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Abstract. We present a construction of a (strong) Lyapunov function whose derivative is negative
definite along the solutions of the system using another (weak) Lyapunov function whose derivative
along the solutions of the system is negative semi-definite. The construction can be carried out if a Lie
algebraic condition that involves the (weak) Lyapunov function and the system vector field is satisfied.
Our main result extends to general nonlinear systems the strong Lyapunov function construction pre-

sented in [2] that was valid only for homogeneous systems.
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1 Introduction

Lyapunov functions are an indispensable tool in analysis and controller design of nonlinear systems
as illustrated by books [6, 7, 13] and numerous references cited therein. In particular, positive definite
Lyapunov functions whose derivative is negative definite along solutions of the system (strong Lyapunov
functions) are typically more useful than the ones whose derivative is only negative semi-definite (weak
Lyapunov functions). Indeed, in the latter case we can only conclude if the system is stable using
the La Salle invariance principle [10] while in the former case we can also guarantee certain form of
stability robustness. This is probably the main reason why strong Lyapunov functions have found a
widespread use in controller design methods, such as backstepping [7], forwarding [11, 13] and universal
stabilizing controllers via control Lyapunov functions [14]. While it is very desirable to obtain a strong
Lyapunov function, this is highly non trivial to achieve in general. On the other hand, for large classes
of systems it is much easier to obtain a weak Lyapunov function although it is not as useful as a strong
Lyapunov function. For instance, the storage (energy) function of passive nonlinear systems, such as

electro-mechanical systems, typically turns out to be a weak Lyapunov function for the closed loop
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system if the system is stabilized using linear output feedback. Another example are systems that are

stabilized using the Jurdjevic-Quinn Theorem [2, 5, 12].

Hence, there is a strong motivation in providing constructions of strong Lyapunov functions (that are
usually more useful) from weak Lyapunov functions (that are often easier to construct). This problem
has attracted attention of several researchers!, such as [1, 2]. The construction in [1] requires a weak
Lyapunov function Vj(-) and an auxiliary Lyapunov function V5(-) that verifies appropriate detectability
properties of the system with respect to an appropriately defined output. The construction is very
general but its main drawback is that the construction of V5(-) may be still very hard in general and
there is no general procedure that achieves this. A different approach was pursued in [2] where the
construction of a strong Lyapunov function is based entirely on a weak Lyapunov function V;(-) and its
iterated Lie derivatives along solutions of an auxiliary system with a scaled vector field. This approach
appears to be more direct than the approach in [1] but it can be used under slightly different (possibly
stronger) conditions. However, results in [2] are applicable only to homogeneous systems and we are

not aware of any similar results for general nonlinear systems.

In this paper, we present a construction of a strong Lyapunov function for general nonlinear systems
borrowing some ideas from [2]. The Lie bracket conditions under which we can carry out our construction
is very similar to the conditions from [2] but our result applies to general nonlinear systems, as opposed
to [2] that only applies to homogeneous systems. Furthermore, our construction is different from the
one used in [2] and, hence, our Lyapunov functions will be in general different from the ones obtained

in [2] when applied to the class of homogeneous systems.

The paper is organized as follows. First we present preliminaries in Section 2. The main results are
stated in Section 3 and proved in Section 4. Conclusions and suggestions for further work are presented

in the last Section. Several technical lemmas are presented in the Appendix.

2 Preliminaries

The set of natural numbers (not including zero) is denoted as N. Sets of real, nonnegative real and
strictly positive real numbers are denoted respectively as R, R>o and Ryo. A function k : R>g — Rxg
is said to be of class K if it is continuous, strictly increasing, zero at zero and unbounded. Given
a,b € N, with a < b we use the notation [a,b] to denote the set {z € N:a < z < b}. We use the
convention that if @ > b then [a,b] = . Also, given an arbitrary sequence c¢;, we let Z;’:a ¢ =0if
a,b € N are such that b < a. If a real-valued function & : R — R has continuous derivatives of arbitrary

order we say that the function is smooth and we denote its i-th derivative by k() (-). Given V : R* - R

1Results in [1, 2] are presented for slightly different situations from ours. Indeed, the results in [1] are presented for
analysis of the more general property of input-to-state stability (ISS) for systems with disturbance inputs. The results in [2]
are presented for controller design via the control Lyapunov functions (CLF) for systems that satisfy the Jurdjevic-Quinn
conditions.



and f: R* — R”, we use the following notation:
LV() = LiV(@) = 2 f@)  LHV(@) = L(LV(),  VieN
PVAZ) = LV T) = o Z); f T) = Ly{lgViT)), ? .

We say that V : R* — Rx is positive definite if V(0) = 0 and V'(z) > 0 for all  # 0. It is positive semi-
definite if V(0) =0 and V() > 0 for all z # 0. The function V (-) is negative definite (semi-definite) if
—V(-) is positive definite (semi-definite). The function V(-) is radially unbounded if |z| — oo implies

that V(z) — oo.

In this paper we consider systems of the form:

&t = fa(x) = MV (2)f(2) (2)

where X : R>o — Ry is a strictly positive function that will be defined later and V' : R® — Ryq is

positive definite. We will always assume that all functions are differentiable sufficiently many times.

In the sequel we use the following definition:

Definition 2.1 A function V : R® = R 4s a weak Lyapunov function for the system (1) if it is

positive definite, radially unbounded and
V=LiV(x)<0 VreR". (3)

A function V(-) is a strong Lyapunov function for the system (1) if it is positive definite, radially
unbounded and the function —L;V () is positive definite. If there exists a neighbourhood of the origin
E C R™ such that V (-) is positive definite on E and the condition (3) holds for all x € E, we say that
V(:) is a weak Lyapunov function for the system (1) on the set E. We define strong Lyapunov functions

on the set E in a similar manner.

We use the standard definitions of exponential, global exponential, asymptotic and global asymptotic

stability (see [6]).

3 Main result

In this section we state the main result of the paper which is proved in the next section. The result
provides a construction of a strong Lyapunov function for the system (1) under the following conditions:
(i) a weak Lyapunov function is available for the system (1); (ii) the weak Lyapunov function and the

system (1) satisfy a Lie algebraic condition (item (ii) of Theorem 3.1).



Theorem 3.1 Suppose that there exists V : R* — R such that the following conditions hold:
(i) V(-) is a weak Lyapunov function for the system (1);
(i) There exists £ € N such that for all x # 0, there exists i € [1,£], such that L’}V(a:) #0.

Then, there exists a nonincreasing strictly positive function X : R>9 — Ry such that the function

U) = V@) |1+ V(@ ZLg ) (L VG ))ﬂ 4)

is a strong Lyapunov function for the system (1), where fx = fa(z) := MV (2))f(x). In particular, we
can take any A(-) such that

; 1
L V@) < gp Vi€lle+1], Vo e R (5)

A local version of Theorem 3.1 can also be stated. Due to space reasons the proof of this fact is

omitted.

Corollary 3.2 Suppose that all conditions of Theorem 3.1 hold on a given neighbourhood of the origin
E C R*. Then, there exists a neighbourhood of the origin E; with Ey C E such that the Lyapunov

function (4) is a strict Lyapunov function for the system (1) on the set E.

In the case of globally asymptotically stable analytic systems for which the condition (i) of Theorem
3.1 holds with an analytic function V (-), it can be proved that the condition (ii) holds on arbitrarily
large compact sets which do not contain the origin. The proof of this result is provided in the next

section.

Proposition 3.3 Consider an analytic system (1) and assume that it is globally asymptotically stable.
Suppose that the condition (i) of Theorem 3.1 holds with an analytic function V(-). Then, given an
arbitrary compact set E which does not contain the origin there exists £ € N such that for any x € E

with x # 0 we have that L}V(x) # 0 for some i € [1,4].

We note that the conditions (i) and (ii) in Theorem 3.1 are not necessary for global asymptotic
stability of the system. Indeed, there may exist a system (1) that satisfies the condition (i) but not the
condition (ii) and which can be proved to be globally asymptotically stable using the La Salle invariance

principle. The following example that is taken from [12] illustrates this situation.

Example 3.4 Consider the system &1 = T2, T2 = —1 — £2B(x2), where B(s) = e_?QITl when |s| #1
and B(1) = B(—1) = 0. Note that B(-) is a smooth function. Note that item (i) of Theorem 3.1 is
satisfied with V (xy,z2) = 22 + 22 since V = —222B(x3). Moreover, by applying the La Salle invariance
principle, one can prove that this system is globally asymptotically stable (see [12]). However, the
condition (i) of Theorem 3.1 does not hold since for z* = (0 1)T and all i € N we have that L?V(m*) =0.



Remark 3.5 We note that when the system (1) is locally exponentially stable, the derivative of (4) along
the trajectories of (1) is typically not locally upper bounded by a negative definite quadratic function.
Moreover, our construction usually does not produce a Lyapunov function U(-) using which we can verify
local or global exponential stability. However, one can use U(-) to obtain another strong Lyapunov
function W (-) using which exponential stability can be verified. For example, if the system satisfies
conditions of Theorem 3.1 and, moreover, its linearization is exponentially stable, then one can construct
a Lyapunov function W (-) such that a;(|z|) < W(z) < as(|z|), W < —as(|z|) for all z € R® and some
ai,as,a3 € Koo and, moreover, there exists §,a,b € Rso such that ai(s) = as? and az(s) = bs? for all

s € [0,0] (see [4, Lemma 10.1.5]).

Remark 3.6 The construction in [2] applies only to homogeneous systems whereas our construction can
be used for general nonlinear systems (1). We note that the Ezample of the TORA system in [2, Section
8] illustrates how results of [2] can be sometimes used for non-homogeneous systems. However, [2]
does not provide a systematic construction of strong Lyapunov functions for general non-homogeneous

system, which is what we do.

Remark 3.7 It is possible to use our result in a range of controller design situations, similar to the one
presented in [2] for systems satisfying the Jurdjevic-Quinn conditions. Due to space reasons we have

not pursued these controller design questions in the current paper.

Remark 3.8 An important application of strong Lyapunov functions is robustness analysis of stability
of nonlinear systems (see for example [6, Chapter 5]). In order to analyze stability robustness we typically
need also that the strong Lyapunov function U(-) satisfies the following condition |%| < a|z]), Vz € R,
for some class Koo function a(-). We note that if the weak Lyapunov function V() is continuously
differentiable sufficiently many times, then the function U(-) constructed using (4) will satisfy this extra

condition.

Remark 3.9 An alternative construction of strong Lyapunov functions for systems satisfying conditions
of La Salle is presented in [1], where a weak Lyapunov function is combined with another auziliary
Lyapunov function. More precisely, it is assumed that there exist two positive definite and radially

unbounded functions Vi (-) and Vi (-) satisfying® for all z € R :
Vi < —au(lyl) , Va < —aa(lz]) +7(yl) (6)

where a1, a2,y are Koo functions and y = h(x). Note that Vi(-) in (6) is typically a weak Lyapunov
function since |h(z)| is typically a positive semi-definite function. The function Vi (-) in (6) is an output-

to-state Lyapunov function (see [8]) that characterizes a particular form of detectability of x from the

2 Actually, results in [1] are presented for the more general case of input-to-state stability (ISS) for systems with inputs.



output y. A strong Lyapunov function in [1] takes the form U(z) = Vi(z) + p(Va(x)), where p is a Koo
function. The main difference between our approach and [1] is that our conditions appear to be stronger
but easier to check than those in [1]. Indeed, searching for Va(-) satisfying (6) is much harder than

checking our Lie bracket condition (ii) in Theorem 3.1 and then using the formula (4).

4 Proofs of main results

Proof of Theorem 3.1. Note first that since V(-) is radially unbounded and positive definite and
L’}V(w) are continuous functions of z for all ¢ € [1,£+ 1], all conditions of Lemma A.2 in the Appendix
hold and the lemma guarantees that we can always find A(-) such that (5) holds. Moreover, one possible
construction of A(-) is presented in Lemma A.2. Consider the auxiliary system (2). Item 2 of Lemma
A1 states that if we construct a strong Lyapunov function for the system (2), then the same function
is a strong Lyapunov function for the system (1). Hence, in the rest of the proof we concentrate only
on the system (2). Moreover, items 1 and 3 of Lemma A.1 imply that since conditions (i) and (ii) of

Theorem 3.1 hold for the system (1), the same conditions hold for the system (2).

We now show that (4) is a strong Lyapunov function for the system (2) that satisfies the conditions

(i) and (ii) of Theorem 3.1 and for which (5) holds.

To simplify the notation we introduce the functions

i

. . 3
Mi(z) = —Li V() (LV (@) ie[1,0—1] (7)
and
-1
S(z) := V(z) + Y _ Mi(x) (8)
=1

Direct calculations show that the derivative of M; along solutions of (2) is:

3i41

%

— 3L, V(z)- (qule(a;))st1 LHV () ieLe-1]. ()

@ —(L’XlV(x))

Note that for any a,b € R>o and any i € N we can write (consider the cases a < %bZ and a > %bz):

i 1. .: 1 41
ab¥ < K4 5(2@% (10)
and using (9) and (10) with b= [L5"V(2)| and a = 3 - |LE V(z)| - L2V (2)| we can write
i Ti i 3i-1 i Lo g4 1 i i i 3i2+1
3. L V() (LfJ;lV(x)) LIV (@) < 5 (L;:lV(w)) +5 (2-3 L AV(:U)|-|L;;2V(:U)|)
(11)
Using (9) and (11) we can write for all ¢ € [1,£— 1]:
M L (i1 g i | Iit2 i (12)
g S HEEVE@) T il V@l EPvE)] T



Then, using (8), (12) and (5),

2 . 3'+1 1 1 .
1 i+1 - . qi i 13
S|(2) < LyV(z) > (Lh V(x)) +,:1 : [2 3 —3[+1|th(x)|] _ (13)
But
S 1o # . =21 e
> 3 [2.3z3l+1|L}AV(w)I] = 3[2-3: L V()] + 5[ 3£+1|L ()|]
i=1 o =2 ' 2ty
2 2 —1 3 i+1 2
< 5(3) LRV +3 5 [2 SV @)
;iz 1 /9 3itlpq
2 2 p 3itlqg
< 3@ Cver+Y g (3) T e
=1
(14)
This implies
. ; 3i+1 1 2 2
S‘ 5 < Ly V % Z (L +1V ) + 5 (g) (LfAV(.CE))2
(2) —
R (15)

2 . gitlyq
+Z§ (5) LV (@)
=1

The condition (i) of Theorem 3.1 and the item 1 of Lemma A.l guarantee that Ly, V(z) is negative
semi-definite and since ?’H-QJ >3 +1and LY V(z)| <1foralli=1,2,...,0+1, we get

-1 -

g < %th(m)_ ;Z(LH-IV )3 +1+Z; ( ) (L’]';er(SC))3i+1
< V@ -1Y (LEve)
i=1

Observe that the function U(z) defined in (4) can be written as:
U(z) = V(z)-(1+ S(x)) (17)

and the inequality (16) ensures that its derivative along the trajectories of (2) satisfies

-1 i
0, < LaV(@)-(1+5@)+V(@): (%LAV(.@) - i > (L?;IV(:U))B “) . (18)

(From (5), it follows that for all z € R™ we have:

-1 -1 1 1 3t (-1 1
1+S8(@) > 1+ My(x) 21—2:%-(@) > 1= gmr > 5 (19)
i=1 =1

Hence, since Ly, V(z) is negative semi-definite and using (19) we can obtain using (18) the following:

1 LN~ (i 341 n
< 2L,ﬂ/(m) +V(@)- | 5LnVE) -5 > (L4 V(@) VzeR'.  (20)

i=1

(2)



It is easy to see that the right hand side of (20) is negative definite. Indeed, note first that both terms on
the right hand side of (20) are non-positive functions. Moreover, if for some « # 0 we have Ly, V(z) < 0

then the first term is negative and hence U - < 0. On the other hand, if Ly, V(z) = 0 then from the
2
-1 - 3i41
condition (ii) of the Theorem and Lemma A.2 we have that —1 - V(z) - Z (L}f V(:c)) < 0 and
i=1

hence U < 0.
(2)

Finally, note that (17) and (19) imply that
U(z) > V() vz e R*, (21)

which implies that U(x) is positive definite and radially unbounded (since V (-) is positive definite and
radially unbounded). Hence, U(-) is a strong Lyapunov function for the system (2). According to item
2 of Lemma A.1 in the Appendix, U(-) is also a strong Lyapunov function for the system (1), which
completes the proof.

Proof of Proposition 3.3: Let all conditions of Proposition 3.3 be satisfied.

First, we show that for any z € R", with £ # 0 there exists an integer n = n(z) > 0 such that
L}V (z) # 0. Consider an arbitrary z € R" with z # 0. Since the system is assumed to be GAS,
the solution ¢(t,x) is defined for all ¢ € [0, 00). For the purpose of showing contradiction suppose that
LV (4(t,x)) = 0 for all t € [0,00). This implies that V (4(t,z)) = 0 and hence V (¢(t,x)) = V (z) > 0 for
all t € [0,00). Since V(-) is positive definite and radially unbounded, this contradicts the assumptions

that the system is GAS. Hence, there exists t. € (0, 00) such that

LiV(o(te,2)) #0 . (22)

Since V(-) and f(-) are analytic functions, we have that LV (¢(t,z)) is an analytic function of ¢ and

we can write:

LiV(é ZL’“V t—' , Vte[0,00) . (23)

Now if we assume that L’}V(a:) = 0 for all ¢ € N we have from (23) with ¢ = ¢, that L;V(é(t.,2)) =
Z L’+1V -£ =0, but this contradicts (22). Consequently, there must exist an integer n = n(x) such
that L}V () ;é 0.

Now we show that for the given set E there exists £ € N such that for any z € E we have L;}V(x) #0
for some i € [1,£]. Assume for the purpose of showing contradiction that there exists a sequence z, € E

and a strictly increasing sequence of positive integers n, such that

LYV (zp) = 0, Vi€ [l,n,—1]; L7V(z,) # 0. (24)



Since E is a compact set, there exists a subsequence of x,, that we still denote as z, and z* € E such
that limp 4 o 2, = 2*. (From the first part of the proof we know that there exists an integer n* = n(z*)

such that L;}*V(x*) # 0. Since L’]}*V(:c) is a continuous function of z, there exists § > 0 such that
L¥V(z) #0 Voe{z:|z* -2/ <d}. (25)
Since x;, converges to z*, there exists P; € N such that |2, — 2*| < § for all p > P; and hence
LY V(zp) #0  Vp>Pr . (26)

The sequence n, is strictly increasing and such that lim,, ., n, = +o0o. It follows that there exists

P, € N with P, > P; such that

LY V(zp,)=0 Vp>Py. (27)

But (26) and (27) yield a contradiction and this completes the proof.

5 Conclusions

We have presented a partial construction of a strong Lyapunov function using a weak Lyapunov function.
The construction can be carried out if a mild Lie algebraic condition that involves the weak Lyapunov
function holds. Our construction would be useful for analysis of stability robustness for important classes
of systems, such as passive nonlinear systems since the storage function of the passive system typically
turns out to be a weak Lyapunov function. Also, using our result in design or redesign of controllers for

systems such as the ones satisfying Jurdjevic-Quinn conditions is an interesting topic for further research.
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A Technical lemmas

Lemma A.1 Let V : R® = Ryq be a positive definite function and X : R>g — Rsq a strictly positive

function. Then, the following holds:

1. V(-) is a weak Lyapunov function for the system (1) if and only if it is a weak Lyapunov function
for the system (2).

2. V() is a strong Lyapunov function for the system (1) if and only if it is a strong Lyapunov function
for the system (2).

3. The system (1) satisfies the condition (ii) of Theorem 3.1 if and only if the system (2) satisfies
the condition (ii) of Theorem 3.1

10



Proof of Lemma A.1: Note that

ov

Vi = 2-@)f(@), Vg = AV (2)) 5 (2)f(2) - (28)

ox

Then the proof of the first two statements of Lemma A.1 follows from the following observation. Since
AV (z)) is strictly positive for all z € R™, we have that %(m) f(z) is negative definite (semi-definite) if
and only if A(V (z)) 2% (z)f(z) is negative definite (semi-definite).

Now we prove the third claim in Lemma A.1. By induction, one can show that for any 7 € N there
exist polynomials @; : R! — R and P; : R — R with P;(0,0,...,0) = Q;(0,0,...,0) = 0 and for all

Jj € [0,1] there exist continuous functions p;'- :R* -+ R and 0;'- : R® — R such that

LV (@) = V@) [LFV (@) + P (6 @)LV (@), @ LV (@) = Paale)  (29)

LHVE) = 55 LV (@) + Qi (B@ LV (@), 6 @)L V(E)] = Quna(@) . (30)

According to (28), the property is satisfied at the step ¢ = 0. If one assumes that it is satisfied at the
step 1, then direct calculations on the equalities (29) and (30) show that it is satisfied at the step i + 1.

The next part of the proof consists in proceeding by contradiction. Suppose that there exists £ € N
such that: (i) for any z € R”, there exists an integer n = n(z) with n € [1,£] such that L}V (z) # 0; (ii)
there exists z. € R" such that, for all m € [1,£], L}, V(x.) = 0. According to (30), for all i € [0,1 — 1],

LV (z.) = [L}jIV(xc)+Q,~ (Hi(xc)LfAV(a:c),...,Gf(xc)L;AV(arc))] . (31)

AV (zc))
Since for all m € [1,4], L V(z.) =0, it follows that for all i € [0,] — 1],
LF'V(z) = 0. (32)

This contradicts the assumptions that for any x € R", there exists an integer n = n(z) with n € [1,/]
such that L}V (z) # 0. This proves that if item (ii) of Theorem 3.1 holds for the system (1), then the
same condition holds for the system (2). The statement in the opposite direction is obtained in the

same way by using (29).

Lemma A.2 Consider f: R* — R” and a function V : R* = R>q. Suppose that for some N € N and
all i € [1,N] there exist k; : R>o = Ry such that

|L?V($)| < ki(V(x)), Vi € [1,N], Vz € R” . (33)

Then, given any ¢ > 0 there ewists a strictly positive nonincreasing function X : R>o — Rsq such

lx) =XV (2))f(x) satisfies

|L% V(z)| <, Vi€ [1,N],Vz € R" . (34)

11



Proof of Lemma A.2: Let N € N come from the lemma. To simplify notation we use V = V(z)
in this proof. Note first that given any function A and for any ¢ € [1, N] there exists a polynomial

G; : R?* - R such that
LV =AV)-Gi(LsV,...,LyV,AV), ..., AED(1) | (35)

where \() (V) := %(V). This implies that there exist two polynomials T'; : RY — Rand Ty : RN — R
with positive coefficients and min{I'; (0,0, ... ,0),'2(0,0,...,0)} > 0 such that

ILE VI SAV) -TL(Lg Vs, [LFV]) -To (AW, ANTD(V))) Vie[L,N], Vo e R* . (36)

Since (33) holds, there exists a nondecreasing function & : R>g — Ry such that such that

ILe VI <AV) - 6(V) -T2 ((AV),-.., AE=D(V)))  Vie[l,N], Vz € R" . (37)
We denote o :=sup,, ¢jo,1],... 2nef0,1] L2(21, - - -, 2n)- Let ¢ > 0 be given and define
v+1 s1+1 sn+1 1
Alv) = / (/ / ——ds )ds 38
( ) n \ o on K/(SNJ'_I) N+1 1 ( )
where 7 := min {n(O), 1_%0} We show below that (34) holds.
Note that the function &(-) is positive and nondecreasing. It follows that the function n f:}iﬁl mds N41
is a nonnegative nonincreasing function of sy such that
sN+1 1 ,’7
———ds < —.
77/sN k(sng1) V= k(sw)
It follows by induction that A(-) is nonincreasing and such that
AD < ; N > 0.
(v) < (o) Vj e€[0,N], Yo >0 (39)
So in particular, since n < k(0), then we have
A @w) <1 Vjelo,N], Vv >0. (40)
It follows from (37), (39), (40) and the definition of n and o that for all z € R™ we have:
L, V(@) < AV)-&(V) -T2(AV)],- ., AND (1))
< 0 Ta(AW) - WD) )
S 1—|C—0' I
< ¢,

which completes the proof.
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