6 − 41100v7 + 4456v8 + 1033v9

+196v10 + 100v11 + 19200)]/[25(−24 + 7v4 + 8v3 − 80v − 82v2)2],(40)
[50(49v15 + 161v14 − 2148v13 − 8948v12 + 27908v11 + 175332v10

+5760v9 − 1338048v8 − 2333952v7 + 1619072v6 + 10299904v5 + 15313920v4

+11967488v3 + 5407744v2 + 1351680v + 147456)v]/[(25v5 + 24v4

+728v3 + 1360v2 + 848v + 192)2(−10 + v2)2]

Using the formula for bounds on roots [4] we find that the highest coefficient func-
tions do not change their signs for v belonging to intervals ] − ∞,−312529.98[ and
]312529.98, +∞[. In other words, the estimate of D1 is D̂1 = 312529.98.

Step 3: All intersections of the variety Vz with A1, A2, B1 and B2 lay in the
interval ]− 4, +4[. It is easy to check that D̂3 = 2, D̂4 = 4, D̂5 = 2 and D̂6 = 3.

Step 4: Therefore, the estimates of sets S1 and S2 are defined using the number
T̂ = 312529.98.

Step 5: We now substitute any number v from the interval ] −∞,−312529.98[
into (38) and find all real roots. We obtain the following set of points in <2:

{(−312530, u) : (−312530, +559.04293), (−312530,−559.04293), (−312530,−156265)}
3 Copyright (c) 1981-1992 by the University of Waterloo
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Similarly, we obtain the set of roots

{(312530, u) : (+312530, 559.04383), (312530,−559.04383), (312530, 156265)}

when we substitute v∗∗ = 312530 that belongs to the interval ]312529.98,+∞[ into
(38). All these points represent branches and hence V S1

m ⊂ O5 and V S2
M ⊂ O1.

Step 6: We conclude that there exists stable constrained dynamics for this system
since point 1.a of Lemma 6.1 is satisfied. We could work with better bounds on the
roots in order to obtain better estimates for the intervals S1 and S2 or better still find
the exact roots of the polynomials in the Sturm sequence. However, the proposed
method is able to check the existence of the constrained dynamics quickly.

We have provided a constructive method to verify the existence of a criterion
of choice leading to (globally) stable constrained dynamics. The method of [17, 18]
appears not to be able to deal with this aspect in general, as the example shows.
Indeed, the feedback law required in the method of [17, 18] for this example can not
be expressed in an explicit form (this requires an analytic solution for a 5th degree
polynomial equation). 2
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