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Abstract

Two different definitions of an average for time-varying systems with inputs and a small parameter that were
recently introduced in the literature are considered: “strong” and “weak” averages. It is shown that if the strong
average is input-to-state stable (ISS), then the solutions of the actual system satisfy an integral bound in a semi-
global practical sense. The integral bound that we prove can be viewed as a generalization of the notion of finite-gain
L2 stability, that was recently introduced in the literature. A similar result is proved for weak averages but the
class of inputs for which the integral bound holds is smaller (Lipschitz inputs) than in the case of strong averages
(measurable inputs).

1 Introduction

Averaging is an important tool used in the analysis of time-varying systems. An auxiliary time-invariant dynamical

system ẋ = fav(x), called the average, is used to investigate properties of a time-varying dynamical system ẋ = f
(

t
ε , x

)

that depends on a small parameter ε. Averaging has been instrumental in solving a wide range of important control

problems, such as vibrational control or adaptive control (for classical results on averaging see [1, 4, 9] and for some

more recent results see [15] and references therein). We emphasize that classical averaging results apply only to input-

free systems although systems with inputs are prevalent in control theory. In this paper we concentrate on averaging

of systems with inputs.

Among many different stability notions for analysis of properties of systems with inputs, L∞ and L2 stability play

a central role for their practical importance and intuitive appeal: the former captures the notion of “bounded inputs

imply bounded outputs” whereas the latter guarantees that “bounded energy inputs imply bounded energy outputs”.

A recently introduced notion of input-to-state stability (ISS) [10] provides a particularly useful framework for analysis

of L∞ stability of nonlinear systems that is fully compatible with Lyapunov theory [5, 10, 11]. ISS was originally

defined for systems of the form

ẋ = f(x,w) , (1)
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where f is locally Lipschitz, using the L∞ framework (see [10]). A necessary condition for a system to be ISS is that

the origin of the system is globally asymptotically stable in the absence of inputs. Hence, systems that exhibit limit

cycles, multiple equilibria or chaotic attractors in the absence of inputs cannot be ISS. One way to overcome this is to

consider ISS with respect to compact sets [13]. Another possibility is to consider the so called input-to-state practical

stability (ISpS) first considered in [2] and which is shown to be equivalent to set-ISS in [13]. ISpS is defined in the

following way [2]:

Property I1: There exists 1 γ ∈ K, β ∈ KL and λ > 0 such that the solutions x(t) of the system (1) satisfy

|x(t)| ≤ β(|x(0)| , t) + γ(‖w‖∞) + λ, ∀t ≥ 0. 2

It was proved in [13][Section VI] that ISpS is equivalent to the following property:

Property I2: There exist α1, α2, α3, γ ∈ K∞, λ > 0 and a smooth function V : Rn → R≥0 such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (2)

|x| ≥ γ(|w|) ⇒ ∂V

∂x
f(x, w) ≤ −α3(|x|) + λ, ∀x ∈ Rn, u ∈ Rm (3)

(equivalently there exist α1, α2, α̃3, γ̃ ∈ K∞, λ > 0 and a smooth function V : Rn → R≥0 such that (2) holds and

∂V
∂x f(x, w) ≤ −α̃3(|x|) + γ̃(|w|) + λ, ∀x ∈ Rn, w ∈ Rm). 2

Recently, yet another important integral characterization of ISS was proved in [14] (see Theorem 1). Although ISpS

was not considered in [14], it can be shown that an appropriate integral version of ISpS for forward complete systems

(1) is given by the following property:

Property I3: There exist α, κ, γ ∈ K∞ and λ > 0 such that the solutions of the system (1) exists and satisfy:
∫ t

0
α(|x(s)|)ds ≤ κ(|x(0)|) +

∫ t

0
γ(|w(s)|)ds + λt, ∀t ≥ 0. 2

Note that if the state is regarded as the output of the system, then Property I1 represents a generalization of finite-gain

L∞ stability, Property I3 represents a generalization of finite-gain L2 stability and Property I2 provides a tool for

simultaneously verifying both of these important properties.

In this paper we investigate properties of time-varying systems with inputs via averaging. The systems we consider

are of the form ẋ = f
(

t
ε , x, w

)
, where ε is a small parameter. We make use of “weak” and “strong” averages recently

introduced in [8] for dealing with systems with inputs. In [8] it was shown under appropriate conditions on inputs

that if Property I2 holds with λ = 0 for the weak or strong average, then Property I1 holds for the actual time-

varying system in a semiglobal practical sense (ε is the parameter that we need to adjust). This showed that ISS

Lyapunov techniques for the time invariant strong and weak averages of [8] provide a set of tools for the analysis of

“L∞-stability” (more precisely ISpS) of time-varying systems with inputs. A related result proved in [16] shows that

under appropriate conditions on inputs, solutions of the weak or strong average can be made arbitrarily close to the
1A function γ : R≥0 → R≥0 is of class-G (γ ∈ G) if it is continuous, zero at zero and nondecreasing. It is of class-K if it is of class-G

and strictly increasing. It is of class-K∞ if it is of class-K and is unbounded. A function β : R≥0 × R≥0 → R≥0 is of class-KL if β(·, t) is
of class-K for each t ≥ 0 and β(s, ·) is decreasing to zero for each s > 0.
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solutions of the actual system on bounded time intervals if the parameter ε is sufficiently small (the result is derived

without assuming that Property I2 holds for the strong or weak average).

We emphasize that Properties I1, I2 and I3 can be shown to be equivalent for forward complete time-invariant

systems (1). Some results in this direction for general time-varying systems ẋ = f(t, x, w) were shown in [6]. The

implication “I2 for weak or strong average =⇒ I1 for the actual time-varying system” was proved in [8] for a class

of time-varying systems for which averages (strong or weak) exist. It is the purpose of this paper to show that if

Property I2 holds for the strong or weak average, then Property I3 also holds for the actual time-varying system in a

semiglobal practical sense and under appropriate conditions on inputs. Hence, the results of this paper show that the

combination of strong and weak averages of [8] with ISS Lyapunov functions provides also a tool for “L2-stability”

analysis of time-varying systems. (For related results see also [7, 17].)

The paper is organized as follows. In Section 2 we present definitions and the main assumption. The main results

are presented in Section 3 along with some related comments. All proofs are presented in Section 4.

2 Preliminaries

Given a measurable function w, we define its infinity norm ‖w‖∞ := ess supt≥0 |w(t)|. If we have ‖w‖∞ < ∞, then

we write w ∈ L∞. If w(·) is Lipschitz, its derivative is defined almost everywhere and we can write w(t) − w(t◦) =
∫ t

t◦
ẇ(τ)dτ . Consider the time-varying system:

ẋ = f(t, x, w) (4)

where x ∈ Rn is the state and w ∈ Rm is the input. We will use the following:

Assumption 1 f is locally Lipschitz in x,w, uniformly in t, and there exists c ≥ 0 such that |f(t, 0, 0)| ≤ c,∀t ≥ 0.

2

Hence, we are guaranteed the existence of solutions and can use certain results on continuity of solutions with respect

to initial conditions. The solution of the system (4) at time t, starting from an initial condition x◦ at initial time t◦

and under the action of input w[t◦,t] is denoted as x(t) (since t◦, x◦, w[t◦,t] are usually clear from the context). We also

investigate the time-varying system that depends on a small parameter ε > 0:

ẋ = f

(
t

ε
, x, w

)
. (5)

We recall the definition of strong and weak averages for time-varying systems with inputs [8]:

Definition 1 (strong average) A locally Lipschitz function fsa : Rn ×Rm → Rn is said to be the strong average of

f if there existβav ∈ KL and T ∗ > 0 such that ∀t ≥ 0, ∀T ≥ T ∗ the following holds:∣∣∣∣∣
1
T

∫ t+T

t

[fsa(x,w(s))− f(s, x, w(s))] ds

∣∣∣∣∣ ≤ βav(max{|x| , ‖w‖∞ , 1}, T ), ∀x ∈ Rn, w ∈ L∞. (6)

The strong average of system (4) is then defined as ẋ = fsa(x,w). 2

3



Definition 2 (weak average) A locally Lipschitz function fwa : Rn × Rm → Rn is said to be the weak average of f

if there exist βav ∈ KL and T ∗ > 0 such that ∀T ≥ T ∗, ∀t ≥ 0 we have2

∣∣∣∣∣fwa(x,w)− 1
T

∫ t+T

t

f(s, x, w)ds

∣∣∣∣∣ ≤ βav(max{|x| , |w| , 1}, T ), ∀x ∈ Rn, w ∈ Rm.

The weak average of system (4) is then defined as ẋ = fwa(x,w). 2

It was shown in [8, 16] that weak averages exist for a strictly larger class of systems than strong averages, but using

strong averages we can prove stronger results for the actual time-varying system. However, we emphasize that both

definitions have been found to be useful in different situations (for more details see [8, 16]).

3 Main results

In this section we state in Theorems 1 and 2 the main results of the paper.

Theorem 1 Let Assumption 1 hold and suppose f(t, x, w) has the strong average fsa(x,w). If there exists a differen-

tiable function V : Rn → R≥0, whose gradient ∂V
∂x is locally Lipschitz with ∂V

∂x (0) = 0, α1, α2, α3 ∈ K∞, with α3 locally

Lipschitz3, and γ ∈ G such that, for all (x,w):

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V

∂x
fsa(x,w) ≤ −α3(|x|) + γ(|w|), (7)

then given any strictly positive real numbers Ωx, Ωw, ν, there exists ε∗ > 0 such that for all ε ∈ (0, ε∗) and for all

t ≥ t◦ ≥ 0 the solutions of (5) exist and satisfy:
∫ t

t0

α3(|x(s)|)ds ≤ α2(|x(t◦)|) +
∫ t

t0

γ(|w(s)|)ds + ν(t− t◦), (8)

whenever |x(t◦)| ≤ Ωx, ‖w‖∞ ≤ Ωw. 2

Theorem 2 Let Assumption 1 hold and suppose f(t, x, w) has the weak average fwa(x,w). If there exists a differen-

tiable function V : Rn → R≥0, whose gradient ∂V
∂x is locally Lipschitz with ∂V

∂x (0) = 0, α1, α2, α3 ∈ K∞, with α3 locally

Lipschitz, and γ ∈ G such that for all (x,w):

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V

∂x
fwa(x,w) ≤ −α3(|x|) + γ(|w|), (9)

and if only Lipschitz inputs w are acting on the system (5), then given any strictly positive real numbers Ωx,Ωw, Ωẇ, ν,

there exists ε∗ > 0 such that for all ε ∈ (0, ε∗) and t ≥ t◦ ≥ 0 the solutions of (5) exist and satisfy (8) whenever

|x(t◦)| ≤ Ωx, ‖w‖∞ ≤ Ωw, ‖ẇ‖∞ ≤ Ωẇ. 2

2Note that w in the integral is a constant vector.
3Without loss of generality we may assume that α3 is locally Lipschitz since if it is not, we can always find a locally Lipschitz function

α̃3 so that −α3(s) ≤ −α̃3(s), ∀s ≥ 0 (see footnote on pg. 139 in [4]) and replace α3 in (7) with α̃3. Moreover, the proofs can be carried
out with some additional work if we use only the continuity of α3 instead of the local Lipschitz assumption.
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Remark 1 The condition on derivatives of inputs in Theorem 2 cannot be relaxed, as the following example shows

(the example is taken from [8]). The system ẋ = −cx3 + cos
(

t
ε

)
x3w, where c ∈ (0, 0.5), has a weak average ẋ = −cx3

which is ISS. However, with the input wε := cos
(

t
ε

)
the actual system exhibits finite escape times from x◦ = 1 and for

any t◦ ≥ 0, ε > 0 and hence does not satisfy (8) in a semiglobal practical sense. 2

Remark 2 The bound (8) that we prove in Theorems 1 and 2 contains the offset term ν(t − t◦) which indicates

that system (5) may contain a “finite power source” such as a limit cycle. The “finite power gain property” (with

linear gains and in the input-output setting) was introduced and analyzed in [3] and the bound (8) can be viewed as its

nonlinear generalizations for the case when the whole state is the output of the system. Moreover, similar results can

be proved when the weak or strong average systems are ISpS instead of ISS. 2

4 Proofs

We start with a set of “continuity of solutions” results whose proofs are standard and are omitted (see [4, Section

2.5]).

Lemma 1 Under Assumption 1, given any pair of strictly positive real numbers (r, r1), there exists d > 0 and M > 0

such that, for each ε > 0 and for each t◦ ≥ 0, if |x(t◦)| ≤ r , ‖w‖∞ ≤ r1 then the following property holds:

Property A: for all t ∈ [t◦, t◦ + d] the solution x(t) of (5) exists and satisfies |x(t)− x(t◦)| ≤ M(t− t◦). 2

For notational convenience, we state an obvious corollary:

Corollary 1 Under Assumption 1, given any continuous V and any quadruple of strictly positive real numbers

(r, r1, µ0, µ1), there exists d > 0 such that for each ε > 0 and for each t◦ ≥ 0, if |x(t◦)| ≤ r , ‖w‖∞ ≤ r1 then

the following properties hold:

Property B: for all t ∈ [t◦, t◦ + d] the solution x(t) of (5) exists and satisfies |x(t)| ≤ |x(t◦)|+ µ0.

Property C: for all t ∈ [t◦, t◦ + d] the solution x(t) of (5) exists and satisfies V (x(t)) ≤ V (x(t◦)) + µ1. 2

Lemma 2 Under the assumptions of Theorem 1, given any quadruple of strictly positive real numbers (∆,∆1, µ1, µ2)

and µ0 = 1, there exists d∗ > 0 such that for any fixed d ∈ (0, d∗), there exists ε∗ > 0 such that for all ε ∈ (0, ε∗),

t◦ ≥ 0, |x(t◦)| ≤ ∆, ‖w‖∞ ≤ ∆1,

(i) Property A holds with some M > 0;

(ii) Property B holds for µ0 = 1;

(iii) Property C holds for µ1;

(iv) the following property holds:

Property L: for all t ∈ [t◦, t◦ + d] the solution x(t) of (5) exists and satisfies

V (x(t◦ + d))− V (x(t◦))
d

≤ −α3(|x(t◦)|) +
1
d

∫ t◦+d

t◦
γ(|w(s)|)ds + µ2. (10)
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2

Proof of Lemma 2: Let (∆,∆1, µ1, µ2) be a given quadruple of strictly positive real numbers and let µ0 = 1. Let

L > 0 be a (uniform) Lipschitz constant for ∂V
∂x , f( t

ε , x, w), fsa(x,w) over the set where |x| ≤ ∆ + 1 =: ∆̃, |w| ≤ ∆1.

Define r := ∆ and r1 := ∆1 and K := 2L∆̃ + L∆1 + c. With the pair (r, r1) and the quadruple (r, r1, µ0, µ1), apply

Lemma 1 and Corollary 1 to generate M and d∗1 > 0 such that Properties A, B and C hold for any d ∈ (0, d∗1). Let

βav ∈ KL and T ∗ > 0 be such that (6) holds for all T ≥ T ∗. Let T ≥ T ∗ be such that

L∆βav(max {∆, ∆1, 1} , T ) ≤ µ2

2
. (11)

Throughout the rest of the proof we assume that |x(t◦)| ≤ ∆ and ‖w‖∞ ≤ ∆1. Let d∗2 := µ2
KLM and define d∗ :=

min{d∗1, d∗2}. Fix d ∈ (0, d∗) and define ε∗ := d
T . Let ε ∈ (0, ε∗). Given any t◦ ≥ 0 we can write that for all t ∈ [t◦, t◦+d]:

∂V

∂x
(x(t))f

(
t

ε
, x(t), w(t)

)
=

∂V

∂x
(x(t◦))fsa(x(t◦), w(t))

−∂V

∂x
(x(t◦))fsa(x(t◦), w(t)) +

∂V

∂x
(x(t◦))f

(
t

ε
, x(t◦), w(t)

)

+
∂V

∂x
(x(t))f

(
t

ε
, x(t), w(t)

)
− ∂V

∂x
(x(t◦))f

(
t

ε
, x(t◦), w(t)

)
. (12)

Integrate both sides of the inequality (12) along the solution x(t) over the interval [t◦, t◦+d] and divide by d to obtain

V (x(t◦ + d))− V (x(t◦))
d

≤ 1
d

∫ t0+d

t◦

∂V

∂x
(x(t◦))fsa(x(t◦), w(t))ds

︸ ︷︷ ︸
1

(13)

+
1
d

∫ t0+d

t◦

∣∣∣∣
∂V

∂x
(x(t◦))fsa(x(t◦), w(s))− ∂V

∂x
(x(t◦))f

(s

ε
, x(t◦), w(s)

)∣∣∣∣ ds

︸ ︷︷ ︸
2

+
1
d

∫ t0+d

t◦

∣∣∣∣
∂V

∂x
(x(s))f

(s

ε
, x(s), w(s)

)
− ∂V

∂x
(x(t◦))f

(s

ε
, x(t◦), w(s)

)∣∣∣∣ ds

︸ ︷︷ ︸
3

.

Now we turn to bounding each of the terms on the right-hand side of (13).

1 : From ISS of the strong average we can write:

1
d

∫ t0+d

t◦

∂V

∂x
(x(t◦))fsa(x(t◦), w(t))ds ≤ 1

d

∫ t◦+d

t◦
[−α3(|x(t◦)|) + γ(|w(s)|)] ds

= −α3(|x(t◦)|) +
1
d

∫ t◦+d

t◦
γ(|w(s)|)ds . (14)

2 : Since
∣∣∂V

∂x (x(t◦))
∣∣ ≤ L |x(t◦)| ≤ L∆ and d = ε∗T , Term 2 can be bounded above by:

εL∆
ε∗T

∣∣∣∣∣
∫ t0+Tε∗

t◦

(
fsa(x(t◦), w(s))− f

(s

ε
, x(t◦), w(s)

))
d

(s

ε

)∣∣∣∣∣

6



Introduce the change of variables τ = s/ε in the above integral and introduce w1(τ) := w(ετ) (note that ‖w1‖∞ =

‖w‖∞ ≤ ∆1) and T1 :=
ε∗T
ε

> T . Then by the definition of strong average we have:

L∆

∣∣∣∣∣
1
T1

∫ t0
ε +T1

t◦
ε

(fsa(x(t◦), w1(τ))− f(τ, x(t◦), w1(τ))) dτ

∣∣∣∣∣ ≤ L∆βav(max{|x(t◦)| , ‖w1‖∞ , 1}, T1)

≤ L∆βav(max{∆, ∆1, 1}, T ) ≤ µ2

2
, (15)

which follows from the fact that εT1 = d and (11).

3: Using Assumption 1 and the definition for L > 0, for all x, w with max{|x1| , |x2|} ≤ ∆̃, |w| ≤ ∆1 we have4:

∣∣∣∣
∂V

∂x
(x1)f

(s

ε
, x1, w

)
− ∂V

∂x
(x2)f

(s

ε
, x2, w

)∣∣∣∣ ≤ (2L∆̃ + L∆1 + c)L |x1 − x2| = KL |x1 − x2| . (16)

Using Properties A and B it follows that we can over bound the term 3 by KLMd
2 . Finally, from our choice of d∗ (in

particular the choice of d∗2), we can bound Term 3 by µ2
2 . From the bounds on terms 1-3 on the right-hand side of

(13), it follows that (10) holds, which completes the proof. 2

Lemma 3 Under the assumptions of Theorem 2, given any 5-tuple of strictly positive real numbers (∆, ∆1,∆2, µ1, µ2)

and µ0 = 1, there exists d∗ > 0 such that for any fixed d ∈ (0, d∗), there exists ε∗ > 0 such that for all ε ∈ (0, ε∗),

t◦ ≥ 0, |x(t◦)| ≤ ∆, ‖w‖∞ ≤ ∆1, ‖ẇ‖∞ ≤ ∆2,

(i) Property A holds with some M > 0;

(ii) Property B holds for µ0 = 1;

(iii) Property C holds for µ1;

(iv) Property L holds for µ2. 2

Sketch of proof of Lemma 3: The proof of Lemma 3 is very similar to the proof of Lemma 2 and we only point

out the differences. The main difference comes form the fact that instead of (13) we use the following inequality:

V (x(t◦ + d))− V (x(t◦))
d

≤ 1
d

∫ t0+d

t◦

∂V

∂x
(x(t◦))fwa(x(t◦), w(t))ds

︸ ︷︷ ︸
1

(17)

+
1
d

∫ t0+d

t◦

∣∣∣∣
∂V

∂x
(x(t◦))fwa(x(t◦), w(s))− ∂V

∂x
(x(t◦))fwa (x(t◦), w(t◦))

∣∣∣∣ ds

︸ ︷︷ ︸
2

+
1
d

∫ t0+d

t◦

∣∣∣∣
∂V

∂x
(x(t◦))fwa(x(t◦), w(t◦))− ∂V

∂x
(x(t◦))f

(s

ε
, x(t◦), w(t◦)

)∣∣∣∣ ds

︸ ︷︷ ︸
3

+
1
d

∫ t0+d

t◦

∣∣∣∣
∂V

∂x
(x(s))f

(s

ε
, x(s), w(s)

)
− ∂V

∂x
(x(t◦))f

(s

ε
, x(t◦), w(t◦)

)∣∣∣∣ ds

︸ ︷︷ ︸
4

.

4The Lipschitz assumption on ∂V
∂x

may be relaxed to continuity with some additional work.
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Term 1 is bounded in the same way as in proof of Lemma 2 and since |w(s)− w(t◦)| ≤ Ωẇ |s− t◦|, we can bound Term

2 by 1
d

∫ t◦+d

t◦
L2∆ |w(s)− w(t◦)| ds ≤ L2∆Ωẇd/2. Term 3 is bounded in a similar way as Term 2 in proof of Lemma

2 but we use the definition of the weak average. Term 4 is bounded using the fact that:

∣∣∣∣
∂V

∂x
(x1)f

(s

ε
, x1, w1

)
− ∂V

∂x
(x2)f

(s

ε
, x2, w2

)∣∣∣∣ ≤ KL |x1 − x2|+ L2∆̃ |w1 − w2| ,

where K,L, ∆̃ are defined in proof of Lemma 2 and then using calculations similar to bounding the above given Term

2 and Term 3 from Lemma 2. The proof is then completed in a similar way as proof of Lemma 2 (with appropriate

modifications). 2

Remark 3 Let d∗ be as in Lemma 2 (respectively Lemma 3). Then we can prove that given any strictly positive

numbers δ1 and δ2 such that δ1 < δ2 ≤ d∗ there exists an ε∗ > 0 such that for all ε ∈ (0, ε∗) Property L holds uniformly

for any d ∈ [δ1, δ2]. This is immediate from the proof of Lemma 2 (Lemma 3) if T is defined in the same way as in

Lemma 2 (respectively Lemma 3) and we take ε∗ := δ1
T .

First, we use a continuity of solutions argument in Lemma 4 to show that the required integral bound on solutions of

the actual system holds on small time intervals. Then the proof is extended to arbitrary large time intervals.

Lemma 4 If the strong average (respectively weak average) exists and (7) (respectively (9)) holds, then given any

triple of strictly positive numbers (r, r1, ν), there exists d∗ > 0 such that for any d ∈ (0, d∗], ε > 0 and any t◦ ≥ 0, if

|x(t◦)| ≤ r, ‖w‖∞ ≤ r1 then the following property holds:

Property D: for all t ∈ [t◦, t◦ + d] the solution of (5) exists and satisfies (8). 2

Proof of Lemma 4: In this Lemma, fa denotes either strong or weak average (the proof relies on continuity of fa). Fix

any t◦ ≥ 0. Let x(·) and y(·) denote respectively the solutions of the time varying system (5) and the corresponding

average given respectively by x(t) = x(t◦) +
∫ t

t◦
f

(
s
ε , x(s), w(s)

)
ds and y(t) = y(t◦) +

∫ t

t◦
fa(y(s), w(s))ds. Let d∗1

denote the maximum sampling interval allowable for Properties A, B, and C to hold with µ0 = 1. Property B and

(7) imply that for any d ∈ (0, d∗1], the following inequalities hold for any t ∈ [t◦, t◦ + d], ‖w‖∞ ≤ r1, |x(t◦)| ≤ r where

x(t◦) = y(t◦): |x(t)| ≤ r + 1, |y(t)| ≤ β(r, 0) + γ̃(r1), where β ∈ KL and γ̃ := α−1
1 ◦ α2 ◦ α−1

3 (pγ) with p > 1. Define L

to be the maximum of the Lipschitz constants of α3 and f on the set |x| ≤ ∆1 := max{r + 1, β(r, 0) + γ̃(r1)}. Define

d∗ := min
(
d∗1,

ν
LB

)
, where B := max|x|≤∆1,|w|≤r1,t≥0 max{|f(t, x, w)|, |fa(x,w)|} (note that B < ∞ by Assumption 1

and Definition 1). Let d ∈ (0, d∗]. Then, integrating inequality (7) or (9) along the solution of the average ẏ = fa(y, w)

initialized at y(t◦) = x(t◦) and adding
∫ t

t◦
α3(|x(s)|)ds to both sides yields

∫ t

t◦
α3(|x(s)|)ds ≤ α2(|x(t◦)|) +

∫ t

t◦
γ(|w(s)|)ds +

∫ t

t◦
[α3(|x(s)|)− α3(|y(s)|)]ds

≤ α2(|x(t◦)|) +
∫ t

t◦
γ(|w(s)|)ds + L

∫ t

t◦
|x(s)− y(s)|ds . (18)
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Using the definition of B and x(t◦) = y(t◦), we can write

|x(s)− y(s)| =
∣∣∣∣
∫ s

t◦
[f

(σ

ε
, x(σ), w(σ)

)
− fa(y(σ), w(σ))]dσ

∣∣∣∣ ≤
∫ s

t◦

[∣∣∣f
(σ

ε
, x(σ), w(σ)

)∣∣∣ + |fa(y(σ), w(σ))|
]
dσ

≤
∫ s

t◦
2Bdσ = 2B(s− t◦). (19)

Combining inequalities (18) and (19), noting that t− t◦ ≤ d and using the definition of d∗ (in particular ν ≥ LBd) we

have

∫ t

t◦
α3(|x(s)|)ds ≤ α2(|x(t◦)|) +

∫ t

t◦
γ(|w(s)|)ds + 2LB

∫ t

t◦
(s− t◦)ds = α2(|x(t◦)|) +

∫ t

t◦
γ(|w(s)|)ds + LB(t− t◦)2

≤ α2(|x(t◦)|) +
∫ t

t◦
γ(|w(s)|)ds + LBd(t− t◦) ≤ α2(|x(t◦)|) +

∫ t

t◦
γ(|w(s)|)ds + ν(t− t◦),

for all t ∈ [t◦, t◦ + d] thereby completing the proof. 2

Lemma 5 Let (Ωx, Ωw, ν) be given and W := {w : ‖w‖∞ ≤ Ωw}. Let W1 be an arbitrary subset of W. Let V be

a continuous function such that α1(|x|) ≤ V (x) ≤ α2(|x|) for all x ∈ Rn, where α1, α2 ∈ K∞. Let α3 be a locally

Lipschitz K∞ function and define

∆ := max
{

α−1
1

(
α2 ◦ α−1

3 (2γ(Ωw) + ν) +
ν

2

)
, α−1

1 ◦ α2(Ωx)
}

. (20)

Suppose the following property holds:

Property E: There exists d∗ > 0 and such that for any δ1 ∈ (0, d∗) and δ2 ∈ (δ1, d
∗], there exists an ε∗ > 0, such that

for all d ∈ [δ1, δ2], ε ∈ (0, ε∗), t◦ ≥ 0, |x(t◦)| ≤ ∆, w ∈ W1:

(i) Property A holds with some M > 0;

(ii) Property B holds with µ0 = 1;

(iii) Property C holds with µ1 = ν
2 ;

(iv) Property D holds;

(v) Property L holds with α3 and µ2 = ν
2 .

Then the following property holds:

Property F: For all ε ∈ (0, ε∗), |x(t◦)| ≤ Ωx, w ∈ W1 and t ≥ t◦ ≥ 0 the solution x(t) exists and satisfies (8). 2

Proof of Lemma 5: Let the triple (Ωx, Ωw, ν) and W1 ⊆ W be given. Let ∆ be defined by (20) and let Property

E hold for some d∗. Denote Lα > 0 a number that satisfies |α3(s1)− α3(s2)| ≤ Lα |s1 − s2| , ∀s1, s2 ∈ [0, ∆ + 1].

Define d∗1 := min
{

d∗, ν
LαM

}
, where M > 0 comes from (i). Let δ1 = d∗1

2 and δ2 = d∗1 determine ε∗ using Property E.

Consider arbitrary ε ∈ (0, ε∗), |x(t◦)| ≤ Ωx (note that this implies |x(t◦)| ≤ ∆), w ∈ W1 and t, t◦, such that t ≥ t◦ ≥ 0.

Define5 ` = `(t◦, t) := min{n ≥ 1 : nd∗1 ≥ t− t◦}.
5Integer ` is the minimum number of intervals of length d∗1 required to cover the interval [t◦, t].
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Case 1, ` = 1: ` = 1 implies that t ∈ [t◦, t◦ + d∗1], which by (iv) implies that Property F holds. This completes the

proof for Case 1.

Case 2, ` > 1: Define the sampling interval d = d(t◦, t) := t−t◦
` . Using the definition of ` we have (` − 1)d∗1 < t − t◦

and since ` > 1, we can write

d =
t− t◦

`
> d∗1

(
`− 1

`

)
≥ d∗1

2
, ∀` > 1.

That is, d ∈ (d∗1
2 , d∗1] for arbitrary t > t◦+d∗1. From (v) it follows that for all ε ∈ (0, ε∗), inequality (10) holds uniformly

for any sampling interval d ∈ [d∗1
2 , d∗1] and hence uniformly for all t > t◦ + d∗1.

Introduce the following sequence of numbers tk := t◦ + kd, k = 0, 1, 2, . . . and the following notation x(k) := x(tk),

V (k) := V (x(tk)) and w[k] := {w(t) : t ∈ [tk, tk+1]}. First, we show that if we have V (0) ≤ α1(∆), then V (k) ≤
α1(∆),∀k ≥ 0. Indeed, consider arbitrary k ≥ 0, arbitrary x(k) such that V (k) ≤ α1(∆) (which implies |x(k)| ≤ ∆)

and arbitrary w(·) ∈ W1. Then, we have either that |x(k)| ≥ α−1
3 (2γ(Ωw) + ν), in which case (from (v) and our

supposition that V (k) ≤ α1(∆)) we have

V (k + 1)− V (k) ≤ −d

2
α3(|x(k)|) ⇒ V (k + 1) ≤ V (k) ≤ α1(∆) , (21)

or we have that |x(k)| < α−1
3 (2γ(Ωw) + ν), which implies (from (iii) and the definition of ∆)

V (k + 1) ≤ V (k) +
ν

2
≤ α2(|x(k)|) +

ν

2
< α2 ◦ α−1

3 (2γ(Ωw) + ν) +
ν

2
≤ α1(∆) . (22)

By induction, we have that if V (0) ≤ α1(∆) then V (k) ≤ α1(∆), ∀k ≥ 0. Using the above discussion and (ii), it follows

that for all |x(k)| ≤ ∆, k ≥ 0 and w ∈ W1 the following inequalities hold for all k ≥ 0:

|x(k)| ≤ ∆, ∀k = 0, 1, 2, . . . (23)

|x(t)| ≤ |x(k)|+ 1, ∀t ∈ [tk, tk+1] (24)

V (x(t)) ≤ V (k) +
ν

2
, ∀t ∈ [tk, tk+1] (25)

V (k + 1)− V (k)
d

≤ −α3(|x(k)|) +
1
d

∫ tk+1

tk

γ(|w(s)|)ds +
ν

2
. (26)

Hence, (23) and (24) guarantee existence of solutions of the actual system for all t ≥ t◦ ≥ 0. Iteratively add (26) for

k ∈ [0, `− 1]. Noting that t` − t◦ = t− t◦ = `d and using (7) we obtain:

d

`−1∑

k=0

α3(|x(k)|) ≤ V (0)− V (`) +
∫ t`

t◦
γ(|w(s)|)ds +

ν

2
d` ≤ α2(|x(t◦)|) +

∫ t

t◦
γ(|w(s)|)ds +

ν

2
(t− t◦) .

Hence, adding
∫ t

t◦
α3(|x(s)|)ds to both sides of (27),

∫ t

t◦
α3(|x(s)|)ds ≤ α2(|x(t◦)|) +

∫ t

t◦
γ(|w(s)|)ds +

ν

2
(t− t◦) +

(∫ t

t◦
α3(|x(s)|)ds− d

`−1∑

k=0

α3(|x(k)|)
)

︸ ︷︷ ︸
Term 1

. (27)
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We now bound Term 1 in (27). Since |x(t)| ≤ ∆+1, ∀t ≥ t◦ and using the definitions of M in (i) and Lα we can write

|x(s)− x(tk)| ≤ M(s− tk), ∀s ∈ [tk, tk+1], k ∈ [0, `− 1], and hence we have:
∣∣∣∣∣
∫ t

t◦
α3(|x(s)|)ds− d

`−1∑

k=0

α3(|x(k)|)
∣∣∣∣∣ =

`−1∑

k=0

{∫ tk+1

tk

[α3(|x(s)|)− α3(|x(k)|)]ds

}
≤ Lα

`−1∑

k=0

∫ tk+1

tk

|x(s)− x(k)| ds

≤ LαM

`−1∑

k=0

∫ tk+1

tk

|s− tk| ds = LαM`

∫ d

0

τdτ =
LαM`d2

2

≤ ν

2
(t− t◦) . (28)

Combining (28) with (27), we have that (8) holds. Since this holds for arbitrary t > t◦ + d∗1, this proves inequality (8)

for all t ≥ t◦ ≥ 0 and hence completes the proof. 2

Lemma 5 can now be used to prove the main results.

Proof of Theorem 1: Let the triple (Ωx, Ωw, ν) be given. Fix W1 = W = {w : ‖w‖∞ ≤ Ωw}. Let V be the

differentiable Lyapunov function with locally Lipschitz gradient for the strong average, as per (7). Let ∆ be defined

by (20), µ0 = 1, µ1 = ν
2 , µ2 = ν

2 . Let the quadruple (∆, Ωw, µ1, µ2) define d∗1 > 0 using Lemma 2. Let (∆,Ωw, ν)

determine d∗2 > 0 using Lemma 4. Take d∗ := min{d∗1, d∗2}. Then, from Lemmas 2 and 4 and Remark 3 we have that

Property E holds. Using Lemma 5 we have that Property F holds, which completes the proof. 2

Proof of Theorem 2: Let the quadruple (Ωx,Ωw, Ωẇ, ν) be given. Let W1 = {w : ‖w‖∞ ≤ Ωw, ‖ẇ‖∞ ≤ Ωẇ} ⊂
W = {w : ‖w‖∞ ≤ Ωw}. Let V be the differentiable Lyapunov function with locally Lipschitz gradient for the weak

average, as per (9). Let ∆ be defined by (20), µ0 = 1, µ1 = ν
2 , µ2 = ν

2 . Let the 5-tuple (∆, Ωw, Ωẇ, µ1, µ2) define

d∗1 > 0 using Lemma 3. Let (∆,Ωw, ν) determine d∗2 > 0 using Lemma 4. Take d∗ := min{d∗1, d∗2}. Then, from

Lemmas 3 and 4 and Remark 3 it follows that Property E holds. Using Lemma 5 we have that Property F holds,

which completes the proof. 2
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